1
|
Liu W, Chi X, Wu MP, Zhai Y, Jia R. Induction of immune priming against white spot syndrome in Procambarus clarkii through oral administration of transgenic Synechococcus sp. PCC7942: Insights from transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110352. [PMID: 40268071 DOI: 10.1016/j.fsi.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
White Spot Syndrome Virus (WSSV) poses a significant threat to aquaculture, particularly affecting the red swamp crayfish (Procambarus clarkii). This study explores the efficacy of oral administration of transgenic Synechococcus sp. PCC7942, engineered to express WSSV envelop protein VP19 and VP (19 + 28), in inducing immune priming in red swamp crayfish. Our results demonstrate that the transgenic cyanobacteria significantly enhance the immune responses of crayfish, as evidenced by the upregulation of immune-related genes and increased survival rates post-WSSV challenge. Furthermore, the immune-stimulating activity of these proteins is maintained even after fragmentation into polypeptides during digestion. These findings highlight the potential of using genetically modified algae as a sustainable and effective strategy for disease management in aquaculture. Additionally, the molecular mechanism of immune priming effect of crayfish was explained, which provided theoretical support for long-term protection of aquatic economic species against virus.
Collapse
Affiliation(s)
- Wei Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaoping Chi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Max Peiyuan Wu
- Shanghai High School International Division, Shanghai, 200231, China
| | - Yufeng Zhai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
2
|
Ng YS, Chen CY, Cheng SW, Tan YK, Lin SS, Senapin S, Sangsuriya P, Wang HC. WSSV early protein WSSV004 enhances viral replication by suppressing LDH activity. Int J Biol Macromol 2024; 271:132482. [PMID: 38763244 DOI: 10.1016/j.ijbiomac.2024.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
White spot syndrome virus (WSSV) is known to upregulate glycolysis to supply biomolecules and energy for the virus's replication. At the viral genome replication stage, lactate dehydrogenase (LDH), a glycolytic enzyme, shows increased activity without any increase in expression. In the present study, yeast 2-hybrid screening was used to identify WSSV proteins that interacted with LvLDH isoform 1 and 2, and these included the WSSV early protein WSSV004. The interaction between WSSV004 and LvLDH1/2 was confirmed by co-immunoprecipitation. Immunofluorescence showed that WSSV004 co-localized with LvLDH1/2 in the cytoplasm. dsRNA silencing experiments showed that WSSV004 was crucial for WSSV replication. However, although WSSV004 silencing led to the suppression of total LvLDH gene expression during the viral late stage, there was nevertheless a significant increase in LvLDH activity at this time. We also used affinity purification-mass spectrometry to identify cellular proteins that interact with WSSV004, and found a total of 108 host proteins and 3 WSSV proteins with which it potentially interacts. Bioinformatics analysis revealed that WSSV004 and its interacting proteins might be responsible for various biological pathways during infection, including vesicular transport machinery and RNA-related functions. Collectively, our study suggests that WSSV004 serves as a multifunctional modulator to facilitate WSSV replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cong-Yan Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Cheng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu Kent Tan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Liu WJ, Chang YS, Tseng KC, Yu MH. Activity of bovine lactoferrin in resistance to white spot syndrome virus infection in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104651. [PMID: 36736936 DOI: 10.1016/j.dci.2023.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
White spot syndrome virus (WSSV) is a notorious pathogen that has plagued shrimp farming worldwide for decades. To date, there are no known treatments that are effective against this virus. Lactoferrin (LF) is a protein with many bioactivities, including antiviral properties. In this study, the activities and mechanisms of bovine LF (bLF) against WSSV were analyzed. Our results showed that bLF treatment significantly reduced shrimp mortalities caused by WSSV infection. bLF was found to have the ability to bind to surfaces of both host cells and WSSV virions. These bindings may have been a result of bLF interactions with the host cellular chitin binding protein and F1 ATP synthase β subunit protein and the WSSV structural proteins VP28, VP110, VP150 and VP160B. bLF demonstrated potential for development as an anti-WSSV agent in shrimp culture. Furthermore, these reactionary proteins may play a role in WSSV infection.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan.
| | - Yun-Shiang Chang
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Kou-Chun Tseng
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Meng-Hua Yu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| |
Collapse
|
4
|
Sun M, Liu M, Shan H, Li K, Wang P, Guo H, Zhao Y, Wang R, Tao Y, Yang L, Zhang Y, Su X, Liu Y, Li C, Lin J, Chen XL, Zhang YZ, Shen QT. Ring-stacked capsids of white spot syndrome virus and structural transitions with genome ejection. SCIENCE ADVANCES 2023; 9:eadd2796. [PMID: 36812312 PMCID: PMC9946344 DOI: 10.1126/sciadv.add2796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
White spot syndrome virus (WSSV) is one of the largest DNA viruses and the major pathogen responsible for white spot syndrome in crustaceans. The WSSV capsid is critical for genome encapsulation and ejection and exhibits the rod-shaped and oval-shaped structures during the viral life cycle. However, the detailed architecture of the capsid and the structural transition mechanism remain unclear. Here, using cryo-electron microscopy (cryo-EM), we obtained a cryo-EM model of the rod-shaped WSSV capsid and were able to characterize its ring-stacked assembly mechanism. Furthermore, we identified an oval-shaped WSSV capsid from intact WSSV virions and analyzed the structural transition mechanism from the oval-shaped to rod-shaped capsids induced by high salinity. These transitions, which decrease internal capsid pressure, always accompany DNA release and mostly eliminate the infection of the host cells. Our results demonstrate an unusual assembly mechanism of the WSSV capsid and offer structural insights into the pressure-driven genome release.
Collapse
Affiliation(s)
- Meiling Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingdong Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong Shan
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huarong Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaqi Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Wang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Ying Zhang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Su
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunhui Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chunyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| | - Qing-Tao Shen
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| |
Collapse
|
5
|
Abstract
White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.
Collapse
|
6
|
Diwan AD, Harke SN, Panche AN. Application of proteomics in shrimp and shrimp aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101015. [PMID: 35870418 DOI: 10.1016/j.cbd.2022.101015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Since proteins play an important role in the life of an organism, many researchers are now looking at how genes and proteins interact to form different proteins. It is anticipated that the creation of adequate tools for rapid analysis of proteins will accelerate the determination of functional aspects of these biomolecules and develop new biomarkers and therapeutic targets for the diagnosis and treatment of various diseases. Though shrimp contains high-quality marine proteins, there are reports about the heavy losses to the shrimp industry due to the poor quality of shrimp production and many times due to mass mortality also. Frequent outbreaks of diseases, water pollution, and quality of feed are some of the most recognized reasons for such losses. In the seafood export market, shrimp occupies the top position in currency earnings and strengthens the economy of many developing nations. Therefore, it is vital for shrimp-producing companies they produce healthy shrimp with high-quality protein. Though aquaculture is a very competitive market, global awareness regarding the use of scientific knowledge and emerging technologies to obtain better-farmed organisms through sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful tool, has therefore been increasingly used to address several issues in shrimp aquaculture. In the present paper, efforts have been made to address some of them, particularly the role of proteomics in reproduction, breeding and spawning, immunological responses and disease resistance capacity, nutrition and health, microbiome and probiotics, quality and safety of shrimp production, bioinformatics applications in proteomics, the discovery of protein biomarkers, and mitigating biotic and abiotic stresses. Future challenges and research directions on proteomics in shrimp aquaculture have also been discussed.
Collapse
Affiliation(s)
- A D Diwan
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - S N Harke
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
7
|
Budi YP, Lin LC, Chung CH, Chen LL, Jiang YF. Three-Dimensional Investigations of Virus-Associated Structures in the Nuclei with White Spot Syndrome Virus (WSSV) Infection in Red Swamp Crayfish ( Procambarus clarkii). Animals (Basel) 2022; 12:1730. [PMID: 35804629 PMCID: PMC9265099 DOI: 10.3390/ani12131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
White spot syndrome virus (WSSV) has been reported to cause severe economic loss in the shrimp industry. With WSSV being a large virus still under investigation, the 3D structure of its assembly remains unclear. The current study was planned to clarify the 3D structures of WSSV infections in the cell nucleus of red swamp crayfish (Procambarus clarkii). The samples from various tissues were prepared on the seventh day post-infection. The serial sections of the intestinal tissue were obtained for electron tomography after the ultrastructural screening. After 3D reconstruction, the WSSV-associated structures were further visualized, and the expressions of viral proteins were confirmed with immuno-gold labeling. While the pairs of sheet-like structures with unknown functions were observed in the nucleus, the immature virions could be recognized by the core units of nucleocapsids on a piece of the envelope. The maturation of the particle could include the elongation of core units and the filling of empty nucleocapsids with electron-dense materials. Our observations may bring to light a possible order of WSSV maturation in the cell nucleus of the crayfish, while more investigations remain necessary to visualize the detailed viral-host interactions.
Collapse
Affiliation(s)
- Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| | - Li-Chi Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| | - Chang-Hsien Chung
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung City 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| |
Collapse
|
8
|
Lei H, Li S, Lu X, Ren Y. Oral administration of Saccharomyces cerevisiae displaying VP28-VP24 confers protection against white spot syndrome virus in shrimp. Virus Res 2021; 302:198467. [PMID: 34062193 DOI: 10.1016/j.virusres.2021.198467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/05/2023]
Abstract
White spot syndrome virus (WSSV) is the major pathogen that leads to severe mortalities in cultured shrimp worldwide. The envelope proteins VP28 and VP24 of WSSV are considered potential vaccine candidate antigens. In this study, we utilized a Saccharomyces cerevisiae (S. cerevisiae) surface display system to demonstrate the feasibility of this platform for developing a vaccine candidate against WSSV. EBY100/pYD1-VP28-VP24 was generated, and the fusion protein VP28-VP24 was present on the surface of S. cerevisiae. Penaeus vannamei (P. vannamei) was used as an animal model. Oral administration of EBY100/pYD1-VP28-VP24 could induce significant activities of immune-related enzymes such as superoxide dismutase (SOD) and phenoloxidase (PO). Importantly, WSSV challenge indicated that oral administration of EBY100/pYD1-VP28-VP24 could confer 100% protection with a corresponding decrease in the viral load. The collective results strongly highlight the potential of a S. cerevisiae-based oral vaccine as an efficient control strategy for combating WSSV infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Shuangqin Li
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
9
|
Liu LK, Liu MJ, Li DL, Liu HP. Recent insights into anti-WSSV immunity in crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103947. [PMID: 33253753 DOI: 10.1016/j.dci.2020.103947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
White spot syndrome virus (WSSV) is currently the most severely viral pathogen for farmed crustaceans such as shrimp and crayfish, which has been causing huge economic losses for crustaceans farming worldwide every year. Unfortunately, study on the molecular mechanisms of WSSV has been restricted by the lack of crustacean cell lines for WSSV propagation as well as the incompletely annotated genomes for host species, resulting in limited elucidation for WSSV pathogenesis at present. In addition to the findings of anti-WSSV response in shrimp, some of novel cellular events involved in WSSV infection have been recently revealed in crayfish, including endocytosis and intracellular transport of WSSV, innate immune pathways in response to WSSV infection, and regulation of viral gene expression by host genes. Despite these advances, many fundamental gaps in WSSV pathogenesis are still remaining, for example, how WSSV genome enters into nucleus and how the progeny virions are fully assembled in the host cell nucleus. In this review, recent findings in WSSV infection mechanism and the antiviral immunity against WSSV in crayfish are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis as well as new ideas for the target design of antiviral drugs against WSSV in crustaceans farming.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Man-Jun Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Dong-Li Li
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Hai-Peng Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
10
|
Liu WJ, Chang YS, Chen PY, Wu SP. F1 ATP synthase β subunit is a putative receptor involved in white spot syndrome virus infection in shrimp by binding with viral envelope proteins VP51B and VP150. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103810. [PMID: 32750398 DOI: 10.1016/j.dci.2020.103810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is highly virulent toward shrimp, and F1 ATP synthase β subunit (ATPsyn-β) has been suggested to be involved in WSSV infection. Therefore, in this study, interactions between Penaeus monodon ATPsyn-β (PmATPsyn-β) and WSSV structural proteins were characterized. Based on the results of yeast two-hybrid, co-immunoprecipitation, and protein pull-down assays, WSSV VP51B and VP150 were identified as being able to interact with PmATPsyn-β. Membrane topology assay results indicated that VP51B and VP150 are envelope proteins with large portions exposed outside the WSSV virion. Cellular localization assay results demonstrated that VP51B and VP150 co-localize with PmATPsyn-β on the membranes of transfected cells. Enzyme-linked immunosorbent assay (ELISA) and competitive ELISA results demonstrated that VP51B and VP150 bound to PmATPsyn-β in a dose-dependent manner, which could be competitively inhibited by the addition of WSSV virions. In vivo neutralization assay results further showed that both recombinant VP51B and VP150 could delay mortality in shrimp challenged with WSSV.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan.
| | - Yun-Shiang Chang
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Pin-Yu Chen
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Shu-Ping Wu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| |
Collapse
|
11
|
Tan X, Ravasio A, Ong HT, Wu J, Hew CL. White spot syndrome viral protein VP9 alters the cellular higher-order chromatin structure. FASEB Bioadv 2020; 2:264-279. [PMID: 32259052 PMCID: PMC7133739 DOI: 10.1096/fba.2019-00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 10/26/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Viral protein 9 (VP9) is a non-structural protein of white spot syndrome virus (WSSV) highly expressed during the early stage of infection. The crystal structure of VP9 suggests that the polymers of VP9 dimers resemble a DNA mimic, but its function remains elusive. In this study, we demonstrated that VP9 impedes histones binding to DNA via single-molecule manipulation. We established VP9 expression in HeLa cells due to the lack of a WSSV-susceptible cell line, and observed abundant VP9 in the nucleus, which mirrors its distribution in the hemocytes of WSSV-infected shrimp. VP9 expression increased the dynamics and rotational mobility of histones in stable H3-GFP HeLa cells as revealed by fluorescent recovery after photobleaching and fluorescence anisotropy imaging, which suggested a loosened compaction of chromatin structure. Successive salt fractionation showed that a prominent population of histones was solubilized in high salt concentrations, which implies alterations of bulk chromatin structure. Southern blotting identified that VP9 alters juxtacentromeric chromatin structures to be more accessible to micrococcal nuclease digestion. RNA microarray revealed that VP9 expression also leads to significant changes of cellular gene expression. Our findings provide evidence that VP9 alters the cellular higher-order chromatin structure, uncovering a potential strategy adopted by WSSV to facilitate its replication.
Collapse
Affiliation(s)
- Xi Tan
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
- Present address:
School of Basic Medical SciencesGuizhou University of Traditional Chinese MedicineGuiyangGuizhou ProvinceChina
| | - Andrea Ravasio
- Institute for Biological and Medical EngineeringSchools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Hui T. Ong
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
| | - Jinlu Wu
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Choy L. Hew
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Zheng SC, Xu JY, Liu HP. Cellular entry of white spot syndrome virus and antiviral immunity mediated by cellular receptors in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2019; 93:580-588. [PMID: 31398395 DOI: 10.1016/j.fsi.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Enveloped virus usually utilizes the receptor-mediated multiple endocytic routes to enter permissive host cells for successful infection. Cellular receptors are cell surface molecules, either by helping viral attachment to cell surface followed by internalization or by triggering antiviral immunity, participate in the viral-host interaction. White spot syndrome virus (WSSV), the most lethally viral pathogen with envelope and double strand DNA genome in crustacean farming, including shrimp and crayfish, has been recently found to recruit various endocytic routes for cellular entry into host cells. Meanwhile, other than the typical pattern recognition receptors for recognition of WSSV, more and more putative cellular receptors have lately been characterized to facilitate or inhibit WSSV entry. In this review, recent findings on the endocytosis-dependent WSSV entry, viral entry mediated by putative cellular receptors, the molecular interplay between WSSV and cellular receptors, and the following anti-WSSV immunity are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis and further possible antiviral control of white spot disease in crustacean farming.
Collapse
Affiliation(s)
- Shu-Cheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiao-Yang Xu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
13
|
Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus. J Virol 2019; 93:JVI.01144-18. [PMID: 30404800 DOI: 10.1128/jvi.01144-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
White spot syndrome virus (WSSV) is a crustacean-infecting, double-stranded DNA virus and is the most serious viral pathogen in the global shrimp industry. WSSV is the sole recognized member of the family Nimaviridae, and the lack of genomic data on other nimaviruses has obscured the evolutionary history of WSSV. Here, we investigated the evolutionary history of WSSV by characterizing WSSV relatives hidden in host genomic data. We surveyed 14 host crustacean genomes and identified five novel nimaviral genomes. Comparative genomic analysis of Nimaviridae identified 28 "core genes" that are ubiquitously conserved in Nimaviridae; unexpected conservation of 13 uncharacterized proteins highlighted yet-unknown essential functions underlying the nimavirus replication cycle. The ancestral Nimaviridae gene set contained five baculoviral per os infectivity factor homologs and a sulfhydryl oxidase homolog, suggesting a shared phylogenetic origin of Nimaviridae and insect-associated double-stranded DNA viruses. Moreover, we show that novel gene acquisition and subsequent amplification reinforced the unique accessory gene repertoire of WSSV. Expansion of unique envelope protein and nonstructural virulence-associated genes may have been the key genomic event that made WSSV such a deadly pathogen.IMPORTANCE WSSV is the deadliest viral pathogen threatening global shrimp aquaculture. The evolutionary history of WSSV has remained a mystery, because few WSSV relatives, or nimaviruses, had been reported. Our aim was to trace the history of WSSV using the genomes of novel nimaviruses hidden in host genome data. We demonstrate that WSSV emerged from a diverse family of crustacean-infecting large DNA viruses. By comparing the genomes of WSSV and its relatives, we show that WSSV possesses an expanded set of unique host-virus interaction-related genes. This extensive gene gain may have been the key genomic event that made WSSV such a deadly pathogen. Moreover, conservation of insect-infecting virus protein homologs suggests a common phylogenetic origin of crustacean-infecting Nimaviridae and other insect-infecting DNA viruses. Our work redefines the previously poorly characterized crustacean virus family and reveals the ancient genomic events that preordained the emergence of a devastating shrimp pathogen.
Collapse
|
14
|
Chang YS, Chen JN, Chang KH, Chang YM, Lai YJ, Liu WJ. Cloning and expression of the lectin gene from the mushroom Agrocybe aegerita and the activities of recombinant lectin in the resistance of shrimp white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:1-9. [PMID: 30031870 DOI: 10.1016/j.dci.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Lectin is a protein with multiple functions. In this study, the full-length cDNA of the Agrocybe aegerita lectin (AAL) gene was cloned, recombinant AAL (AAL-His) was expressed, and the activities of AAL-His were analyzed. Northern blot analysis showed that the major AAL transcript is approximately 900 bp. Sequence analysis showed that the coding region of AAL is 489 bp with a transcription start site located 39 nucleotides upstream of the translation initiation codon. In an agglutination test, AAL-His agglutinated rabbit erythrocytes at 12.5 μg/ml. AAL-His also showed antiviral activity in protecting shrimp from white spot syndrome virus (WSSV) infection. This anti-WSSV effect might be due to the binding of AAL-His on WSSV virions via the direct interactions with four WSSV structural proteins, VP39B, VP41B, VP53A and VP216. AAL demonstrates the potential for development as an anti-WSSV agent for shrimp culture. It also implies that these four AAL interaction WSSV proteins may play important roles in virus infection.
Collapse
Affiliation(s)
- Yun-Shiang Chang
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Jian-Nan Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kun-Hung Chang
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Yi-Ming Chang
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan.
| |
Collapse
|
15
|
Li H, Yin B, Wang S, Fu Q, Xiao B, Lǚ K, He J, Li C. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS Pathog 2018; 14:e1007109. [PMID: 30256850 PMCID: PMC6175524 DOI: 10.1371/journal.ppat.1007109] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs. The TLR pathway mediated antiviral immune response is well identified in mammals, yet, Toll pathway governing this protection in invertebrates remains unknown. In the present study, we uncover that a shrimp Toll4 from a total of nine Tolls in L. vannamei confers resistance to WSSV thought inducing the NF-κB transcription factor Dorsal to inspire the production of some antimicrobial peptides (AMPs) with antiviral activity. The anti-LPS-factor (ALF) and lysozyme (LYZ) family are identified as the Toll4-Dorsal pathway targeted genes with the ability to interact with viral structural proteins in response to WSSV infection. These results suggest that the Toll receptor induces the expression of AMPs with antiviral activity could be a general antiviral mechanism in invertebrates and Toll pathway established antiviral defense could be conserved during evolution.
Collapse
Affiliation(s)
- Haoyang Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Qihui Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Kai Lǚ
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| | - Chaozheng Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| |
Collapse
|
16
|
Yuan Z, Chen M, Wang J, Li Z, Geng X, Sun J. Identification of Litopenaeus vannamei BiP as a novel cellular attachment protein for white spot syndrome virus by using a biotinylation based affinity chromatography method. FISH & SHELLFISH IMMUNOLOGY 2018; 79:130-139. [PMID: 29738871 DOI: 10.1016/j.fsi.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
White spot syndrome virus (WSSV) is a dangerous threat to shrimp farming that also attacks a wide range of crustaceans. Knowledge of the surface protein-protein interactions between the pathogen and host is very crucial to unraveling the molecular pathogenesis mechanisms of WSSV. In this study, LvBiP (Litopenaeus vannamei immunoglobulin heavy-chain-binding protein) was identified as a novel WSSV binding protein of L. vannamei by a biotinylation based affinity chromatography method. By using pull-down and ELISA assays, the binding of recombinant LvBiP to WSSV was proved to be specific and ATP- dependent. The interaction was also confirmed by the result of co-immunoprecipitation assay. Immunofluorescence studies revealed the co-localization of LvBiP with WSSV on the cell surface of shrimp haemocytes. Additionally, LvBiP is likely to play an important role in WSSV infection. Treatment of gill cellular membrane proteins (CMPs) with purified rLvBiP and antibody that specifically recognizes LvBiP, led to a significant reduction in the binding of WSSV to gill CMPs. In the in vivo neutralization assay, rLvBiP and anti-LvBiP polyclonal antibody partially blocked the infection of WSSV. Taken together, the results indicate that LvBiP, a molecular chaperon of the HSP70 family, is a novel host factor involved at the step of attachment of the WSSV to the host cells and a potential candidate of therapeutic target.
Collapse
Affiliation(s)
- Zengzhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, PR China; College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Meng Chen
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Jingting Wang
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Zhuoyu Li
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, PR China; College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China.
| |
Collapse
|
17
|
Apitanyasai K, Amparyup P, Charoensapsri W, Sangsuriya P, Tassanakajon A. Shrimp hemocyte homeostasis-associated protein (PmHHAP) interacts with WSSV134 to control apoptosis in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:174-182. [PMID: 29501484 DOI: 10.1016/j.fsi.2018.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Hemocyte homeostasis-associated protein (PmHHAP) was first identified as a viral-responsive gene, due to a high upregulation in transcription following white spot syndrome virus (WSSV) infection. Functional studies using RNA interference have suggested that PmHHAP is involved in hemocyte homeostasis by controlling apoptosis during WSSV infection. In this study, the role of PmHHAP in host-viral interactions was further investigated. Yeast two-hybrid assay and co-immunoprecipitation revealed that PmHHAP binds to an anti-apoptosis protein, WSSV134. The viral protein WSSV134 is a late protein of WSSV, expressed 24 h post infection (hpi). Gene silencing of WSSV134 in WSSV-infected shrimp resulted in a reduction of the expression level of the viral replication marker genes VP28, wsv477, and ie-1, which suggests that WSSV134 is likely involved in viral propagation. However, co-silencing of PmHHAP and WSSV134 counteracted the effects on WSSV infection, which implies the importance of the host-pathogen interaction between PmHHAP and WSSV134 in WSSV infection. In addition, caspase 3/7 activity was noticeably induced in the PmHHAP and WSSV134 co-silenced shrimp upon WSSV infection. Moreover, PmHHAP and WSSV134 inhibited caspase-induced activation of PmCasp in vitro in a non-competitive manner. Taken together, these results suggest that PmHHAP and WSSV134 play a role in the host-pathogen interaction and work concordantly to control apoptosis in WSSV infection.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
18
|
Methatham T, Boonchuen P, Jaree P, Tassanakajon A, Somboonwiwat K. Antiviral action of the antimicrobial peptide ALFPm3 from Penaeus monodon against white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:23-32. [PMID: 27919648 DOI: 10.1016/j.dci.2016.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The anti-lipopolysaccharide factor isoform 3 (ALFPm3), the antimicrobial peptide from Penaeus monodon, possesses antibacterial and antiviral activities. Although the mechanism of action of ALFPm3 against bacteria has been revealed but its antiviral mechanism is still unclear. To further study how the ALFPm3 exhibits antiviral activity against the enveloped virus, white spot syndrome virus (WSSV), the ALFPm3-interacting proteins from WSSV were sought and identified five ALFPm3-interacting proteins, WSSV186, WSSV189, WSSV395, WSSV458, and WSSV471. Only the interaction between ALFPm3 and WSSV189, however, has been confirmed to be involved in anti-WSSV activity of ALFPm3. Herein, the interactions between ALFPm3 and rWSSV186, rWSSV395, rWSSV458, or rWSSV471 were further analyzed and confirmed by in vitro pull-down assay. Western blot analysis and immunoelectron microscopy showed that the uncharacterized proteins, WSSV186 and WSSV471, were nucleocapsid and envelope proteins, respectively. The decrease of shrimp survival after injection the shrimp with mixtures of each rWSSV protein, rALFPm3 and WSSV as compared to those injected with rALFPm3-neutralizing WSSV was clearly observed indicating that all rWSSV proteins could interfere with the neutralization effect of rALFPm3 on WSSV similar to that reported previously for WSSV189. Morphological change on WSSV after incubation with rALFPm3 was observed by TEM. The lysed WSSV virions were clearly observed where both viral envelope and nucleocapsid were dismantled. The results lead to the conclusion that the ALFPm3 displays direct effect on the viral structural proteins resulting in destabilization and breaking up of WSSV virions.
Collapse
Affiliation(s)
- Thanachai Methatham
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X. iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics 2017; 152:88-101. [PMID: 27989946 DOI: 10.1016/j.jprot.2016.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022]
Abstract
Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase. In total, 4155 proteins were identified and 272 proteins were changed differentially in response to TYLCCNV/TYLCCNB infection. Bioinformatics analysis indicated that S-adenosyl-l-methionine cycle II was the most significantly up-regulated biochemical process during TYLCCNV/TYLCCNB infection. The mRNA levels of three proteins in S-adenosyl-l-methionine cycle II were further analyzed by qPCR, each was found significantly up-regulated in TYLCCNV/TYLCCNB-infected N. benthamiana. This result suggested a strong promotion of the biosynthesis of available methyl groups during geminivirus infections. We further tested the potential role of RdDM in N. benthamiana by virus-induced gene silencing (VIGS) and found that a disruption in RdDM resulted in more severe infectious symptoms and higher accumulation of viral DNA after TYLCCNV/TYLCCNB infection. Although the precise functions of these proteins still need to be determined, our proteomic results enhance the understanding of plant antiviral mechanisms. BIOLOGICAL SIGNIFICANCE One of the major limitations to crop growth in the worldwide is the prevalence of geminiviruses. They are able to infect food and cash crops and cause serious crop failures and economic losses worldwide, especially in Africa and Asia. Tomato yellow leaf curl China virus (TYLCCNV), which causes severe viral diseases in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). However, the mechanisms underlying the TYLCCNV/TYLCCNB defense in plants are still not fully understood at the molecular level. In this study, the combined proteomic, bioinformatic and VIGS analyses revealed that TYLCCNV/TYLCCNB invasion caused complex proteomic alterations in the leaves of N. benthamiana involving the processes of stress and defense, energy production, photosynthesis, protein homeostasis, metabolism, cell structure, signal transduction, transcription, transportation, and cell growth/division. Promotion of available methyl groups via the S-adenosyl-l-methionine cycle II pathway in N. benthamiana appeared crucial for antiviral responses. These findings enhance our understanding in the proteomic aspects of host antiviral defenses against geminiviruses, and also demonstrate that the combination of proteomics with bioinformatics and VIGS analysis is an effective approach to investigate systemic plant responses to geminiviruses and to shed light on plant-virus interactions.
Collapse
Affiliation(s)
- Xueting Zhong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Ruyuan Xiao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
20
|
Li F, Gao M, Xu L, Yang F. Comparative genomic analysis of three white spot syndrome virus isolates of different virulence. Virus Genes 2016; 53:249-258. [DOI: 10.1007/s11262-016-1421-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
21
|
Guan GK, Liu QH, Li C, Huang J. Cloning of Litopenaeus vannamei CD63 and it's role in white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:209-217. [PMID: 26964710 DOI: 10.1016/j.dci.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
White Spot Syndrome Virus (WSSV) is currently the most serious shrimp pathogen, which has brought huge losses to shrimp industry worldwide. CD63 of shrimp belongs to the tetraspanin superfamily, which plays an important role in signal transduction and immune process. In this paper, CD63 cDNA sequence of Litopenaeus vannamei was cloned using RACE method. The amplified sequence is 1472 bp, with its ORF 744 bp, encoding 247 amino acids. Bioinformatics analysis showed that the sequence of LvCD63 has 93% similarity with Penaeus monodon and 92% similarity with Fenneropenaeus chinensis. Real-time PCR analysis showed that the mRNA levels of LvCD63 expressed in the tissues of hemocytes, gill, epithelial tissue, heart, lymphoid, hepatopancreas, stomach, intestines, muscle and nerve. Among these tissues the highest expression level was showed in the tissue of haemolymph, followed by epithelial tissue, hepatopancreas, and nerve. The lowest expression level of LvCD63 was appeared in the muscle tissue. After WSSV challenge, the expression levels of LvCD63 were both up-regulated in the tissues of gill and epithelial. However the expression level of LvCD63 in hepatopancreas was down-regulated. Far-western blot analysis showed that LvCD63 interacts with VP28, and both VP28N and VP28C fragments interact with LvCD63. Flow cytometry analysis showed that LvCD63 was present on the surface of hemocytes and it is required for binding of WSSV virions. Neutral experiments in vivo showed that LvCD63LEL delayed WSSV infection in shrimp.
Collapse
Affiliation(s)
- Guang-Kuo Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Shanghai Ocean University, Shanghai, China
| | - Qing-Hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Li Z, Li F, Han Y, Xu L, Yang F. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection. J Virol 2016; 90:842-50. [PMID: 26512091 PMCID: PMC4702682 DOI: 10.1128/jvi.02357-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186-200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186-200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms.
Collapse
Affiliation(s)
- Zaipeng Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yali Han
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
23
|
Liu QH, Ma FF, Guan GK, Wang XF, Li C, Huang J. White spot syndrome virus VP51 interact with ribosomal protein L7 of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:382-388. [PMID: 25736720 DOI: 10.1016/j.fsi.2015.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/24/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
The interaction between viral structural proteins and host plays key functions in viral infection. In previous studies, most research have been undertaken to explore the interaction of envelope structural proteins with host molecules. However, how the nucleocapsid proteins of WSSV interacted with host molecules remained largely unknown. In this study, the interaction of nucleocapsid protein VP51 and ribosomal protein L7 of Litopenaeus vannamei (LvRPL7) was reported. Furthermore, the mRNA transcriptional response of LvRPL7 to WSSV was investigated. The results showed that LvRPL7 was widely distributed in all analyzed tissues of L. vannamei. The high expression levels of LvRPL7 were found in the tissues of muscle and gills. The temporal expression of LvRPL7 in WSSV-challenged shrimp showed that LvRPL7 was up-regulated (P < 0.5) in the muscle at 8 h and 24 h post WSSV challenge and then restored to the normal levels. But the LvRPL7 expression was up-regulated (P < 0.5) in the hepatopancreas at 8 h post WSSV challenge and down-regulated at 12 h and 24 h post WSSV challenge. Indirect immunofluorescence assay indicated that LvRPL7 was mainly located on the surface and cytoplasm of hemocytes. Far-Western blotting showed that VP51 bound with LvRPL7. Moreover, ELISA results appeared that LvRPL7 interacted with VP51 in concentration dependent manner. Neutralization assay in vivo showed that anti-LvRPL7 antibody significantly delayed WSSV infection. Our results reveal that LvRPL7 was involved in WSSV infection.
Collapse
Affiliation(s)
- Qing-Hui Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fang-Fang Ma
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Shanghai Ocean University, Shanghai, China
| | - Guang-Kuo Guan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Shanghai Ocean University, Shanghai, China
| | - Xiu-Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian, China
| | - Chen Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
24
|
Li Z, Chen W, Xu L, Li F, Yang F. Identification of the interaction domains of white spot syndrome virus envelope proteins VP28 and VP24. Virus Res 2015; 200:24-9. [PMID: 25637460 DOI: 10.1016/j.virusres.2015.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
VP28 and VP24 are two major envelope proteins of white spot syndrome virus (WSSV). The direct interaction between VP28 and VP24 has been described in previous studies. In this study, we confirmed this interaction and mapped the interaction domains of VP28 and VP24 by constructing a series of deletion mutants. By co-immunoprecipitation, two VP28-binding domains of VP24 were located at amino acid residues 46-61 and 148-160, while VP24-binding domain of VP28 was located at amino acid residues 31-45. These binding domains were further corroborated by peptide blocking assay, in which synthetic peptides spanning the binding domains were able to inhibit VP28-VP24 interaction, whereas same-size control peptides from non-binging regions did not.
Collapse
Affiliation(s)
- Zaipeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China; School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Weiyu Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Limei Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| |
Collapse
|
25
|
Characterization of white spot syndrome virus VP52B and its interaction with VP26. Virus Genes 2014; 50:46-51. [PMID: 25331340 DOI: 10.1007/s11262-014-1126-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
White spot syndrome virus (WSSV) is one of the major pathogens of cultured shrimp. Identification of envelope protein interactions has become a central issue for the understanding of WSSV assembly. In this paper, WSSV envelope protein VP52B was fused with GST-tag and expressed in Escherichia coli BL-21(DE3). Immunogold-electron microscopy revealed that VP52B was located on the outside surface of WSSV virions. Far-Western blotting analysis suggested that VP52B might directly interact with a major viral envelope protein VP26, and their interaction was confirmed by GST pull-down assay. Further investigation showed that the VP52B binding domain was located between residues 135-170 of VP26. These findings will enhance our understanding of the molecular mechanisms of WSSV morphogenesis.
Collapse
|
26
|
Anti-lipopolysaccharide factor isoform 3 from Penaeus monodon (ALFPm3) exhibits antiviral activity by interacting with WSSV structural proteins. Antiviral Res 2014; 110:142-50. [DOI: 10.1016/j.antiviral.2014.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
|
27
|
Hu Y, Xu S, Hu Y, Guo C, Meng H, Li J, Liu J, Wang H. Diverse Families of Antimicrobial Peptides Isolated from Skin Secretions of Three Species of East Asian Frogs,Babina daunchina,Babina adenopleura, andRana omeimontis(Ranidae). Zoolog Sci 2014; 31:438-44. [DOI: 10.2108/zs140014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
iTRAQ-based proteomics reveals novel members involved in pathogen challenge in sea cucumber Apostichopus japonicus. PLoS One 2014; 9:e100492. [PMID: 24949634 PMCID: PMC4065040 DOI: 10.1371/journal.pone.0100492] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/22/2014] [Indexed: 01/08/2023] Open
Abstract
Skin ulceration syndrome (SUS) is considered to be a major constraint for the stable development of Apostichopus japonicus culture industries. In this study, we investigated protein changes in the coelomocytes of A. japonicus challenged by Vibrio splendidus using isobaric tags for relative and absolute quantification (iTRAQ) over a 96 h time course. Consequently, 228 differentially expressed proteins were identified in two iTRAQs. A comparison of the protein expression profiles among different time points detected 125 proteins primarily involved in response to endogenous stimuli at 24 h. At 48 h, the number of differentially expressed proteins decreased to 67, with their primary function being oxidation reduction. At the end of pathogen infection, proteins responsive to amino acid stimuli and some metabolic processes were classified as the predominant group. Fifteen proteins were differentially expressed at all time points, among which eight proteins related to pathologies in higher animals were shown to be down-regulated after V. splendidus infection: paxillin, fascin-2, aggrecan, ololfactomedin-1, nesprin-3, a disintegrin-like and metallopeptidase with thrombospondin type 1 motif (Adamts7), C-type lectin domain family 4 (Clec4g) and n-myc downstream regulated gene 1 (Ndrg1). To gain more insight into two SUS-related miRNA (miR-31 and miR-2008) targets at the protein level, all 129 down-regulated proteins were further analyzed in combination with RNA-seq. Twelve and eight proteins were identified as putative targets for miR-31 and miR-2008, respectively, in which six proteins (5 for miR-31 and 1 for miR-2008) displayed higher possibilities to be regulated at the level of translation. Overall, the present work enhances our understanding of the process of V. splendidus-challenged sea cucumber and provides a new method for screening miRNAs targets at the translation level.
Collapse
|
29
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|
30
|
Hu Y, Yu Z, Xu S, Hu Y, Guo C, Li F, Li J, Liu J, Wang H. Peptidomic analysis of antimicrobial peptides in skin secretions of Amolops mantzorum. Zoolog Sci 2014; 31:143-51. [PMID: 24601776 DOI: 10.2108/zsj.31.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amphibian skin secretions contain abundant bioactive peptides that are valuable natural resources for human beings. However, many amphibians are disappearing from the world, making relevant scientific studies even more important. In this study, 24 cDNA sequences encoding antimicrobial peptide (AMP) precursors were initially cloned by screening a cDNA library derived from the skin of the Sichuan torrent frog, Amolops mantzorum. Eighteen mature AMPs belonging to 11 different families were deduced from these cDNA clones. Biological function was confirmed in each family of these AMPs. Some of them were purified from the skin secretions, and their molecular structures were determined by Edman degradation. Liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS)-based peptidomics was used to further confirm the actual presence and characteristics of mature AMPs in the skin secretions of A. mantzorum. Incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase the peptidome coverage and reproducibility of peptide ion selection.
Collapse
Affiliation(s)
- Yuhong Hu
- 1 Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Ma FF, Liu QH, Guan GK, Li C, Huang J. Arginine kinase of Litopenaeus vannamei involved in white spot syndrome virus infection. Gene 2014; 539:99-106. [PMID: 24486504 DOI: 10.1016/j.gene.2014.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 11/19/2022]
Abstract
Virus-host interaction is important for virus infection. White spot syndrome virus VP14 contains transmembrane and signal peptides domain, which is considered to be important for virus infection. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP14 with host cell. A new shrimp protein (arginine kinase of Litopenaeus vannamei, LvAK) is selected and its localization in shrimp cells is also confirmed. Cellular localization of LvAK protein in shrimp hemocytes showed that LvAK was primarily located at the periphery of hemocytes and was scarcely detectable in the nucleus. Tissue distribution indicated that arginine kinase gene was spread commonly in the tissues and was highly present in shrimp muscle tissue. The expression of LvAK mRNA in muscle was significantly up-regulated after WSSV stimulation. Indirect immunofluorescence assay showed that LvAK interacted with VP14 in WSSV-infected shrimp. Injection of LvAK protein enhanced the mortality of shrimp infected with white spot syndrome virus (WSSV). These results showed that LvAK is involved in WSSV infection. Future research on this topic will help to reveal the molecular mechanism of WSSV infection.
Collapse
Affiliation(s)
- Fang-fang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Shanghai Ocean University, Shanghai, PR China
| | - Qing-hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
| | - Guang-kuo Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Shanghai Ocean University, Shanghai, PR China
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| |
Collapse
|
33
|
Characterization and interactome study of white spot syndrome virus envelope protein VP11. PLoS One 2014; 9:e85779. [PMID: 24465701 PMCID: PMC3897518 DOI: 10.1371/journal.pone.0085779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/06/2013] [Indexed: 11/27/2022] Open
Abstract
White spot syndrome virus (WSSV) is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570), and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.
Collapse
|
34
|
Li Q, Liu QH, Huang J. VP292 of White spot syndrome virus Interacts with VP26. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2014; 24:54-8. [PMID: 24426258 DOI: 10.1007/s13337-012-0111-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Interactions between virus structural proteins are suggested to be crucial for virus assembly. Many steps in the process of white spot syndrome virus (WSSV) assembly and maturation remain unclear. In this paper, we discovered a new interaction of WSSV VP292. Temporal-transcription analysis showed that VP292 is expressed in the late stage of WSSV infection. Western blot and matrix-assisted laser desorption ionization MS assays showed that VP292 interacts with VP26, a major envelope protein. Far-western blot provided further evidence for interaction between VP292 and VP26. These results collectively demonstrated that VP292 anchors to the envelope through interaction with VP26.
Collapse
Affiliation(s)
- Qian Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China ; Shanghai Ocean University, Shanghai, China
| | - Qing-Hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| |
Collapse
|
35
|
Xue S, Liu Y, Zhang Y, Sun Y, Geng X, Sun J. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection. PLoS One 2013; 8:e76718. [PMID: 24204661 PMCID: PMC3799976 DOI: 10.1371/journal.pone.0076718] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/26/2013] [Indexed: 12/03/2022] Open
Abstract
Background White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). Results RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. Conclusions This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Shuxia Xue
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
| | - Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| | - Yan Sun
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
- * E-mail:
| |
Collapse
|
36
|
Li J, Xu L, Li F, Yang F. Low-abundance envelope protein VP12 of white spot syndrome virus interacts with envelope protein VP150 and capsid protein VP51. Virus Res 2013; 178:206-10. [PMID: 24144859 DOI: 10.1016/j.virusres.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022]
Abstract
VP12 and VP150 are two minor envelope proteins of white spot syndrome virus (WSSV). In our previous studies, VP12 was found to co-migrate with 53-kDa form of VP150 on two-dimensional Blue Native/SDS-PAGE, suggesting that there is an interaction between them. In this study, we confirmed the interaction by co-immunoprecipitation assay and demonstrated that the binding region with VP12 is located between residues 207 and 803 of VP150. Further studies found that VP12 can be attached to WSSV capsids by interacting with capsid protein VP51. These findings suggest that VP12 may function as a linker protein participating in the linkage between VP12/VP150 complex and viral nucleocapsid.
Collapse
Affiliation(s)
- Jianbo Li
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of State Oceanic Administration; Third Institute of Oceanography, Xiamen 361005, China.
| | | | | | | |
Collapse
|
37
|
Yan H, Liu Y, Tang J, Mo G, Song Y, Yan X, Wei L, Lai R. A Novel Antimicrobial Peptide from Skin Secretions of the Tree FrogTheloderma kwangsiensis. Zoolog Sci 2013; 30:704-9. [DOI: 10.2108/zsj.30.704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Zhang H, Wei L, Zou C, Bai JJ, Song Y, Liu H. Purification and Characterization of a Tachykinin-Like Peptide from Skin Secretions of the Tree Frog,Theloderma kwangsiensis. Zoolog Sci 2013; 30:529-33. [DOI: 10.2108/zsj.30.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Chen W, Zhang H, Gu L, Li F, Yang F. Effects of high salinity, high temperature and pH on capsid structure of white spot syndrome virus. DISEASES OF AQUATIC ORGANISMS 2012; 101:167-171. [PMID: 23135144 DOI: 10.3354/dao02511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The structural stability of white spot syndrome virus (WSSV) capsids at high salinity, high temperature and various pH values was studied. To obtain the viral capsids, the nucleocapsids were treated with high salinity. The results showed that high salinity treatment can cause the dissociation of VP15 and most of VP95 from the nucleocapsid, but there were no noticeable alterations in morphology and ultrastructure of the nucleocapsid and capsid. The capsids retained morphological integrity at temperatures <45°C but became aberrant at >60°C. In addition, the capsids were relatively resistant to strong acid conditions and were tolerant to a broad pH range of 1 to 10. However, morphological change occurred at pH 10.5. The capsids broke up into small pieces at pH 11 and completely degraded in 0.1 and 1.0 M NaOH. These results indicated that the WSSV capsid is acid-stable and alkali-labile.
Collapse
Affiliation(s)
- Weiyu Chen
- College of Oceanography and Environmental Science of Xiamen University, PR China
| | | | | | | | | |
Collapse
|
40
|
Yang JY, Chang CI, Liu KF, Hseu JR, Chen LH, Tsai JM. Viral resistance and immune responses of the shrimp Litopenaeus vannamei vaccinated by two WSSV structural proteins. Immunol Lett 2012; 148:41-8. [DOI: 10.1016/j.imlet.2012.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/07/2012] [Accepted: 08/05/2012] [Indexed: 01/06/2023]
|
41
|
Phylogeny and evolution of Hytrosaviridae. J Invertebr Pathol 2012; 112 Suppl:S62-7. [PMID: 22841640 DOI: 10.1016/j.jip.2012.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022]
Abstract
The Hytrosaviridae comprises a family of dsDNA viruses with a circular genome of 120-190 kb p. They are exclusively associated with Diptera, such as the tsetse fly, the house fly and the Narcissus bulb fly. Hytrosaviruses cause a very unique pathology including hypertrophy of salivary glands as well as testicular and ovarian malformation. On the other hand these viruses share a significant number of gene homologues with other dsDNA viruses, esp. baculoviruses and nudiviruses. These gene homologues include twelve so-called baculovirus core genes involved in transcription, DNA replication and the infection process. Most strikingly, the Musca domestica salivary gland hypertrophy virus (MdSGHV) encodes a homologue of a polyhedrin/granulin gene of Alpha-, Beta-, Gammabaculoviruses. Hence, it is proposed that hytrosaviruses are phylogenetically related to baculoviruses but evolved in a very close association with their dipteran hosts.
Collapse
|
42
|
Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y. Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci 2012; 10:32. [PMID: 22571704 PMCID: PMC3413529 DOI: 10.1186/1477-5956-10-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background Newcastle disease virus (NDV) is an enveloped RNA virus, bearing severe economic losses to the poultry industry worldwide. Previous virion proteomic studies have shown that enveloped viruses carry multiple host cellular proteins both internally and externally during their life cycle. To address whether it also occurred during NDV infection, we performed a comprehensive proteomic analysis of highly purified NDV La Sota strain particles. Results In addition to five viral structural proteins, we detected thirty cellular proteins associated with purified NDV La Sota particles. The identified cellular proteins comprised several functional categories, including cytoskeleton proteins, annexins, molecular chaperones, chromatin modifying proteins, enzymes-binding proteins, calcium-binding proteins and signal transduction-associated proteins. Among these, three host proteins have not been previously reported in virions of other virus families, including two signal transduction-associated proteins (syntenin and Ras small GTPase) and one tumor-associated protein (tumor protein D52). The presence of five selected cellular proteins (i.e., β-actin, tubulin, annexin A2, heat shock protein Hsp90 and ezrin) associated with the purified NDV particles was validated by Western blot or immunogold labeling assays. Conclusions The current study presented the first standard proteomic profile of NDV. The results demonstrated the incorporation of cellular proteins in NDV particles, which provides valuable information for elucidating viral infection and pathogenesis.
Collapse
Affiliation(s)
- Xiangpeng Ren
- School of Environmental Science and Public Health, Wenzhou Medical College, Wenzhou, 325035, Peoples Republic of China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Peoples Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| |
Collapse
|
43
|
Haq MAB, Vignesh R, Srinivasan M. Deep insight into white spot syndrome virus vaccines: A review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60018-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Zheng J, Sugrue RJ, Tang K. Mass spectrometry based proteomic studies on viruses and hosts--a review. Anal Chim Acta 2011; 702:149-59. [PMID: 21839192 PMCID: PMC7094357 DOI: 10.1016/j.aca.2011.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023]
Abstract
In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus-host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein-protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied using this approach. As more virus and host genomes are being sequenced, MS-based proteomics is becoming an indispensable tool for virology. In this paper, we provide a brief review of the current technologies and their applications in studying selected viruses and hosts.
Collapse
Affiliation(s)
- Jie Zheng
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Richard J. Sugrue
- Division of Molecular and Cell Biology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kai Tang
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
45
|
Ghosh D, Yu H, Tan XF, Lim TK, Zubaidah RM, Tan HT, Chung MCM, Lin Q. Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res 2011; 10:4373-87. [PMID: 21854069 DOI: 10.1021/pr2005617] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study compared the whole cell proteome profiles of two isogenic colorectal cancer (CRC) cell lines (primary SW480 cell line and its lymph node metastatic variant SW620), as an in vitro metastatic model, to gain an insight into the molecular events of CRC metastasis. Using iTRAQ (isobaric tags for relative and absolute quantitation) based shotgun proteomics approach, we identified 1140 unique proteins, out of which 147 were found to be significantly altered in the metastatic cell. Ingenuity pathway analysis with those significantly altered proteins, revealed cellular organization and assembly as the top-ranked altered biological function. Differential expression pattern of 6 candidate proteins were validated by Western blot. Among these, the low expression level of β-catenin combined with the up-regulation of CacyBP (Calcyclin binding Protein), a β-catenin degrading protein, in the metastatic cell provided a rational guide for the downstream functional assays. The relative expression pattern of these two proteins was further validated in three other CRC cells by Western blot and quantitative immunofluorescence studies. Overexpression of CacyBP in three different primary CRC cell lines showed significant reduction in adhesion characteristics as well as cellular β-catenin level as confirmed by our experiments, indicating the possible involvement of CacyBP in CRC metastasis. In short, this study demonstrates successful application of a quantitative proteomics approach to identify novel key players for CRC metastasis, which may serve as biomarkers and/or drug targets to improve CRC therapy.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117543
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xing Y, Shi Z. Nucleocapsid protein VP15 of White spot syndrome virus colocalizes with the nucleolar proteins nucleolin and fibrillarin. Can J Microbiol 2011; 57:759-64. [PMID: 21861764 DOI: 10.1139/w11-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The core nucleocapsid protein VP15 of White spot syndrome virus (WSSV) was shown to interact with DNA and predicted to be involved in the packaging of the WSSV genome. In the present study, we explored the colocalization of VP15 with several nuclear proteins in insect cells. The results showed that the VP15 completely colocalized with nucleolin and fibrillarin, suggesting that VP15 is a nucleolar localization protein and plays an important role in the life cycle of WSSV in host cells.
Collapse
Affiliation(s)
- Yuna Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | | |
Collapse
|
47
|
Zhou S, Liu R, Zhao X, Huang C, Wei Y. Viral proteomics: the emerging cutting-edge of virus research. SCIENCE CHINA-LIFE SCIENCES 2011; 54:502-12. [PMID: 21706410 PMCID: PMC7089374 DOI: 10.1007/s11427-011-4177-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 12/03/2010] [Indexed: 11/21/2022]
Abstract
Viruses replicate and proliferate in host cells while continuously adjusting to and modulating the host environment. They encode a wide spectrum of multifunctional proteins, which interplay with and modify proteins in host cells. Viral genomes were chronologically the first to be sequenced. However, the corresponding viral proteomes, the alterations of host proteomes upon viral infection, and the dynamic nature of proteins, such as post-translational modifications, enzymatic cleavage, and activation or destruction by proteolysis, remain largely unknown. Emerging high-throughput techniques, in particular quantitative or semi-quantitative mass spectrometry-based proteomics analysis of viral and cellular proteomes, have been applied to define viruses and their interactions with their hosts. Here, we review the major areas of viral proteomics, including virion proteomics, structural proteomics, viral protein interactomics, and changes to the host cell proteome upon viral infection.
Collapse
Affiliation(s)
- ShengTao Zhou
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
48
|
Zhao J, Sun Y, Li Z, Su Q. Molecular cloning of novel antimicrobial peptide genes from the skin of the Chinese brown frog, Rana chensinensis. Zoolog Sci 2011; 28:112-7. [PMID: 21303203 DOI: 10.2108/zsj.28.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One species of the Chinese brown frog, Rana chensinensis, is widely distributed in north-central China. In this study, a cDNA library was constructed to clone the antimicrobial peptides' genes from the skin of R. chensinensis. Twenty-three prepropeptide cDNA sequences encoding twelve novel mature antimicrobial peptides were isolated and characterized. Six peptides belonged to three known families previously identified from other Ranid frogs: temporin (4 peptides), brevinin-2 (1 peptide), and palustrin-2 (1 peptide). The other six peptides showed little similarity to known antimicrobial peptides. According to the amino acid sequences, with or without α-helix structure, and either hydrophilic or hydrophobic, these were organized into four new families: chensinin-1 (3 peptides), chensinin-2 (1 peptide), chensinin-3 (1 peptide), and chensinin-4 (1 peptide). Five peptides from different families were chemically synthesized, and their antimicrobial, cytolytic, and hemolytic activities were evaluated. Of these, brevinin-2CE showed strongest antimicrobial activities against both the Gram-positive and Gram-negative bacteria with a slight hemolysis. Temporin-1CEe and palustrin-2CE also displayed a slight hemolysis, but they had different activities to prokaryotic cells. Temporin-1CEe showed higher antimicrobial activity against Gram-positive bacteria than Gram-negative bacteria, whereas it was contrary to palustrin-2CE. Chensinin-1 CEb and chensinin-3CE only had moderate antimicrobial activity against microorganisms. In addition, the brevinin-2 peptides from different brown frogs were analyzed to reveal the taxonomy and phylogenetic relationships of R. chensinensis.
Collapse
Affiliation(s)
- Jie Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, P. R. China
| | | | | | | |
Collapse
|
49
|
Li L, Lin Z, Xu L, Yang F. The RGD motif in VP31 of white spot syndrome virus is involved in cell adhesion. Arch Virol 2011; 156:1317-21. [DOI: 10.1007/s00705-011-0984-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/14/2011] [Indexed: 01/02/2023]
|
50
|
Analysis of white spot syndrome virus envelope protein complexome by two-dimensional blue native/SDS PAGE combined with mass spectrometry. Arch Virol 2011; 156:1125-35. [DOI: 10.1007/s00705-011-0954-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/18/2011] [Indexed: 01/09/2023]
|