1
|
Hansen FM, Kremer LS, Karayel O, Bludau I, Larsson NG, Kühl I, Mann M. Mitochondrial phosphoproteomes are functionally specialized across tissues. Life Sci Alliance 2024; 7:e202302147. [PMID: 37984987 PMCID: PMC10662294 DOI: 10.26508/lsa.202302147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.
Collapse
Affiliation(s)
- Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura S Kremer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2
|
Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. SEPARATIONS 2022. [DOI: 10.3390/separations9110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.
Collapse
|
3
|
Li X, Ren Z, Huang X, Yu T. LACTB, a Metabolic Therapeutic Target in Clinical Cancer Application. Cells 2022; 11:cells11172749. [PMID: 36078157 PMCID: PMC9454609 DOI: 10.3390/cells11172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Serine beta-lactamase-like protein (LACTB) is the only mammalian mitochondrial homolog evolved from penicillin-binding proteins and β-lactamases (PBP-βLs) in bacteria. LACTB, an active-site serine protease, polymerizes into stable filaments, which are localized to the intermembrane space (IMS) of mitochondrion and involved in the submitochondrial organization, modulating mitochondrial lipid metabolism. Cancer pathogenesis and progression are relevant to the alterations in mitochondrial metabolism. Metabolic reprogramming contributes to cancer cell behavior. This article (1) evidences the clinical implications of LACTB on neoplastic cell proliferation and migration and tumor growth and metastasis as well as LACTB’s involvement in chemotherapeutic and immunotherapeutic responses; (2) sketches the structural basis for LACTB activity and function; and (3) highlights the relevant regulatory mechanisms to LACTB. The abnormal expression of LACTB has been associated with clinicopathological features of cancer tissues and outcomes of anticancer therapies. With the current pioneer researches on the tumor-suppressed function, structural basis, and regulatory mechanism of LACTB, the perspective hints at a great appeal of enzymic property, polymerization, mutation, and epigenetic and post-translational modifications in investigating LACTB’s role in cancer pathogenesis. This perspective provides novel insights for LACTB as a metabolic regulator with potential to develop targeted cancer therapies or neoadjuvant therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohua Li
- School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China or
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China or
| | - Xiaohong Huang
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
- Correspondence: (X.H.); (T.Y.)
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China or
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266071, China
- Correspondence: (X.H.); (T.Y.)
| |
Collapse
|
4
|
VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. Int J Mol Sci 2021; 22:ijms222312833. [PMID: 34884639 PMCID: PMC8657666 DOI: 10.3390/ijms222312833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM), where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways. There is increasing consensus about their function as a cellular hub, connecting bioenergetics functions to the rest of the cell. The structural characterization of VDACs presents challenging issues due to their very high hydrophobicity, low solubility, the difficulty to separate them from other mitochondrial proteins of similar hydrophobicity and the practical impossibility to isolate each single isoform. Consequently, it is necessary to analyze them as components of a relatively complex mixture. Due to the experimental difficulties in their structural characterization, post-translational modifications (PTMs) of VDAC proteins represent a little explored field. Only in recent years, the increasing number of tools aimed at identifying and quantifying PTMs has allowed to increase our knowledge in this field and in the mechanisms that regulate functions and interactions of mitochondrial porins. In particular, the development of nano-reversed phase ultra-high performance liquid chromatography (nanoRP-UHPLC) and ultra-sensitive high-resolution mass spectrometry (HRMS) methods has played a key role in this field. The findings obtained on VDAC PTMs using such methodologies, which permitted an in-depth characterization of these very hydrophobic trans-membrane pore proteins, are summarized in this review.
Collapse
|
5
|
Liu X, Fields R, Schweppe DK, Paulo JA. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging. Expert Rev Proteomics 2021; 18:795-807. [PMID: 34652972 DOI: 10.1080/14789450.2021.1994390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Protein phosphorylation is a primary mechanism of signal transduction in cellular systems. Isobaric tagging can be used to investigate alterations in phosphorylation events in sample multiplexing experiments where quantification extends across all conditions. As such, innovations in tandem mass tag methods can facilitate the expansion of the depth and breadth of phosphoproteomic analyses. AREAS COVERED This review discusses the current state of tandem mass tag-centric phosphoproteomics and highlights advances in reagent chemistry, instrumentation, data acquisition, and data analysis. We stress that approaches for phosphoproteomic investigations require high-specificity enrichment, sensitive detection, and accurate phosphorylation site localization. EXPERT OPINION Tandem mass tag-centric phosphoproteomics will continue to be an important conduit for our understanding of signal transduction in living organisms. We anticipate that progress in phosphopeptide enrichment methodologies, enhancements in instrumentation and data acquisition technologies, and further refinements in analytical strategies will be key to the discovery of biologically relevant findings from phosphoproteomics studies.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| |
Collapse
|
6
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Paulo JA, Schweppe DK. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing. Proteomics 2021; 21:e2000140. [PMID: 33455035 DOI: 10.1002/pmic.202000140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic protein phosphorylation modulates nearly every major biological process. Phosphorylation regulates protein activity, mediates cellular signal transduction, and manipulates cellular structure. Consequently, the dysregulation of kinase and phosphatase pathways has been linked to a multitude of diseases. Mass spectrometry-based proteomic techniques are increasingly used for the global interrogation of perturbations in phosphorylation-based cellular signaling. Strategies for studying phosphoproteomes require high-specificity enrichment, sensitive detection, and accurate localization of phosphorylation sites with advanced LC-MS/MS techniques and downstream informatics. Sample multiplexing with isobaric tags has also been integral to recent advancements in throughput and sensitivity for phosphoproteomic studies. Each of these facets of phosphoproteomics analysis present distinct challenges and thus opportunities for improvement and innovation. Here, we review current methodologies, explore persistent challenges, and discuss the outlook for isobaric tag-based quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Joao A Paulo
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Xie J, Peng Y, Chen X, Li Q, Jian B, Wen Z, Liu S. LACTB mRNA expression is increased in pancreatic adenocarcinoma and high expression indicates a poor prognosis. PLoS One 2021; 16:e0245908. [PMID: 33507917 PMCID: PMC7842907 DOI: 10.1371/journal.pone.0245908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to find the prognostic value of Beta-lactamase-like (LACTB) in pancreatic adenocarcinoma (PAAD) patients. The mRNA expression of LACTB was upregulated in PAAD and was correlated with vital status (P = 0.0199). The immunoreactive scores of LACTB protein in human PAAD tissues were significantly higher than those in adjacent noncancerous pancreatic tissues. Receiver operating characteristic (ROC) curve assessment showed that LACTB mRNA expression has high diagnostic value in PAAD. Kaplan-Meier curve and Cox analyses suggested that patients with high LACTB mRNA expression have a poor prognosis, indicating that LACTB mRNA is an independent prognostic factor for overall survival [hazard ratio (HR) = 1.72, P = 0.015, 95% confidence interval (CI) = 1.106–2.253] and disease-specific survival (HR = 1.97, P = 0.004, 95% CI = 1.238–3.152) of PAAD patients. Gene set enrichment analysis (GSEA) revealed that hallmark_g2m_checkpoint, hallmark_myc_targets_v1, hallmark_e2f_targets, and kegg_cell_cycle were differentially enriched in phenotypes with high LACTB expression. In addition, CDC20, CDK4, MCM6, MAD2L1, MCM2 and MCM5 were leading genes intersecting in these four pathways, and a positive correlation between mRNA expression and LACTB was observed in most normal and cancer tissues. Finally, elevated LACTB mRNA expression was significantly related to multiple immune marker sets. Our results elucidate that LACTB is involved in the development of cancer, and that high LACTB expression in patients with PAAD can predict a poor prognosis. High LACTB expression was significantly correlated with cell cycle-related genes and multiple immune marker sets.
Collapse
Affiliation(s)
- Jian Xie
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Chen
- Department of Prevention and Health Protection, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qigang Li
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Jian
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
9
|
Uchida Y, Yamamoto Y, Sakisaka T. Trans-2-enoyl-CoA reductase limits Ca 2+ accumulation in the endoplasmic reticulum by inhibiting the Ca 2+ pump SERCA2b. J Biol Chem 2021; 296:100310. [PMID: 33482198 PMCID: PMC7949109 DOI: 10.1016/j.jbc.2021.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) contains various enzymes that metabolize fatty acids (FAs). Given that FAs are the components of membranes, FA metabolic enzymes might be associated with regulation of ER membrane functions. However, it remains unclear whether there is the interplay between FA metabolic enzymes and ER membrane proteins. Trans-2-enoyl-CoA reductase (TER) is an FA reductase present in the ER membrane and catalyzes the last step in the FA elongation cycle and sphingosine degradation pathway. Here we identify sarco(endo)plasmic reticulum Ca2+-ATPase 2b (SERCA2b), an ER Ca2+ pump responsible for Ca2+ accumulation in the ER, as a TER-binding protein by affinity purification from HEK293 cell lysates. We show that TER directly binds to SERCA2b by in vitro assays using recombinant proteins. Thapsigargin, a specific SERCA inhibitor, inhibits this binding. TER binds to SERCA2b through its conserved C-terminal region. TER overexpression suppresses SERCA2b ATPase activity in microsomal membranes of HEK293 cells. Depletion of TER increases Ca2+ storage in the ER and accelerates SERCA2b-dependent Ca2+ uptake to the ER after ligand-induced Ca2+ release. Moreover, depletion of TER reduces the Ca2+-dependent nuclear translocation of nuclear factor of activated T cells 4. These results demonstrate that TER is a negative regulator of SERCA2b, implying the direct linkage of FA metabolism and Ca2+ accumulation in the ER.
Collapse
Affiliation(s)
- Yasunori Uchida
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| |
Collapse
|
10
|
Yantsevich AV, Dzichenka YV, Ivanchik AV, Shapiro MA, Trawkina M, Shkel TV, Gilep AA, Sergeev GV, Usanov SA. [Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography]. APPL BIOCHEM MICRO+ 2018; 53:173-87. [PMID: 29508978 DOI: 10.1134/s000368381702017x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Contaminating proteins have been identified by “shotgun” proteomic analysis in 14 recombinant preparations of human membrane heme- and flavoproteins expressed in Escherichia coli and purified by immobilized metal ion affinity chromatography. Immobilized metal ion affinity chromatography of ten proteins was performed on Ni2+-NTA-sepharose 6B, and the remaining four proteins were purified by ligand affinity chromatography on 2',5'-ADP-sepharose 4B. Proteomic analysis allowed to detect 50 protein impurities from E. coli. The most common contaminant was Elongation factor Tu2. It is characterized by a large dipole moment and a cluster arrangement of acidic amino acid residues that mediate the specific interaction with the sorbent. Peptidyl prolyl-cis-trans isomerase SlyD, glutamine-fructose-6-phosphate aminotransferase, and catalase HPII that contained repeating HxH, QxQ, and RxR fragments capable of specific interaction with the sorbent were identified among the protein contaminants as well. GroL/GroS chaperonins were probably copurified due to the formation of complexes with the target proteins. The Ni2+ cations leakage from the sorbent during lead to formation of free carboxyl groups that is the reason of cation exchanger properties of the sorbent. This was the putative reason for the copurification of basic proteins, such as the ribosomal proteins of E. coli and the widely occurring uncharacterized protein YqjD. The results of the analysis revealed variation in the contaminant composition related to the type of protein expressed. This is probably related to the reaction of E. coli cell proteome to the expression of a foreign protein. We concluded that the nature of the protein contaminants in a preparation of a recombinant protein purified by immobilized metal ion affinity chromatography on a certain sorbent could be predicted if information on the host cell proteome were available.
Collapse
|
11
|
Yao Y, Dong J, Dong M, Liu F, Wang Y, Mao J, Ye M, Zou H. An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis. J Chromatogr A 2017; 1498:22-28. [DOI: 10.1016/j.chroma.2017.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
12
|
Keckesova Z, Donaher JL, De Cock J, Freinkman E, Lingrell S, Bachovchin DA, Bierie B, Tischler V, Noske A, Okondo MC, Reinhardt F, Thiru P, Golub TR, Vance JE, Weinberg RA. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature 2017; 543:681-686. [PMID: 28329758 PMCID: PMC6246920 DOI: 10.1038/nature21408] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/18/2017] [Indexed: 02/05/2023]
Abstract
Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.
Collapse
Affiliation(s)
- Zuzana Keckesova
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Joana Liu Donaher
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Jasmine De Cock
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Metabolon, Inc., PO Box 110407, Research Triangle Park, North Carolina 27709, USA
| | - Susanne Lingrell
- Department of Medicine and the Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Daniel A Bachovchin
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Brian Bierie
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Todd R Golub
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jean E Vance
- Department of Medicine and the Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- MIT Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Renvoisé M, Bonhomme L, Davanture M, Zivy M, Lemaire C. Phosphoproteomic Analysis of Isolated Mitochondria in Yeast. Methods Mol Biol 2017; 1636:283-299. [PMID: 28730486 DOI: 10.1007/978-1-4939-7154-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mitochondria play a central role in cellular energy metabolism and cell death. Deregulation of mitochondrial functions is associated with several human pathologies (neurodegenerative diseases, neuromuscular diseases, type II diabetes, obesity, cancer). The steadily increasing number of identified mitochondrial phosphoproteins, kinases, and phosphatases in recent years suggests that reversible protein phosphorylation plays an important part in the control of mitochondrial processes. In addition, many mitochondrial phosphoproteins probably still remain to be identified, considering that 30% of proteins are expected to be phosphorylated in eukaryotes. In this chapter, we describe two procedures for the analysis of the mitochondrial phosphoproteome. The first one is a qualitative method that combines blue native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D-BN/SDS-PAGE) and specific phosphoprotein staining. The second one is a quantitative approach that associates mitochondrial peptide labeling, phosphopeptide enrichment, and mass spectrometry.
Collapse
Affiliation(s)
- Margaux Renvoisé
- UMR 9198 CNRS, Institute for Integrative Biology of the Cell (I2BC), B3S, LPSM-CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Ludovic Bonhomme
- INRA/UCA UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 63039, Clermont-Ferrand, France
| | - Marlène Davanture
- GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, UniversitÕ Paris-Saclay, Ferme du Moulon, 91191, Gif-sur-Yvette, France
| | - Michel Zivy
- GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, UniversitÕ Paris-Saclay, Ferme du Moulon, 91191, Gif-sur-Yvette, France
| | - Claire Lemaire
- UMR 9198 CNRS, Institute for Integrative Biology of the Cell (I2BC), B3S, LPSM-CEA Saclay, 91191, Gif-sur-Yvette cedex, France.
| |
Collapse
|
15
|
Ogura M, Inoue T, Yamaki J, Homma MK, Kurosaki T, Homma Y. Mitochondrial reactive oxygen species suppress humoral immune response through reduction of CD19 expression in B cells in mice. Eur J Immunol 2016; 47:406-418. [DOI: 10.1002/eji.201646342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Masato Ogura
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, World Premier International Immunology Frontier Research Center and Graduate School of Frontier Biosciences; Osaka University; Suita, Osaka Japan
| | - Junko Yamaki
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Miwako K. Homma
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International Immunology Frontier Research Center and Graduate School of Frontier Biosciences; Osaka University; Suita, Osaka Japan
- Laboratory for Lymphocyte Differentiation; RIKEN Center for Integrative Medical Sciences; Tsurumi-ku, Yokohama Kanagawa Japan
| | - Yoshimi Homma
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| |
Collapse
|
16
|
Cutillas PR. Targeted In-Depth Quantification of Signaling Using Label-Free Mass Spectrometry. Methods Enzymol 2016; 585:245-268. [PMID: 28109432 DOI: 10.1016/bs.mie.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation encodes information on the activity of kinase-driven signaling pathways that regulate cell biology. This chapter discusses an approach, named TIQUAS (targeted in-depth quantification of signaling), to quantify cell signaling comprehensively and without bias. The workflow-based on mass spectrometry (MS) and computational science-consists of targeting the analysis of phosphopeptides previously identified by shotgun liquid chromatography tandem MS (LC-MS/MS) across the samples that are being compared. TIQUAS therefore takes advantage of concepts derived from both targeted (data-independent) and data-dependent acquisition methods; phosphorylation sites are quantified in all experimental samples regardless of whether or not these phosphopeptides were identified by MS/MS in all runs. As a result, datasets are obtained containing quantitative information on several thousand phosphorylation sites in as many samples and replicates as required in the experimental design, and these rich datasets are devoid of a significant number of missing data points. This chapter discussed the biochemical, analytical, and computational procedures required to apply the approach and for obtaining a biological interpretation of the data in the context of our understanding of cell signaling regulation and kinase-substrate relationships.
Collapse
Affiliation(s)
- P R Cutillas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom.
| |
Collapse
|
17
|
Jabeen F, Najam-ul-Haq M, Ashiq MN, Rainer M, Huck CW, Bonn GK. Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. J Sep Sci 2016; 39:4175-4182. [DOI: 10.1002/jssc.201600651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences; Bahauddin Zakariya University; Multan Pakistan
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Muhammad Najam-ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences; Bahauddin Zakariya University; Multan Pakistan
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences; Bahauddin Zakariya University; Multan Pakistan
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Guenther K. Bonn
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| |
Collapse
|
18
|
Kruse R, Højlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion 2016; 33:45-57. [PMID: 27521611 DOI: 10.1016/j.mito.2016.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential for several biological processes including energy metabolism and cell survival. Accordingly, impaired mitochondrial function is involved in a wide range of human pathologies including diabetes, cancer, cardiovascular, and neurodegenerative diseases. Within the past decade a growing body of evidence indicates that reversible phosphorylation plays an important role in the regulation of a variety of mitochondrial processes as well as tissue-specific mitochondrial functions in mammals. The rapidly increasing number of mitochondrial phosphorylation sites and phosphoproteins identified is largely ascribed to recent advances in phosphoproteomic technologies such as fractionation, phosphopeptide enrichment, and high-sensitivity mass spectrometry. However, the functional importance and the specific kinases and phosphatases involved have yet to be determined for the majority of these mitochondrial phosphorylation sites. This review summarizes the progress in establishing the mammalian mitochondrial phosphoproteome and the technical challenges encountered while characterizing it, with a particular focus on large-scale phosphoproteomic studies of mitochondria from human skeletal muscle.
Collapse
Affiliation(s)
- Rikke Kruse
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
19
|
Lu JB, Yao XX, Xiu JC, Hu YW. MicroRNA-125b-5p attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production by targeting inhibiting LACTB in THP-1 macrophages. Arch Biochem Biophys 2016; 590:64-71. [DOI: 10.1016/j.abb.2015.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023]
|
20
|
Zhang L, Liang Z, Zhang L, Zhang Y, Shao S. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides. Anal Chim Acta 2015; 900:46-55. [DOI: 10.1016/j.aca.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
21
|
Chen M, Zhu A, Storey KB. Comparative phosphoproteomic analysis of intestinal phosphorylated proteins in active versus aestivating sea cucumbers. J Proteomics 2015; 135:141-150. [PMID: 26385000 DOI: 10.1016/j.jprot.2015.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
UNLABELLED The sea cucumber Apostichopus japonicus is becoming an excellent model marine invertebrate for studies of environmentally-induced aestivation. Reversible protein phosphorylation as a regulatory mechanism in aestivation is known for some terrestrial aestivators but has never before been documented in sea cucumbers. The present study provides a global quantitative analysis of the role of reversible phosphorylation in sea cucumber aestivation by using tandem mass tag (TMT) labeling followed by an IMAC enrichment strategy to map aestivation-responsive changes in the phosphoproteome of sea cucumber intestine. We identified 2295 unique phosphosites derived from 1283 phosphoproteins and, of these, 211 hyperphosphorylated and 65 hypophosphorylated phosphoproteins were identified in intestine during deep aestivation compared with the active state based on the following criterion: quantitative ratios over 1.5 or less than 0.67 with corrected p-value <0.05. Six major functional classes of proteins exhibited changes in their phosphorylation status during aestivation: (1) protein synthesis, (2) transcriptional regulators, (3) kinases, (4) signaling, (5) transporter, (6) DNA binding. These data on the global involvement of phosphorylation in sea cucumber aestivation significantly improve our understanding of the regulatory mechanisms involved in metabolic arrest when marine invertebrates face environmental stress and provide substantial candidate phosphorylated proteins that could be important for identifying functionally adaptive variation in marine invertebrates. SIGNIFICANCE Sea cucumber Apostichopus japonicus is an excellent model organism for studies of environmentally-induced aestivation by a marine invertebrate. The present study provides the first quantitative phosphoproteomic analysis of sea cucumber aestivation using isobaric tag based TMT labeling followed by an IMAC enrichment strategy. These data on the global involvement of phosphorylation in sea cucumber aestivation significantly improve our understanding of the regulatory mechanism involved in metabolic arrest when marine invertebrates face environmental stress and provide substantial candidate phosphorylated proteins that could be important for identifying functionally adaptive variation in marine invertebrates. This study also demonstrates the usefulness of the TMT-based quantitative phosphoproteomics approach to explore the survival responses of a non-model marine invertebrate species to seasonal changes in its environment.
Collapse
Affiliation(s)
- Muyan Chen
- Fisheries College, Ocean University of China, Qingdao, PR China.
| | - Aijun Zhu
- Fisheries College, Ocean University of China, Qingdao, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
22
|
Enhanced multi-phosphopeptide enrichment and Nano LC-ESI-qTOF-MS detection strategy using click OEG-CD matrix. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4179-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Martel C, Wang Z, Brenner C. VDAC phosphorylation, a lipid sensor influencing the cell fate. Mitochondrion 2014; 19 Pt A:69-77. [DOI: 10.1016/j.mito.2014.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
|
24
|
Hofer A, Wenz T. Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 2014; 56:202-20. [DOI: 10.1016/j.exger.2014.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/26/2022]
|
25
|
Ogura M, Yamaki J, Homma MK, Homma Y. Phosphorylation of flotillin-1 by mitochondrial c-Src is required to prevent the production of reactive oxygen species. FEBS Lett 2014; 588:2837-43. [PMID: 24983503 DOI: 10.1016/j.febslet.2014.06.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
We have shown that mitochondrial c-Src regulates reactive oxygen species (ROS) production by phosphorylating the succinate dehydrogenase A of respiratory complex II (CxII). To elucidate the molecular mechanisms underlying ROS production regulated by c-Src in the CxII, we investigated the CxII protein complex derived from cells treated with Src family kinase inhibitor PP2. We identified flotillin-1 as a c-Src target that prevents ROS production from CxII. Phosphorylation-site analysis suggests Tyr56 and Tyr149 on flotillin-1 as sites for phosphorylation by c-Src. A comparison of cells expressing flotillin-1 and its phosphorylation defective mutants confirms the requirement for flotillin-1 phosphorylation for its interaction with CxII and subsequent reduction in ROS production. Our findings suggest a critical role of flotillin-1 in ROS production mediated by c-Src.
Collapse
Affiliation(s)
- Masato Ogura
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Junko Yamaki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Miwako K Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
26
|
Joiner MLA, Koval OM. CaMKII and stress mix it up in mitochondria. Front Pharmacol 2014; 5:67. [PMID: 24822046 PMCID: PMC4013469 DOI: 10.3389/fphar.2014.00067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022] Open
Abstract
CaMKII is a newly discovered resident of mitochondria in the heart. Mitochondrial CaMKII promotes poor outcomes after heart injury from a number of pathological conditions, including myocardial infarction (MI), ischemia reperfusion (IR), and stress from catecholamine stimulation. A study using the inhibitor of CaMKII, CaMKIIN, with expression delimited to myocardial mitochondria, indicates that an underlying cause of heart disease results from the opening of the mitochondrial permeability transition pore (mPTP). Evidence from electrophysiological and other experiments show that CaMKII inhibition likely suppresses mPTP opening by reducing Ca2+ entry into mitochondria. However, we expect other proteins involved in Ca2+ signaling in the mitochondria are affected with CaMKII inhibition. Several outstanding questions remain for CaMKII signaling in heart mitochondria. Most importantly, how does CaMKII, without the recognized N-terminal mitochondrial targeting sequence transfer to mitochondria?
Collapse
Affiliation(s)
| | - Olha M Koval
- Internal Medicine/Cardiology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
27
|
Ferreira R, Vitorino R, Padrão AI, Espadas G, Mancuso FM, Moreira-Gonçalves D, Castro-Sousa G, Henriques-Coelho T, Oliveira PA, Barros AS, Duarte JA, Sabidó E, Amado F. Lifelong exercise training modulates cardiac mitochondrial phosphoproteome in rats. J Proteome Res 2014; 13:2045-55. [PMID: 24467267 DOI: 10.1021/pr4011926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moderate physical activity has traditionally been associated with the improvement of cardiac function and, consequently, with the extension of life span. Mitochondria play a key role in the adaptation of heart muscle to exercise-related metabolic demands. In order to disclose the molecular mechanisms underlying the beneficial effect of lifelong physical activity in cardiac function, we performed label-free quantitative mass spectrometry-based proteomics of Sprague-Dawley rat heart mitochondrial proteome and phosphoproteome. Our data revealed that 54 weeks of moderate treadmill exercise modulates the abundance of proteins involved in the generation of precursor metabolites and cellular respiration, suggesting an increase in carbohydrate oxidation-based metabolism. Moreover, from the 1335 phosphopeptides identified in this study, 6 phosphosites were exclusively assigned to heart mitochondria from sedentary rats and 17 to exercised animals, corresponding to 6 and 16 proteins, respectively. Most proteins exhibiting significant alterations in specific phosphorylation sites were involved in metabolism. Analysis of the acquired data led to the identification of several kinases potentially modulated by exercise training, which were selected for further validation. Indeed, higher protein abundance levels of RAF and p38 in mitochondria were confirmed to be modulated by sustained exercise. Our work describes the plasticity of heart mitochondria in response to long exercise programs manifested by the reprogramming of phosphoproteome and provides evidence for the kinases involved in the regulation of metabolic pathways and mitochondrial maintenance.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry and ¶School of Health Sciences, University of Aveiro , Aveiro 3810-193, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zeng Y, Pan Z, Wang L, Ding Y, Xu Q, Xiao S, Deng X. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. PHYSIOLOGIA PLANTARUM 2014; 150:252-70. [PMID: 23786612 DOI: 10.1111/ppl.12080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/18/2013] [Accepted: 05/27/2013] [Indexed: 05/18/2023]
Abstract
Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post-translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome-wide mapping of in vivo phosphorylation sites in chromoplast-enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide-based affinity chromatography for phosphoprotein enrichment with LC-MS/MS. A total of 109 plastid-localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif-X analysis, two distinct types of phosphorylation sites, one as proline-directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P(3) DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high-level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening.
Collapse
Affiliation(s)
- Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev Proteomics 2014; 7:333-45. [DOI: 10.1586/epr.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Lotz C, Lin AJ, Black CM, Zhang J, Lau E, Deng N, Wang Y, Zong NC, Choi JH, Xu T, Liem DA, Korge P, Weiss JN, Hermjakob H, Yates JR, Apweiler R, Ping P. Characterization, design, and function of the mitochondrial proteome: from organs to organisms. J Proteome Res 2013; 13:433-46. [PMID: 24070373 DOI: 10.1021/pr400539j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.
Collapse
Affiliation(s)
- Christopher Lotz
- Departments of Physiology and Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA , 675 Charles E. Young Drive, MRL Building, Suite 1609, Los Angeles, California 90095, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Preparation and loading buffer study of polyvinyl alcohol-based immobilized Ti4+
affinity chromatography for phosphopeptide enrichment. J Sep Sci 2013; 36:3563-70. [DOI: 10.1002/jssc.201300622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/07/2022]
|
32
|
Bak S, León IR, Jensen ON, Højlund K. Tissue Specific Phosphorylation of Mitochondrial Proteins Isolated from Rat Liver, Heart Muscle, and Skeletal Muscle. J Proteome Res 2013; 12:4327-39. [DOI: 10.1021/pr400281r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Steffen Bak
- Section of Molecular Diabetes & Metabolism, Department of Endocrinology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M,
Denmark
| | - Ileana R. León
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M,
Denmark
| | - Ole Nørregaard Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M,
Denmark
| | - Kurt Højlund
- Section of Molecular Diabetes & Metabolism, Department of Endocrinology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark
| |
Collapse
|
33
|
Padrão AI, Vitorino R, Duarte JA, Ferreira R, Amado F. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J Proteome Res 2013; 12:4257-67. [PMID: 23964737 DOI: 10.1021/pr4003917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With mitochondrion garnering more attention for its inextricable involvement in pathophysiological conditions, it seems imperative to understand the means by which the molecular pathways harbored in this organelle are regulated. Protein phosphorylation has been considered a central event in cellular signaling and, more recently, in the modulation of mitochondrial activity. Efforts have been made to understand the molecular mechanisms by which protein phosphorylation regulates mitochondrial signaling. With the advances in mass-spectrometry-based proteomics, there is a substantial hope and expectation in the increased knowledge of protein phosphorylation profile and its mode of regulation. On the basis of phosphorylation profiles, attempts have been made to disclose the kinases involved and how they control the molecular processes in mitochondria and, consequently, the cellular outcomes. Still, few studies have focused on mitochondrial phosphoproteome profiling, particularly in diseases. The present study reviews current data on protein phosphorylation profiling in mitochondria, the potential kinases involved and how pathophysiological conditions modulate the mitochondrial phosphoproteome. To integrate data from distinct research papers, we performed network analysis, with bioinformatic tools like Cytoscape, String, and PANTHER taking into consideration variables such as tissue specificity, biological processes, molecular functions, and pathophysiological conditions. For instance, data retrieved from these analyses evidence some homology in the mitochondrial phosphoproteome among liver and heart, with proteins from transport and oxidative phosphorylation clusters particularly susceptible to phosphorylation. A distinct profile was noticed for adipocytes, with proteins form metabolic processes, namely, triglycerides metabolism, as the main targets of phosphorylation. Regarding disease conditions, more phosphorylated proteins were observed in diabetics with some distinct phosphoproteins identified in type 2 prediabetic states and early type 2 diabetes mellitus. Heart-failure-related phosphorylated proteins are in much lower amount and are mainly involved in transport and metabolism. Nevertheless, technical considerations related to mitochondria isolation and protein separation should be considered in data comparison among different proteomic studies. Data from the present review will certainly open new perspectives of protein phosphorylation in mitochondria and will help to envisage future studies targeting the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
34
|
Gerbeth C, Mikropoulou D, Meisinger C. From inventory to functional mechanisms. FEBS J 2013; 280:4933-42. [DOI: 10.1111/febs.12445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 11/27/2022]
|
35
|
Martín-Montalvo A, González-Mariscal I, Pomares-Viciana T, Padilla-López S, Ballesteros M, Vazquez-Fonseca L, Gandolfo P, Brautigan DL, Navas P, Santos-Ocaña C. The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 2013; 288:28126-37. [PMID: 23940037 DOI: 10.1074/jbc.m113.474494] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of the components of mitochondrial metabolism has potential benefits for health span and lifespan because the maintenance of efficient mitochondrial function and antioxidant capacity is associated with improved health and survival. In yeast, mitochondrial function requires the tight control of several metabolic processes such as coenzyme Q biosynthesis, assuring an appropriate energy supply and antioxidant functions. Many mitochondrial processes are regulated by phosphorylation cycles mediated by protein kinases and phosphatases. In this study, we determined that the mitochondrial phosphatase Ptc7p, a Ser/Thr phosphatase, was required to regulate coenzyme Q6 biosynthesis, which in turn activated aerobic metabolism and enhanced oxidative stress resistance. We showed that Ptc7p phosphatase specifically activated coenzyme Q6 biosynthesis through the dephosphorylation of the demethoxy-Q6 hydroxylase Coq7p. The current findings revealed that Ptc7p is a regulator of mitochondrial metabolism that is essential to maintain proper function of the mitochondria by regulating energy metabolism and oxidative stress resistance.
Collapse
Affiliation(s)
- Alejandro Martín-Montalvo
- From the Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, Sevilla 41013, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zheng L, Dong H, Hu L. Zirconium-Cation-Immobilized Core/Shell (Fe3O4@Polymer) Microspheres as an IMAC Material for the Selective Enrichment of Phosphopeptides. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4003377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leyou Zheng
- NHU Co. Ltd. of Zhejiang, 4 Jiangbei Road,
Xinchang, Zhejiang 312500, P. R. China
| | - Huaping Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing,
Zhejiang 312000, P. R. China
| | - Liujiang Hu
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing,
Zhejiang 312000, P. R. China
| |
Collapse
|
37
|
Qu Y, Wu S, Zhao R, Zink E, Orton DJ, Moore RJ, Meng D, Clauss TRW, Aldrich JT, Lipton MS, Paša-Tolić L. Automated immobilized metal affinity chromatography system for enrichment of Escherichia coli phosphoproteome. Electrophoresis 2013; 34:1619-26. [PMID: 23494780 DOI: 10.1002/elps.201200628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/01/2013] [Accepted: 02/15/2013] [Indexed: 11/09/2022]
Abstract
Enrichment of bacterial phosphopeptides is an essential step prior to bottom-up mass spectrometry-based analysis of the phosphoproteome, which is fundamental to understanding the role of phosphoproteins in cell signaling and regulation of protein activity. We developed an automated immobilized metal affinity chromatography (IMAC) system to enrich strong cation exchange-fractionated phosphopeptides from the soluble proteome of Escherichia coli MG1655 grown on minimal medium. Initial demonstration of the system resulted in identification of 75 phosphopeptides covering 52 phosphoproteins. Consistent with previous studies, many of these phosphoproteins are involved in the carbohydrate portion of central metabolism. The automated system utilizes a large capacity IMAC column that can effectively enrich phosphopeptides from a bacterial sample by increasing peptide loading and reducing the wash time. An additional benefit of the automated IMAC system is reduced labor and associated costs.
Collapse
Affiliation(s)
- Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang J, Lin A, Powers J, Lam MP, Lotz C, Liem D, Lau E, Wang D, Deng N, Korge P, Zong NC, Cai H, Weiss J, Ping P. Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial proteome design: from molecular identity to pathophysiological regulation. ACTA ACUST UNITED AC 2013; 139:395-406. [PMID: 22641634 PMCID: PMC3362520 DOI: 10.1085/jgp.201210797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Zhang
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shiromizu T, Adachi J, Watanabe S, Murakami T, Kuga T, Muraoka S, Tomonaga T. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 2013; 12:2414-21. [PMID: 23312004 DOI: 10.1021/pr300825v] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Chromosome-Centric Human Proteome Project (C-HPP) is an international effort for creating an annotated proteomic catalog for each chromosome. The first step of the C-HPP project is to find evidence of expression of all proteins encoded on each chromosome. C-HPP also prioritizes particular protein subsets, such as those with post-translational modifications (PTMs) and those found in low abundance. As participants in C-HPP, we integrated proteomic and phosphoproteomic analysis results from chromosome-independent biomarker discovery research to create a chromosome-based list of proteins and phosphorylation sites. Data were integrated from five independent colorectal cancer (CRC) samples (three types of clinical tissue and two types of cell lines) and lead to the identification of 11,278 proteins, including 8,305 phosphoproteins and 28,205 phosphorylation sites; all of these were categorized on a chromosome-by-chromosome basis. In total, 3,033 "missing proteins", i.e., proteins that currently lack evidence by mass spectrometry, in the neXtProt database and 12,852 unknown phosphorylation sites not registered in the PhosphoSitePlus database were identified. Our in-depth phosphoproteomic study represents a significant contribution to C-HPP. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000089.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Grimsrud PA, Carson JJ, Hebert AS, Hubler SL, Niemi NM, Bailey DJ, Jochem A, Stapleton DS, Keller MP, Westphall MS, Yandell BS, Attie AD, Coon JJ, Pagliarini DJ. A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 2012; 16:672-83. [PMID: 23140645 PMCID: PMC3506251 DOI: 10.1016/j.cmet.2012.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Mitochondria are dynamic organelles that play a central role in a diverse array of metabolic processes. Elucidating mitochondrial adaptations to changing metabolic demands and the pathogenic alterations that underlie metabolic disorders represent principal challenges in cell biology. Here, we performed multiplexed quantitative mass spectrometry-based proteomics to chart the remodeling of the mouse liver mitochondrial proteome and phosphoproteome during both acute and chronic physiological transformations in more than 50 mice. Our analyses reveal that reversible phosphorylation is widespread in mitochondria, and is a key mechanism for regulating ketogenesis during the onset of obesity and type 2 diabetes. Specifically, we have demonstrated that phosphorylation of a conserved serine on Hmgcs2 (S456) significantly enhances its catalytic activity in response to increased ketogenic demand. Collectively, our work describes the plasticity of this organelle at high resolution and provides a framework for investigating the roles of proteome restructuring and reversible phosphorylation in mitochondrial adaptation.
Collapse
Affiliation(s)
- Paul A Grimsrud
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Quantitative proteomic analysis of Niemann-Pick disease, type C1 cerebellum identifies protein biomarkers and provides pathological insight. PLoS One 2012; 7:e47845. [PMID: 23144710 PMCID: PMC3483225 DOI: 10.1371/journal.pone.0047845] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/21/2012] [Indexed: 01/24/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a fatal, neurodegenerative disorder for which there is no definitive therapy. In NPC1, a pathological cascade including neuroinflammation, oxidative stress and neuronal apoptosis likely contribute to the clinical phenotype. While the genetic cause of NPC1 is known, we sought to gain a further understanding into the pathophysiology by identifying differentially expressed proteins in Npc1 mutant mouse cerebella. Using two-dimensional gel electrophoresis and mass spectrometry, 77 differentially expressed proteins were identified in Npc1 mutant mice cerebella compared to controls. These include proteins involved in glucose metabolism, detoxification/oxidative stress and Alzheimer disease-related proteins. Furthermore, members of the fatty acid binding protein family, including FABP3, FABP5 and FABP7, were found to have altered expression in the Npc1 mutant cerebellum relative to control. Translating our findings from the murine model to patients, we confirm altered expression of glutathione s-transferase α, superoxide dismutase, and FABP3 in cerebrospinal fluid of NPC1 patients relative to pediatric controls. A subset of NPC1 patients on miglustat, a glycosphingolipid synthesis inhibitor, showed significantly decreased levels of FABP3 compared to patients not on miglustat therapy. This study provides an initial report of dysregulated proteins in NPC1 which will assist with further investigation of NPC1 pathology and facilitate implementation of therapeutic trials.
Collapse
|
43
|
Narumi R, Murakami T, Kuga T, Adachi J, Shiromizu T, Muraoka S, Kume H, Kodera Y, Matsumoto M, Nakayama K, Miyamoto Y, Ishitobi M, Inaji H, Kato K, Tomonaga T. A Strategy for Large-Scale Phosphoproteomics and SRM-Based Validation of Human Breast Cancer Tissue Samples. J Proteome Res 2012; 11:5311-22. [DOI: 10.1021/pr3005474] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Tatsuo Murakami
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Takashi Shiromizu
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Hideaki Kume
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Yoshio Kodera
- Laboratory of Biomolecular Dynamics, Department of Physics, Kitasato University School of Science, Kanagawa, Japan
- Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University Fukuoka, Japan
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University Fukuoka, Japan
| | - Yasuhide Miyamoto
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Makoto Ishitobi
- Department
of Breast and Endocrine Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hideo Inaji
- Department
of Breast and Endocrine Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kikuya Kato
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
- Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
44
|
Ogura M, Yamaki J, Homma M, Homma Y. Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochem J 2012; 447:281-9. [PMID: 22823520 PMCID: PMC3459221 DOI: 10.1042/bj20120509] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/17/2012] [Accepted: 07/24/2012] [Indexed: 12/26/2022]
Abstract
Mitochondrial protein tyrosine phosphorylation is an important mechanism for the modulation of mitochondrial functions. In the present study, we have identified novel substrates of c-Src in mitochondria and investigated their function in the regulation of oxidative phosphorylation. The Src family kinase inhibitor PP2 {amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4d] pyrimidine} exhibits significant reduction of respiration. Similar results were obtained from cells expressing kinase-dead c-Src, which harbours a mitochondrial-targeting sequence. Phosphorylation-site analysis selects c-Src targets, including NDUFV2 (NADH dehydrogenase [ubiquinone] flavoprotein 2) at Tyr(193) of respiratory complex I and SDHA (succinate dehydrogenase A) at Tyr(215) of complex II. The phosphorylation of these sites by c-Src is supported by an in vivo assay using cells expressing their phosphorylation-defective mutants. Comparison of cells expressing wild-type proteins and their mutants reveals that NDUFV2 phosphorylation is required for NADH dehydrogenase activity, affecting respiration activity and cellular ATP content. SDHA phosphorylation shows no effect on enzyme activity, but perturbed electron transfer, which induces reactive oxygen species. Loss of viability is observed in T98G cells and the primary neurons expressing these mutants. These results suggest that mitochondrial c-Src regulates the oxidative phosphorylation system by phosphorylating respiratory components and that c-Src activity is essential for cell viability.
Collapse
Key Words
- cell death
- energy metabolism
- mitochondrion
- src
- tyrosine kinase
- reactive oxygen species (ros)
- ant, adenine nucleotide translocase
- bn, blue native
- ca, constitutive-active
- cox, cytochrome c oxidase
- csk, c-terminal src kinase
- ddm, n-dodecyl-β-d-maltoside
- 2-de, two-dimensional page
- he, hydroethidine
- hek, human embryonic kidney
- ipg, immobilized ph gradient
- kd, kinase-dead
- ldh, lactate dehydrogenase
- mab, monoclonal antibody
- map2, microtubule-associated protein 2
- mts, mitochondria-targeting sequence
- nbt, nitro blue tetrazolium
- ndufb10, nadh dehydrogenase [ubiquinone] 1β subcomplex subunit 10
- ndufv2, nadh dehydrogenase [ubiquinone] flavoprotein 2
- pi, propidium iodide
- pms, phenazine methosulfate
- pp2, amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4d] pyrimidine
- ros, reactive oxygen species
- sdha, succinate dehydrogenase a
- sfk, src family kinase
- ucp, uncoupling protein
- vlcad, very long chain acyl-coa dehydrogenase
- wt, wild-type
Collapse
Affiliation(s)
- Masato Ogura
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Junko Yamaki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Miwako K. Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
45
|
Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol 2012; 303:H940-66. [PMID: 22886415 DOI: 10.1152/ajpheart.00077.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on (32)P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria.
Collapse
Affiliation(s)
- Raul Covian
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
46
|
Johnson H, White FM. Toward quantitative phosphotyrosine profiling in vivo. Semin Cell Dev Biol 2012; 23:854-62. [PMID: 22677333 DOI: 10.1016/j.semcdb.2012.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 11/25/2022]
Abstract
Tyrosine phosphorylation is a dynamic reversible post-translational modification that regulates many aspects of cell biology. To understand how this modification controls biological function, it is necessary to not only identify the specific sites of phosphorylation, but also to quantify how phosphorylation levels on these sites may be altered under specific physiological conditions. Due to its sensitivity and accuracy, mass spectrometry (MS) has widely been applied to the identification and characterization of phosphotyrosine signaling across biological systems. In this review we highlight the advances in both MS and phosphotyrosine enrichment methods that have been developed to enable the identification of low level tyrosine phosphorylation events. Computational and manual approaches to ensure confident identification of phosphopeptide sequence and determination of phosphorylation site localization are discussed along with methods that have been applied to the relative quantification of large numbers of phosphorylation sites. Finally, we provide an overview of the challenges ahead as we extend these technologies to the characterization of tyrosine phosphorylation signaling in vivo. With these latest developments in analytical and computational techniques, it is now possible to derive biological insight from quantitative MS-based analysis of signaling networks in vitro and in vivo. Application of these approaches to a wide variety of biological systems will define how signal transduction regulates cellular physiology in health and disease.
Collapse
Affiliation(s)
- Hannah Johnson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
47
|
Pelletier G, Rigden M, Poon R. Diesel and biodiesels induce hepatic palmitoyl-CoA oxidase enzymatic activity through different molecular mechanisms in rats. J Biochem Mol Toxicol 2012; 26:235-40. [PMID: 22585588 DOI: 10.1002/jbt.21412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/03/2012] [Indexed: 11/12/2022]
Abstract
Induction of palmitoyl-CoA oxidase enzymatic activity in rat liver suggests that ingestion of diesel and biodiesels can cause mild hepatic peroxisomal proliferation. Surprisingly, quantification by immunochemistry of the enzyme itself (ACOX1) revealed that palmitoyl-CoA oxidase enzymatic activity correlates with ACOX1 protein level following exposure to diesel, but not following exposure to biodiesels. Quantification of CYP4A1, another biomarker of peroxisomal proliferation, further indicates that contrary to diesel, the effects of biodiesels appear to be independent of this pathway. There are two ACOX1 protein isoforms that exhibit different enzymatic activities depending on the substrate. The results of our enzymatic assays performed on substrates presenting different carbon chain lengths (octanoyl-CoA and palmitoyl-CoA) are compatible with the hypothesis of a differential regulation of the ACOX1 isoforms by diesel and biodiesels. Further studies will be required to precisely determine the molecular mechanisms by which diesel and biodiesels induce palmitoyl-CoA oxidase activity in rat liver.
Collapse
Affiliation(s)
- Guillaume Pelletier
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0l2, Canada.
| | | | | |
Collapse
|
48
|
Abstract
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca(2+) ion membrane gradients makes Ca(2+) signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca(2+) regulates many cellular ATP-consuming reactions such as muscle contraction, exocytosis, biosynthesis, and neuronal signaling. Thus, Ca(2+) becomes a logical candidate as a signaling molecule for modulating ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca(2+) gradient across their inner membrane, providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial Ca(2+) concentrations, identification of transport mechanisms, and the proximity of mitochondria to Ca(2+) release sites further supports the notion that Ca(2+) can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca(2+) plays a role in the regulation of ATP generation and potentially contributes to the orchestration of cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca(2+), which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca(2+) on mitochondrial energy conversion. Numerous noninvasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption, and workloads suggest significant effects of Ca(2+) on other elements of NADH generation as well as downstream elements of oxidative phosphorylation, including the F(1)F(O)-ATPase and the cytochrome chain. These other potential elements of Ca(2+) modification of mitochondrial energy conversion will be the focus of this review. Though most specific molecular mechanisms have yet to be elucidated, it is clear that Ca(2+) provides a balanced activation of mitochondrial energy metabolism that exceeds the alteration of dehydrogenases alone.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
49
|
Zheng S, Wang X, Fu J, Hu X, Xiao X, Huang L, Zhou Y, Zhong H. Desalting of phosphopeptides by tandem polypyrrole-c18 reverse phase micropipette tip (TMTipPPY-C18) based on hybrid electrostatic, Π–Π stacking and hydrophobic interactions for mass spectrometric analysis. Anal Chim Acta 2012; 724:73-9. [DOI: 10.1016/j.aca.2012.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/01/2023]
|
50
|
Negroni L, Claverol S, Rosenbaum J, Chevet E, Bonneu M, Schmitter JM. Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 891-892:109-12. [PMID: 22406350 DOI: 10.1016/j.jchromb.2012.02.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/25/2022]
Abstract
Automated phosphopeptide enrichment prior to MS analysis by means of Immobilized Metal Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC) has been probed with packed columns. We compared POROS-Fe³⁺ and TiO₂ (respectively IMAC and MOAC media), using a simple mixture of peptides from casein-albumin and a complex mixture of peptides isolated from mouse liver. With theses samples, selectivity of POROS-Fe³⁺ and TiO₂ were pH dependant. In the case of liver extract, selectivity increased from 12-18% to 58-60% when loading buffer contained 0.1 M acetic acid or 0.1 M trifluoroacetic acid, respectively. However, with POROS-Fe³⁺ column, the number of identifications decreased from 356 phosphopeptides with 0.1 M acetic acid to 119 phosphopeptides with 0.1 M TFA. This decrease of binding capacity of POROS-Fe³⁺ was associated with strong Fe³⁺ leaching. Furthermore, repetitive use of IMAC-Fe³⁺ with the 0.5 M NH₄OH solution required for phosphopeptide elution induced Fe₂O₃ accumulation in the column. By comparison, MOAC columns packed with TiO₂ support do not present any problem of stability in the same conditions and provide a reliable solution for packed column phosphopeptide enrichment.
Collapse
Affiliation(s)
- Luc Negroni
- UMR 5248, CNRS-UBx1-IPB, Centre de Génomique Fonctionnelle, Université de Bordeaux, BP 68, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | |
Collapse
|