1
|
Da Silva AJ, Hästbacka HSE, Luoto JC, Gough RE, Coelho-Rato LS, Laitala LM, Goult BT, Imanishi SY, Sistonen L, Henriksson E. Proteomic profiling identifies a direct interaction between heat shock transcription factor 2 and the focal adhesion adapter talin-1. FEBS J 2024; 291:4830-4848. [PMID: 39285620 DOI: 10.1111/febs.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024]
Abstract
Heat shock factor 2 (HSF2) is a versatile transcription factor that regulates gene expression under stress conditions, during development, and in disease. Despite recent advances in characterizing HSF2-dependent target genes, little is known about the protein networks associated with this transcription factor. In this study, we performed co-immunoprecipitation coupled with mass spectrometry analysis to identify the HSF2 interactome in mouse testes, where HSF2 is required for normal sperm development. Endogenous HSF2 was discovered to form a complex with several adhesion-associated proteins, a finding substantiated by mass spectrometry analysis conducted in human prostate carcinoma PC-3 cells. Notably, this group of proteins included the focal adhesion adapter protein talin-1 (TLN1). Through co-immunoprecipitation and proximity ligation assays, we demonstrate the conservation of the HSF2-TLN1 interaction from mouse to human. Additionally, employing sequence alignment analyses, we uncovered a TLN1-binding motif in the HSF2 C terminus that binds directly to multiple regions of TLN1 in vitro. We provide evidence that the 25 C-terminal amino acids of HSF2, fused to EGFP, are sufficient to establish a protein complex with TLN1 and modify cell-cell adhesion in human cells. Importantly, this TLN1-binding motif is absent in the C-terminus of a closely related HSF family member, HSF1, which does not form a complex with TLN1. These results highlight the unique molecular characteristics of HSF2 in comparison to HSF1. Taken together, our data unveil the protein partners associated with HSF2 in a physiologically relevant context and identifies TLN1 as the first adhesion-related HSF2-interacting partner.
Collapse
Affiliation(s)
- Alejandro J Da Silva
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hendrik S E Hästbacka
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jens C Luoto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Leila S Coelho-Rato
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Leena M Laitala
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eva Henriksson
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
2
|
Pauciullo A, Versace C, Gaspa G, Letaief N, Bedhiaf-Romdhani S, Fulgione A, Cosenza G. Sequencing and Characterization of αs2-Casein Gene ( CSN1S2) in the Old-World Camels Have Proven Genetic Variations Useful for the Understanding of Species Diversification. Animals (Basel) 2023; 13:2805. [PMID: 37685069 PMCID: PMC10487017 DOI: 10.3390/ani13172805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The CSN1S2 gene encodes αs2-casein, the third most abundant protein in camel milk. Despite its importance in foals, human nutrition, and dairy processing, the CSN1S2 gene in camels has received little attention. This study presents the first complete characterization of the CSN1S2 gene sequence in Old-World camels (Camelus bactrianus and Camelus dromedarius). Additionally, the gene promoter, consisting of 752 bp upstream of exon 1, was analyzed. The entire gene comprises 17 exons, ranging in length from 24 bp (exons 4, 8, 11, and 13) to 280 bp (exon 17). Interesting was the identification of the exon 12 in both species. The promoter analysis revealed 24 putative binding sites in the Bactrian camel and 22 in dromedary camel. Most of these sites were typical elements associated with milk protein, such as C/EBP-α, C/EBP-β, Oct-1, and AP1. The SNP discovery showed relatively high genetic diversity compared to other camel casein genes (CSN1S1, CSN2, and CSN3), with a total of 34 polymorphic sites across the two species. Particularly noteworthy is the transition g.311G>A in the CSN1S2 promoter, creating a new putative consensus binding site for a C/EBP-β in the Bactrian camel. At the exon level, two novel variants were found. One was detected in exon 6 of the Bactrian camel (g.3639C>G), resulting in an amino acid replacement, p.36Ile>Met. The second variant was found in noncoding exon 17 of dromedary CSN1S2 (g.1511G>T). Although this mutation occurs in the 3'-UnTranslated Region, it represents the first example of exonic polymorphism in the CSN1S2 for this species. This SNP also affects the binding sites of different microRNAs, including the seed sequence of the miRNA 4662a-3p, highlighting its role as a regulatory factor for CSN1S2 gene. A PCR-RFLP was set up for genotyping a dromedary Tunisian population (n = 157), and the minor allele frequency was found to be 0.27 for the G allele, indicating a potential yield improvement margin. The interspersed elements (INEs) analysis revealed 10 INEs covering 7.34% and 8.14% of the CSN1S2 sequence in the Bactrian and dromedary camels, respectively. Furthermore, six elements (A, B, F, H, I, and L) are shared among cattle and camels and are partially found in other ruminants, suggesting a common ancestral origin of these retrotransposons. Conversely, elements C, D, E, and G are specific to camels.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Carmine Versace
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Giustino Gaspa
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Neyrouz Letaief
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
- Laboratory of Animal and Forage Production, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 1004, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Forage Production, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 1004, Tunisia
| | - Andrea Fulgione
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy
| | - Gianfranco Cosenza
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
Heininen J, Erbacher C, Kotiaho T, Kostiainen R, Teppo J. Enzymatic Phosphorylation of Oxidized Tyrosine Residues. J Proteome Res 2023. [PMID: 37146082 DOI: 10.1021/acs.jproteome.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.
Collapse
Affiliation(s)
- Juho Heininen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Jaakko Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
4
|
Immunoproteomics of cow's milk allergy in Mexican pediatric patients. J Proteomics 2023; 273:104809. [PMID: 36587729 DOI: 10.1016/j.jprot.2022.104809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Immunological mechanisms of non-IgE-mediated cow's milk protein allergy (CMPA) are not well understood. Such a circumstance requires attention with the aim of discovering new biomarkers that could lead to better diagnostic assays for early treatment. Here, we sought both to investigate the mechanism that underlies non-IgE-mediated CMPA and to identify cow's milk immunoreactive proteins in a Mexican pediatric patient group (n = 34). Hence, we determined the IgE and IgG1-4 subclass antibody levels against cow's milk proteins (CMP) by ELISA. Then, we performed 2D-Immunoblots using as first antibody immunoglobulins in the patients'serum that bound specifically against CMP together with CMP enrichment by ion-exchange chromatography. Immunoreactive proteins were identified by mass spectrometry-based proteomics. The serological test confirmed absence of specific IgE in the CMPA patients but showed significant increase in antigen-specific IgG1. Additionally, we identified 11 proteins that specifically bound to IgG1. We conclude that the detection of specific IgG1 together with an immunoproteomics approach is highly relevant to the understanding of CMPA's physiopathology and as a possible aid in making a prognosis since current evidence indicates IgG1 occurrence as an early signal of potential risk toward development of IgE-mediated food allergy. SIGNIFICANCE: Allergies are one of the most studied topics in the field of public health and novel protein allergens are found each year. Discovery of new principal and regional allergens has remarkable repercussions in precise molecular diagnostics, prognostics, and more specific immunotherapies. In this context, specific IgE is widely known to mediate physiopathology; however, allergies whose mechanism does not involve this immunoglobulin are poorly understood although their incidence has increased. Therefore, accurate diagnosis and adequate treatment are delayed with significant consequences on the health of pediatric patients. The study of type and subtypes of immunoglobulins associated with the immunoreactivity of cow's milk proteins together with an immunoproteomics approach allows better comprehension of physiopathology, brings the opportunity to discover new potential cow's milk protein allergens and may help in prognosis prediction (IgG1 occurrence as an early signal of possible risk toward development of IgE-mediated food allergy).
Collapse
|
5
|
Identification, production and bioactivity of casein phosphopeptides – A review. Food Res Int 2022; 157:111360. [DOI: 10.1016/j.foodres.2022.111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
6
|
Abstract
Phosphopeptide enrichment is a commonly used sample preparation step for investigating phosphorylation. TiO2-based enrichment has been demonstrated to have excellent performance both for large amounts of complex and for small amounts of simple samples. However, it has not yet been studied for complex samples in the nanogram range. Our objective was to develop a methodology applicable for complex samples in the low nanogram range, useful for mass spectrometry analysis of tissue microarrays. The selectivity and performance of two stationary phases (TiO2 nanoparticle-coated monolithic column and spin tip filled with TiO2 microspheres) and several loading solvents were studied. Based on this study, we developed an effective and robust method, based on a spin tip with a non-conventional 50 mM citric acid-based loading solvent. It gave excellent results for phosphopeptide enrichment from samples containing a few nanograms of a complex protein mixture.
Collapse
|
7
|
Chen SH, Lin YC, Shih MK, Wang LF, Liu SS, Hsu JL. LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation. Molecules 2020; 25:molecules25225316. [PMID: 33202651 PMCID: PMC7697701 DOI: 10.3390/molecules25225316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Protein phosphorylation is a crucial post-translational modification that plays an important role in the regulation of cellular signaling processes. Site-specific quantitation of phosphorylation levels can help decipher the physiological functions of phosphorylation modifications under diverse physiological statuses. However, quantitative analysis of protein phosphorylation degrees is still a challenging task due to its dynamic nature and the lack of an internal standard simultaneously available for the samples differently prepared for various phosphorylation extents. In this study, stable-isotope dimethyl labeling coupled with phosphatase dephosphorylation (DM + deP) was tried to determine the site-specific degrees of phosphorylation in proteins. Firstly, quantitation accuracy of the (DM + deP) approach was confirmed using synthetic peptides of various simulated phosphorylation degrees. Afterwards, it was applied to evaluate the phosphorylation stoichiometry of milk caseins. The phosphorylation degree of Ser130 on α-S1-casein was also validated by absolute quantification with the corresponding synthetic phosphorylated and nonphosphorylated peptides under a selected reaction monitoring (SRM) mode. Moreover, this (DM + deP) method was used to detect the phosphorylation degree change of Ser82 on the Hsp27 protein of HepG2 cells caused by tert-butyl hydroperoxide (t-BHP) treatment. The results showed that the absolute phosphorylation degree obtained from the (DM + deP) approach was comparable with the relative quantitation resulting from stable-isotope dimethyl labeling coupled with TiO2 enrichment. This study suggested that the (DM + deP) approach is promising for absolute quantification of site-specific degrees of phosphorylation in proteins, and it may provide more convincing information than the relative quantification method.
Collapse
Affiliation(s)
- Sin-Hong Chen
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Ya-Chi Lin
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 81271, Taiwan;
| | - Li-Fei Wang
- Hospitality and Tourism Research Center, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 81271, Taiwan;
| | - Shyh-Shyan Liu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Correspondence: (S.-S.L.); (J.-L.H.); Tel.: +886-8-7703202 (ext. 5075) (S.-S.L.); +886-8-7703202 (ext. 5197) (J.-L.H.); Fax: +886-8-7740178 (S.-S.L.); +886-8-7740550 (J.-L.H.)
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Research Center for Tropic Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (S.-S.L.); (J.-L.H.); Tel.: +886-8-7703202 (ext. 5075) (S.-S.L.); +886-8-7703202 (ext. 5197) (J.-L.H.); Fax: +886-8-7740178 (S.-S.L.); +886-8-7740550 (J.-L.H.)
| |
Collapse
|
8
|
Optimization of TripleTOF spectral simulation and library searching for confident localization of phosphorylation sites. PLoS One 2019; 14:e0225885. [PMID: 31790495 PMCID: PMC6886777 DOI: 10.1371/journal.pone.0225885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Tandem mass spectrometry (MS/MS) has been used in analysis of proteins and their post-translational modifications. A recently developed data analysis method, which simulates MS/MS spectra of phosphopeptides and performs spectral library searching using SpectraST, facilitates confident localization of phosphorylation sites. However, its performance has been evaluated only on MS/MS spectra acquired using Orbitrap HCD mass spectrometers so far. In this study, we have investigated whether this approach would be applicable to another type of mass spectrometers, and optimized the simulation and search conditions to achieve sensitive and confident site localization. Synthetic phosphopeptides and enriched K562 cell phosphopeptides were analyzed using a TripleTOF 6600 mass spectrometer before and after enzymatic dephosphorylation. Dephosphorylated peptides identified by X!Tandem database searching were subjected to spectral simulation of all possible single phosphorylations using SimPhospho software. Phosphopeptides were identified and localized by SpectraST searching against a library of the simulated spectra. Although no synthetic phosphopeptide was localized at 1% false localization rate under the previous conditions, optimization of the spectral simulation and search conditions for the TripleTOF datasets achieved the localization and improved the sensitivity. Furthermore, the optimized conditions enabled sensitive localization of K562 phosphopeptides at 1% false discovery and localization rates. These results suggest that accurate phosphopeptide simulation of TripleTOF MS/MS spectra is possible and the simulated spectral libraries can be used in SpectraST searching for confident localization of phosphorylation sites.
Collapse
|
9
|
Eerola SK, Santio NM, Rinne S, Kouvonen P, Corthals GL, Scaravilli M, Scala G, Serra A, Greco D, Ruusuvuori P, Latonen L, Rainio EM, Visakorpi T, Koskinen PJ. Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion. Cell Commun Signal 2019; 17:148. [PMID: 31730483 PMCID: PMC6858710 DOI: 10.1186/s12964-019-0463-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer. Graphical abstract ![]()
Collapse
Affiliation(s)
- Sini K Eerola
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland.,Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niina M Santio
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland
| | - Sanni Rinne
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland
| | - Petri Kouvonen
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Garry L Corthals
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Mauro Scaravilli
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Giovanni Scala
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,University of Helsinki, Helsinki, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,University of Helsinki, Helsinki, Finland
| | - Pekka Ruusuvuori
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Signal processing laboratory, Tampere University of Technology, Pori, Finland
| | - Leena Latonen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eeva-Marja Rainio
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Päivi J Koskinen
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland.
| |
Collapse
|
10
|
Suni V, Suomi T, Tsubosaka T, Imanishi SY, Elo LL, Corthals GL. SimPhospho: a software tool enabling confident phosphosite assignment. Bioinformatics 2019; 34:2690-2692. [PMID: 29596608 PMCID: PMC6061695 DOI: 10.1093/bioinformatics/bty151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Motivation Mass spectrometry combined with enrichment strategies for phosphorylated peptides has been successfully employed for two decades to identify sites of phosphorylation. However, unambiguous phosphosite assignment is considered challenging. Given that site-specific phosphorylation events function as different molecular switches, validation of phosphorylation sites is of utmost importance. In our earlier study we developed a method based on simulated phosphopeptide spectral libraries, which enables highly sensitive and accurate phosphosite assignments. To promote more widespread use of this method, we here introduce a software implementation with improved usability and performance. Results We present SimPhospho, a fast and user-friendly tool for accurate simulation of phosphopeptide tandem mass spectra. Simulated phosphopeptide spectral libraries are used to validate and supplement database search results, with a goal to improve reliable phosphoproteome identification and reporting. The presented program can be easily used together with the Trans-Proteomic Pipeline and integrated in a phosphoproteomics data analysis workflow. Availability and implementation SimPhospho is open source and it is available for Windows, Linux and Mac operating systems. The software and its user’s manual with detailed description of data analysis as well as test data can be found at https://sourceforge.net/projects/simphospho/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Veronika Suni
- TUCS - Turku Centre for Computer Science, FI-20500 Turku, Finland.,Bioinformatics Unit, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Tomi Suomi
- Bioinformatics Unit, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | | | | | - Laura L Elo
- Bioinformatics Unit, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Garry L Corthals
- Van't Hoff Institute of Molecular Sciences, 1090 GS Amsterdam, The Netherlands
| |
Collapse
|
11
|
Chen J, Shiyanov P, Green KB. Top-down mass spectrometry of intact phosphorylated β-casein: Correlation between the precursor charge state and internal fragments. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:527-539. [PMID: 30997701 PMCID: PMC6779312 DOI: 10.1002/jms.4364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
Phosphorylated proteins play essential roles in many cellular processes, and identification and characterization of the relevant phosphoproteins can help to understand underlying mechanisms. Herein, we report a collision-induced dissociation top-down approach for characterizing phosphoproteins on a quadrupole time-of-flight mass spectrometer. β-casein, a protein with two major isoforms and five phosphorylatable serine residues, was used as a model. Peaks corresponding to intact β-casein ions with charged states up to 36+ were detected. Tandem mass spectrometry was performed on β-casein ions of different charge states (12+ , and 15+ to 28+ ) in order to determine the effects of charge state on dissociation of this protein. Most of the abundant fragments corresponded to y, b ions, and internal fragments caused by cleavage of the N-terminal amide bond adjacent to proline residues (Xxx-Pro). The abundance of internal fragments increased with the charge state of the protein precursor ion; these internal fragments predominantly arose from one or two Xxx-Pro cleavage events and were difficult to accurately assign. The presence of abundant sodium adducts of β-casein further complicated the spectra. Our results suggest that when interpreting top-down mass spectra of phosphoproteins and other proteins, researchers should consider the potential formation of internal fragments and sodium adducts for reliable characterization.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science; University of Alabama at Birmingham; Birmingham, AL, 35294
- Applied Biotechnology Branch; Air Force Research Laboratory; Dayton, OH 45433, USA
- Mass Spectrometry and Proteomics Facility; The Ohio State University; Columbus, OH 43210, USA
- Corresponding author: Jianzhong Chen, Ph.D., Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA; ; Phone: 205.934.8230
| | - Pavel Shiyanov
- Applied Biotechnology Branch; Air Force Research Laboratory; Dayton, OH 45433, USA
| | - Kari B Green
- Mass Spectrometry and Proteomics Facility; The Ohio State University; Columbus, OH 43210, USA
| |
Collapse
|
12
|
PTMselect: optimization of protein modifications discovery by mass spectrometry. Sci Rep 2019; 9:4181. [PMID: 30862887 PMCID: PMC6414543 DOI: 10.1038/s41598-019-40873-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 01/27/2023] Open
Abstract
Discovery of protein modification sites relies on protein digestion by proteases and mass spectrometry (MS) identification of the modified peptides. Depending on proteases used and target protein sequence, this method yields highly variable coverage of modification sites. We introduce PTMselect, a digestion-simulating software which tailors the optimal set of proteases for discovery of global or targeted modification from any single or multiple proteins.
Collapse
|
13
|
Dreier RF, Ahrné E, Broz P, Schmidt A. Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics. J Proteome Res 2018; 18:493-507. [DOI: 10.1021/acs.jproteome.8b00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roland Felix Dreier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Erik Ahrné
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Petr Broz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Herrera Y, Contreras S, Hernández M, Álvarez L, Mora Y, Encarnación-Guevara S. Displacers improve the selectivity of phosphopeptide enrichment by metal oxide affinity chromatography. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2018; 74:200-207. [PMID: 29382487 DOI: 10.1016/j.bmhimx.2017.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A key process in cell regulation is protein phosphorylation, which is catalyzed by protein kinases and phosphatases. However, phosphoproteomics studies are difficult because of the complexity of protein phosphorylation and the number of phosphorylation sites. METHODS We describe an efficient approach analyzing phosphopeptides in single, separated protein by two-dimensional gel electrophoresis. In this method, a titanium oxide (TiO2)-packed NuTip is used as a phosphopeptide trap, together with displacers as lactic acid in the loading buffer to increase the efficiency of the interaction between TiO2 and phosphorylated peptides. RESULTS The results were obtained from the comparison of mass spectra of proteolytic peptides of proteins with a matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF) instrument. CONCLUSIONS This method has been applied to identifying phosphoproteins involved in the symbiosis Rhizobium etli-Phaseolus vulgaris.
Collapse
Affiliation(s)
- Yesenia Herrera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Sandra Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Magdalena Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura Álvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yolanda Mora
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
15
|
Santio NM, Landor SKJ, Vahtera L, Ylä-Pelto J, Paloniemi E, Imanishi SY, Corthals G, Varjosalo M, Manoharan GB, Uri A, Lendahl U, Sahlgren C, Koskinen PJ. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget 2017; 7:43220-43238. [PMID: 27281612 PMCID: PMC5190019 DOI: 10.18632/oncotarget.9215] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/23/2016] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis is a multistep process involving co-operation between several deregulated oncoproteins. In this study, we unravel previously unrecognized interactions and crosstalk between Pim kinases and the Notch signaling pathway, with implications for both breast and prostate cancer. We identify Notch1 and Notch3, but not Notch2, as novel Pim substrates and demonstrate that for Notch1, the serine residue 2152 is phosphorylated by all three Pim family kinases. This target site is located in the second nuclear localization sequence (NLS) of the Notch1 intracellular domain (N1ICD), and is shown to be important for both nuclear localization and transcriptional activity of N1ICD. Phosphorylation-dependent stimulation of Notch1 signaling promotes migration of prostate cancer cells, balances glucose metabolism in breast cancer cells, and supports in vivo growth of both types of cancer cells on chick embryo chorioallantoic membranes. Furthermore, Pim-induced growth of orthotopic prostate xenografts in mice is associated with enhanced nuclear Notch1 activity. Finally, simultaneous inhibition of Pim and Notch abrogates the cellular responses more efficiently than individual treatments, opening up new vistas for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Niina M Santio
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Sebastian K-J Landor
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Vahtera
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Jani Ylä-Pelto
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | | | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Current address: Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Garry Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Current address: Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Päivi J Koskinen
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Kurylo I, Hamdi A, Addad A, Boukherroub R, Coffinier Y. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection. NANOMATERIALS 2017; 7:nano7090272. [PMID: 28914806 PMCID: PMC5618383 DOI: 10.3390/nano7090272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 01/15/2023]
Abstract
We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum.
Collapse
Affiliation(s)
- Ievgen Kurylo
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Abderrahmane Hamdi
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
- Laboratory of Semi-Conductors, Nano-Structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia.
- Faculty of Science of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Ahmed Addad
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, Université Lille1, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Yannick Coffinier
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
17
|
Gruber W, Scheidt T, Aberger F, Huber CG. Understanding cell signaling in cancer stem cells for targeted therapy - can phosphoproteomics help to reveal the secrets? Cell Commun Signal 2017; 15:12. [PMID: 28356110 PMCID: PMC5372284 DOI: 10.1186/s12964-017-0166-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cancer represents heterogeneous and aberrantly proliferative manifestations composed of (epi)genetically and phenotypically distinct cells with a common clonal origin. Cancer stem cells (CSC) make up a rare subpopulation with the remarkable capacity to initiate, propagate and spread a malignant disease. Furthermore, CSC show increased therapy resistance, thereby contributing to disease relapse. Elimination of CSC, therefore, is a crucial aim to design efficacious treatments for long-term survival of cancer patients. In this article, we highlight the nature of CSC and propose that phosphoproteomics based on unbiased high-performance liquid chromatography-mass spectrometry provides a powerful tool to decipher the molecular CSC programs. Detailed knowledge about the regulation of signaling processes in CSC is a prerequisite for the development of patient-tailored multi-modal treatments including the elimination of rare CSC. Main body Phosphorylation is a crucial post-translational modification regulating a plethora of both intra- and intercellular communication processes in normal and malignant cells. Small-molecule targeting of kinases has proven successful in the therapy, but the high rates of relapse and failure to stem malignant spread suggest that these kinase inhibitors largely spare CSC. Studying the kinetics of global phosphorylation patterns in an unbiased manner is, therefore, required to improve strategies and successful treatments within multi-modal therapeutic regimens by targeting the malignant behavior of CSC. The phosphoproteome comprises all phosphoproteins within a cell population that can be analyzed by phosphoproteomics, allowing the investigation of thousands of phosphorylation events. One major aspect is the perception of events underlying the activation and deactivation of kinases and phosphatases in oncogenic signaling pathways. Thus, not only can this tool be harnessed to better understand cellular processes such as those controlling CSC, but also applied to identify novel drug targets for targeted anti-CSC therapy. Conclusion State-of-the-art phosphoproteomics approaches focusing on single cell analysis have the potential to better understand oncogenic signaling in heterogeneous cell populations including rare, yet highly malignant CSC. By eliminating the influence of heterogeneity of populations, single-cell studies will reveal novel insights also into the inter- and intratumoral communication processes controlling malignant CSC and disease progression, laying the basis for improved rational combination treatments.
Collapse
Affiliation(s)
- Wolfgang Gruber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Tamara Scheidt
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| | - Christian G Huber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
18
|
Borisova ME, Wagner SA, Beli P. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation. Methods Mol Biol 2017; 1599:215-227. [PMID: 28477122 DOI: 10.1007/978-1-4939-6955-5_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation plays central regulatory roles in DNA damage repair and signaling. Protein kinases of the phosphatidylinositol 3-kinase-related kinase family ATM, ATR, and DNA-PKcs mediate phosphorylation of hundreds of substrates after DNA damage and thereby orchestrate the cellular response to DNA damage. Protein phosphorylation can be studied using antibodies that specifically recognize phosphorylated protein species; however, this approach is limited by existing antibodies and does not permit unbiased discovery of phosphorylation sites or analyzing phosphorylation sites in a high-throughput manner. Mass spectrometry (MS)-based proteomics has emerged as a powerful method for identification of phosphorylation sites on individual proteins and proteome-wide. To identify phosphorylation sites, proteins are digested into peptides and phosphopeptides are enriched using titanium dioxide (TiO2)-based chromatography followed by the identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Quantitative proteomics approaches, such as stable isotope labeling with amino acids in cell culture (SILAC), enable relative quantification of phosphopeptide abundance in different conditions. Here, we describe a streamlined protocol for enrichment of phosphopeptides using TiO2-based chromatography, and outline the application of quantitative phosphoproteomics for the identification of DNA damage-induced phosphorylation and substrates of kinases functioning after DNA damage.
Collapse
Affiliation(s)
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
19
|
Cerqueira FR, Ricardo AM, de Paiva Oliveira A, Graber A, Baumgartner C. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm. BMC Bioinformatics 2016; 17:472. [PMID: 28105913 PMCID: PMC5249030 DOI: 10.1186/s12859-016-1341-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This work presents a machine learning strategy to increase sensitivity in tandem mass spectrometry (MS/MS) data analysis for peptide/protein identification. MS/MS yields thousands of spectra in a single run which are then interpreted by software. Most of these computer programs use a protein database to match peptide sequences to the observed spectra. The peptide-spectrum matches (PSMs) must also be assessed by computational tools since manual evaluation is not practicable. The target-decoy database strategy is largely used for error estimation in PSM assessment. However, in general, that strategy does not account for sensitivity. RESULTS In a previous study, we proposed the method MUMAL that applies an artificial neural network to effectively generate a model to classify PSMs using decoy hits with increased sensitivity. Nevertheless, the present approach shows that the sensitivity can be further improved with the use of a cost matrix associated with the learning algorithm. We also demonstrate that using a threshold selector algorithm for probability adjustment leads to more coherent probability values assigned to the PSMs. Our new approach, termed MUMAL2, provides a two-fold contribution to shotgun proteomics. First, the increase in the number of correctly interpreted spectra in the peptide level augments the chance of identifying more proteins. Second, the more appropriate PSM probability values that are produced by the threshold selector algorithm impact the protein inference stage performed by programs that take probabilities into account, such as ProteinProphet. Our experiments demonstrate that MUMAL2 reached around 15% of improvement in sensitivity compared to the best current method. Furthermore, the area under the ROC curve obtained was 0.93, demonstrating that the probabilities generated by our model are in fact appropriate. Finally, Venn diagrams comparing MUMAL2 with the best current method show that the number of exclusive peptides found by our method was nearly 4-fold higher, which directly impacts the proteome coverage. CONCLUSIONS The inclusion of a cost matrix and a probability threshold selector algorithm to the learning task further improves the target-decoy database analysis for identifying peptides, which optimally contributes to the challenging task of protein level identification, resulting in a powerful computational tool for shotgun proteomics.
Collapse
Affiliation(s)
| | - Adilson Mendes Ricardo
- Department of Informatics, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.,Department of Computing and Construction, Centro Federal de Educação Tecnológica de Minas Gerais, Rua 19 de Novembro, 121, Timóteo, 35180-008, Brazil
| | - Alcione de Paiva Oliveira
- Department of Informatics, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.,Department of Computer Science, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK
| | - Armin Graber
- Research and Product Development of Genoptix, a Novartis company, 2110 Rutherford Rd, Carlsbad, 92008, USA
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Notified Body of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, Graz, A-8010, Austria
| |
Collapse
|
20
|
Fang ZH, Visker MHPW, Miranda G, Delacroix-Buchet A, Bovenhuis H, Martin P. The relationships among bovine αS-casein phosphorylation isoforms suggest different phosphorylation pathways. J Dairy Sci 2016; 99:8168-8177. [PMID: 27522420 DOI: 10.3168/jds.2016-11250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022]
Abstract
Casein (CN) phosphorylation is an important posttranslational modification and is one of the key factors responsible for constructing and stabilizing casein micelles. Variation in phosphorylation degree of αS-CN is of great interest because it is suggested to affect milk technological properties. This study aimed to investigate the variation in phosphorylation degree of αS-CN among milk of individual cows and to explore relationships among different phosphorylation isoforms of αS-CN. For this purpose, we analyzed morning milk samples from 529 French Montbéliarde cows using liquid chromatography coupled with electrospray ionization mass spectrometry. We detected 3 new phosphorylation isoforms: αS2-CN-9P, αS2-CN-14P, and αS2-CN-15P in bovine milk, in addition to the known isoforms αS1-CN-8P, αS1-CN-9P, αS2-CN-10P, αS2-CN-11P, αS2-CN-12P, and αS2-CN-13P. The relative concentrations of each αS-CN phosphorylation isoform varied considerably among individual cows. Furthermore, the phenotypic correlations and hierarchical clustering suggest at least 2 regulatory systems for phosphorylation of αS-CN: one responsible for isoforms with lower levels of phosphorylation (αS1-CN-8P, αS2-CN-10P, and αS2-CN-11P), and another responsible for isoforms with higher levels of phosphorylation (αS1-CN-9P, αS2-CN-12P, αS2-CN-13P, and αS2-CN-14P). Identifying all phosphorylation sites of αS2-CN and investigating the genetic background of different αS2-CN phosphorylation isoforms may provide further insight into the phosphorylation mechanism of caseins.
Collapse
Affiliation(s)
- Z H Fang
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - M H P W Visker
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - G Miranda
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - A Delacroix-Buchet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - H Bovenhuis
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - P Martin
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
21
|
Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses. PLoS One 2016; 11:e0158844. [PMID: 27383761 PMCID: PMC4934865 DOI: 10.1371/journal.pone.0158844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/22/2016] [Indexed: 01/16/2023] Open
Abstract
Colorectal cancer is the most common form of cancer in the world, and the five-year survival rate is estimated to be almost 90% in the early stages. Therefore, the identification of potential biomarkers to assess the prognosis of early stage colorectal cancer patients is critical for further clinical treatment. Dysregulated tyrosine phosphorylation has been found in several diseases that play a significant regulator of signaling in cellular pathways. In this study, this strategy was used to characterize the tyrosine phosphoproteome of colorectal cell lines with different progression abilities (SW480 and SW620). We identified a total of 280 phosphotyrosine (pTyr) peptides comprising 287 pTyr sites from 261 proteins. Label-free quantitative analysis revealed the differential level of a total of 103 pTyr peptides between SW480 and SW620 cells. We showed that cyclin-dependent kinase I (CDK1) pTyr15 level in SW480 cells was 3.3-fold greater than in SW620 cells, and these data corresponded with the label-free mass spectrometry-based proteomic quantification analysis. High level CDK1 pTyr15 was associated with prolonged disease-free survival for stage II colorectal cancer patients (n = 79). Taken together, our results suggest that the CDK1 pTyr15 protein is a potential indicator of the progression of colorectal cancer.
Collapse
|
22
|
Nguyen EV, Imanishi SY, Haapaniemi P, Yadav A, Saloheimo M, Corthals GL, Pakula TM. Quantitative Site-Specific Phosphoproteomics of Trichoderma reesei Signaling Pathways upon Induction of Hydrolytic Enzyme Production. J Proteome Res 2016; 15:457-67. [PMID: 26689635 DOI: 10.1021/acs.jproteome.5b00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation system controlling hydrolase genes involves various signaling pathways. T. reesei was cultivated in the presence of sorbitol, a carbon source that does not induce the production of cellulases and hemicellulases, and then exposed to either sophorose or spent-grain extract, which are efficient inducers of the enzyme production. Specific changes at phosphorylation sites were investigated in relation to the production of cellulases and hemicellulases using an MS-based framework. Proteome-wide phosphorylation following carbon source exchange was investigated in the early stages of induction: 0, 2, 5, and 10 min. The workflow involved sequential trypsin digestion, TiO2 enrichment, and MS analysis using a Q Exactive mass spectrometer. We report on the identification and quantitation of 1721 phosphorylation sites. Investigation of the data revealed a complex signaling network activated upon induction involving components related to light-mediated cellulase induction, osmoregulation, and carbon sensing. Changes in protein phosphorylation were detected in the glycolytic pathway, suggesting an inhibition of glucose catabolism at 10 min after the addition of sophorose and as early as 2 min after the addition of spent-grain extract. Differential phosphorylation of factors related to carbon storage, intracellular trafficking, cytoskeleton, and cellulase gene regulation were also observed.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland.,Biochemistry and Molecular Biology, Monash University , 3861 Victoria, Australia
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland.,Faculty of Pharmacy, Meijo University , Nagoya 468-8503, Japan
| | - Pekka Haapaniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland
| | - Avinash Yadav
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 VTT, Finland
| | - Garry L Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , FI-20520 Turku, Finland
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
23
|
Kauko O, Laajala TD, Jumppanen M, Hintsanen P, Suni V, Haapaniemi P, Corthals G, Aittokallio T, Westermarck J, Imanishi SY. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling. Sci Rep 2015; 5:13099. [PMID: 26278961 PMCID: PMC4642524 DOI: 10.1038/srep13099] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/06/2015] [Indexed: 11/11/2022] Open
Abstract
Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays.
Collapse
Affiliation(s)
- Otto Kauko
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland [2] Department of Pathology, University of Turku, FI-20520 Turku, Finland [3] Turku Doctoral Program of Biomedical Sciences (TuBS), Turku, Finland
| | - Teemu Daniel Laajala
- 1] Department of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland [2] Drug Research Doctoral Programme (DRDP), Turku, Finland
| | - Mikael Jumppanen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland
| | - Petteri Hintsanen
- Institute for Molecular Medicine Finland, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Veronika Suni
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland [2] Turku Centre for Computer Science, FI-20520 Turku, Finland
| | - Pekka Haapaniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland
| | - Garry Corthals
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland [2] Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Jukka Westermarck
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland [2] Department of Pathology, University of Turku, FI-20520 Turku, Finland
| | - Susumu Y Imanishi
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland [2] Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| |
Collapse
|
24
|
Hyder CL, Kemppainen K, Isoniemi KO, Imanishi SY, Goto H, Inagaki M, Fazeli E, Eriksson JE, Törnquist K. Sphingolipids inhibit vimentin-dependent cell migration. J Cell Sci 2015; 128:2057-69. [PMID: 25908861 DOI: 10.1242/jcs.160341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), can induce or inhibit cellular migration. The intermediate filament protein vimentin is an inducer of migration and a marker for epithelial-mesenchymal transition. Given that keratin intermediate filaments are regulated by SPC, with consequences for cell motility, we wanted to determine whether vimentin is also regulated by sphingolipid signalling and whether it is a determinant for sphingolipid-mediated functions. In cancer cells where S1P and SPC inhibited migration, we observed that S1P and SPC induced phosphorylation of vimentin on S71, leading to a corresponding reorganization of vimentin filaments. These effects were sphingolipid-signalling-dependent, because inhibition of either the S1P2 receptor (also known as S1PR2) or its downstream effector Rho-associated kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) nullified the sphingolipid-induced effects on vimentin organization and S71 phosphorylation. Furthermore, the anti-migratory effect of S1P and SPC could be prevented by expressing S71-phosphorylation-deficient vimentin. In addition, we demonstrated, by using wild-type and vimentin-knockout mouse embryonic fibroblasts, that the sphingolipid-mediated inhibition of migration is dependent on vimentin. These results imply that this newly discovered sphingolipid-vimentin signalling axis exerts brake-and-throttle functions in the regulation of cell migration.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kati Kemppainen
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kimmo O Isoniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Environmental Science Lab, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku. Nagoya 468-8503, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Elnaz Fazeli
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kid Törnquist
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
25
|
Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. J Microbiol 2015; 53:279-87. [PMID: 25845541 DOI: 10.1007/s12275-015-5021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Gel-free shotgun phosphoproteomics of unicellular cyanobacterium Synechocystis sp. PCC 6803 has not been reported up to now. The purpose of this study is to develop directed membrane phosphoproteomic method in Synechocystis sp. Total Synechocystis membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphoprotein-stained gel bands were selectively subjected to in-gel trypsin digestion. The phosphorylation sites of the resulting peptides were determined by assigning the neutral loss of [M-H(3)PO(4)] to Ser, Thr, and Tyr residues using nano-liquid chromatography 7 Tesla Fourier transform mass spectrometry. As an initial application, 111 proteins and 33 phosphoproteins were identified containing 11 integral membrane proteins. Identified four unknown phosphoproteins with transmembrane helices were suggested to be involved in membrane migration or transporters based on BLASTP search annotations. The overall distribution of hydrophobic amino acids in pTyr was lower in frequency than that of pSer or pThr. Positively charged amino acids were abundantly revealed in the surrounding amino acids centered on pTyr. A directed shotgun membrane phosphoproteomic strategy provided insight into understanding the fundamental regulatory processes underlying Ser, Thr, and Tyr phosphorylation in multi-layered membranous cyanobacteria.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Lindqvist J, Imanishi SY, Torvaldson E, Malinen M, Remes M, Örn F, Palvimo JJ, Eriksson JE. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells. Mol Biol Cell 2015; 26:1971-84. [PMID: 25851605 PMCID: PMC4472009 DOI: 10.1091/mbc.e14-12-1634] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022] Open
Abstract
CDK5 acts as a signaling hub in prostate cancer cells by controlling androgen responses through AR stabilization and specific gene targeting, maintaining and accelerating cell proliferation through activation of the oncogenic AKT kinase, and releasing cell cycle breaks in a variety of prostate cancer cell lines. Contrary to cell cycle–associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in differentiated cells and its destructive activation in Alzheimer's disease. Recently, CDK5 has been implicated in a number of different cancers, but how it is able to stimulate cancer-related signaling pathways remains enigmatic. Our goal was to study the cancer-promoting mechanisms of CDK5 in prostate cancer. We observed that CDK5 is necessary for proliferation of several prostate cancer cell lines. Correspondingly, there was considerable growth promotion when CDK5 was overexpressed. When examining the reasons for the altered proliferation effects, we observed that CDK5 phosphorylates S308 on the androgen receptor (AR), resulting in its stabilization and differential expression of AR target genes including several growth-priming transcription factors. However, the amplified cell growth was found to be separated from AR signaling, further corroborated by CDK5-depdent proliferation of AR null cells. Instead, we found that the key growth-promoting effect was due to specific CDK5-mediated AKT activation. Down-regulation of CDK5 repressed AKT phosphorylation by altering its intracellular localization, immediately followed by prominent cell cycle inhibition. Taken together, these results suggest that CDK5 acts as a crucial signaling hub in prostate cancer cells by controlling androgen responses through AR, maintaining and accelerating cell proliferation through AKT activation, and releasing cell cycle breaks.
Collapse
Affiliation(s)
- Julia Lindqvist
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Elin Torvaldson
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Marjo Malinen
- Institute of Biomedicine/Medical Biochemistry, University of Eastern Finland, and Department of Pathology, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Mika Remes
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Fanny Örn
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine/Medical Biochemistry, University of Eastern Finland, and Department of Pathology, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - John E Eriksson
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
27
|
Suni V, Imanishi SY, Maiolica A, Aebersold R, Corthals GL. Confident Site Localization Using a Simulated Phosphopeptide Spectral Library. J Proteome Res 2015; 14:2348-59. [DOI: 10.1021/acs.jproteome.5b00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Veronika Suni
- Turku
Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland
- Turku Centre for Computer Science, Joukahaisenkatu 3-5 B, FI-20520 Turku, Finland
| | - Susumu Y. Imanishi
- Turku
Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland
| | - Alessio Maiolica
- Department
of Biology, Institute of Molecular Systems Biology, ETH Zurich, HPT E 51,
Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department
of Biology, Institute of Molecular Systems Biology, ETH Zurich, HPT E 51,
Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Faculty
of Science, University of Zurich, 8057 Zurich, Switzerland
| | - Garry L. Corthals
- Turku
Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520 Turku, Finland
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
28
|
Zhu X, Gu J, Yang J, Wang Z, Li Y, Zhao L, Zhao W, Shi J. Zr-based metal–organic frameworks for specific and size-selective enrichment of phosphopeptides with simultaneous exclusion of proteins. J Mater Chem B 2015; 3:4242-4248. [DOI: 10.1039/c5tb00113g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zr-based MOFs were successfully developed as affinity adsorbents for sensitive and specific enrichment of phosphopeptides with an interesting molecule-sieving effect.
Collapse
Affiliation(s)
- Xiangyang Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhe Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wenru Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jianlin Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
29
|
Yang TH, Chang HT, Hsiao ES, Sun JL, Wang CC, Wu HY, Liao PC, Wu WS. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation. BMC Bioinformatics 2014; 15 Suppl 16:S10. [PMID: 25521246 PMCID: PMC4290636 DOI: 10.1186/1471-2105-15-s16-s10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC-MS/MS phosphoproteome investigation. The results of iPhos-facilitated targeted LC-MS/MS analysis convey more thorough and confident phosphopeptide identification than the results of pure DDA-based analysis.
Collapse
|
30
|
Huang J, Wang F, Ye M, Zou H. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. J Chromatogr A 2014; 1372C:1-17. [DOI: 10.1016/j.chroma.2014.10.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022]
|
31
|
Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD, Eriksson JE. Interphase phosphorylation of lamin A. J Cell Sci 2014; 127:2683-96. [PMID: 24741066 DOI: 10.1242/jcs.141820] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis - including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results reveal three phosphorylation regions, each with dominant sites, together controlling lamin A structure and dynamics. Interestingly, two of these interphase sites are hyper-phosphorylated in mitotic cells and one of these sites is within the sequence that is missing in progerin of the Hutchinson-Gilford progeria syndrome. We present a model where different phosphorylation combinations yield markedly different effects on the assembly, subunit turnover and the mobility of lamin A between, and within, the lamina, the nucleoplasm and the cytoplasm of interphase cells.
Collapse
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland Department of Pathology, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Takeshi Shimi
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Elin Torvaldson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| | - Stephen A Adam
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Anne Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Johanna Melo-Cardenas
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
| | - Robert D Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| |
Collapse
|
32
|
Buchowiecka AK. Puzzling over protein cysteine phosphorylation – assessment of proteomic tools for S-phosphorylation profiling. Analyst 2014; 139:4118-23. [DOI: 10.1039/c4an00724g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The article provides useful information necessary for designing experiments in the emerging cysteine phosphoproteomics.
Collapse
Affiliation(s)
- A. K. Buchowiecka
- Institute of Technical Biochemistry
- Lodz University of Technology
- 90-924 Lodz, Poland
| |
Collapse
|
33
|
Preparation and loading buffer study of polyvinyl alcohol-based immobilized Ti4+
affinity chromatography for phosphopeptide enrichment. J Sep Sci 2013; 36:3563-70. [DOI: 10.1002/jssc.201300622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/07/2022]
|
34
|
Parthasarathy RN, Lakshmanan J, Thangavel M, Seelan RS, Stagner JI, Janckila AJ, Vadnal RE, Casanova MF, Parthasarathy LK. Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein. Mol Cell Biochem 2013; 378:83-9. [PMID: 23504145 DOI: 10.1007/s11010-013-1597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022]
Abstract
The therapeutic effects of lithium in bipolar disorder are poorly understood. Lithium decreases free inositol levels by inhibiting inositol monophosphatase 1 and myo-inositol 3-phosphate synthase (IPS). In this study, we demonstrate for the first time that IPS can be phosphorylated. This was evident when purified rat IPS was dephosphorylated by lambda protein phosphatase and analyzed by phospho-specific ProQ-Diamond staining and Western blot analysis. These techniques demonstrated a mobility shift consistent with IPS being phosphorylated. Mass spectral analysis revealed that Serine-524 (S524), which resides in the hinge region derived from exon 11 of the gene, is the site for phosphorylation. Further, an antibody generated against a synthetic peptide of IPS containing monophosphorylated-S524, was able to discriminate the phosphorylated and non-phosphorylated forms of IPS. The phosphoprotein is found in the brain and testis, but not in the intestine. The intestinal IPS isoform lacks the peptide bearing S524, and hence, cannot be phosphorylated. Evidences suggest that IPS is monophosphorylated at S524 and that the removal of this phosphate does not alter its enzymatic activity. These observations suggest a novel function for IPS in brain and other tissues. Future studies should resolve the functional role of phospho-IPS in brain inositol signaling.
Collapse
Affiliation(s)
- R N Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories, Mental Health, Behavioral Science and Research Services, Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tyagarajan SK, Ghosh H, Yévenes GE, Imanishi SY, Zeilhofer HU, Gerrits B, Fritschy JM. Extracellular signal-regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J Biol Chem 2013; 288:9634-9647. [PMID: 23408424 DOI: 10.1074/jbc.m112.442616] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular mechanisms of plasticity at GABAergic synapses are currently poorly understood. To identify signaling cascades that converge onto GABAergic postsynaptic density proteins, we performed MS analysis using gephyrin isolated from rat brain and identified multiple novel phosphorylation and acetylation residues on gephyrin. Here, we report the characterization of one of these phosphoresidues, Ser-268, which when dephosphorylated leads to the formation of larger postsynaptic scaffolds. Using a combination of mutagenesis, pharmacological treatment, and biochemical assays, we identify ERK as the kinase phosphorylating Ser-268 and describe a functional interaction between residues Ser-268 and Ser-270. We further demonstrate that alterations in gephyrin clustering via ERK modulation are reflected by amplitude and frequency changes in miniature GABAergic postsynaptic currents. We unravel novel mechanisms for activity- and ERK-dependent calpain action on gephyrin, which are likely relevant in the context of cellular signaling affecting GABAergic transmission and homeostatic synaptic plasticity in pathology.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland.
| | - Himanish Ghosh
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland
| | - Gonzalo E Yévenes
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland; Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093 Switzerland
| | | | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland
| |
Collapse
|
36
|
Yalak G, Vogel V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci Signal 2012; 5:re7. [PMID: 23250399 DOI: 10.1126/scisignal.2003273] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mining of the literature and high-throughput mass spectrometry data from both healthy and diseased tissues and from body fluids reveals evidence that various extracellular proteins can exist in phosphorylated states. Extracellular kinases and phosphatases (ectokinases and ectophosphatases) are active in extracellular spaces during times of sufficiently high concentrations of adenosine triphosphate. There is evidence for a role of extracellular phosphorylation in various physiological functions, including blood coagulation, immune cell activation, and the formation of neuronal networks. Ectokinase activity is increased in some diseases, including cancer, Alzheimer's disease, and some microbial infections. We summarize the literature supporting the physiological and pathological roles of extracellularly localized protein kinases, protein phosphatases, and phosphorylated proteins and provide an analysis of the available mass spectrometry data to annotate potential extracellular phosphorylated proteins.
Collapse
Affiliation(s)
- Garif Yalak
- Department of Health Sciences and Technology, ETH Zurich, Wolfgang Pauli Strasse 10, HCI F443, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
37
|
Boehm ME, Seidler J, Hahn B, Lehmann WD. Site-specific degree of phosphorylation in proteins measured by liquid chromatography-electrospray mass spectrometry. Proteomics 2012; 12:2167-78. [PMID: 22653803 DOI: 10.1002/pmic.201100561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses on quantitative protein phosphorylation analysis based on coverage of both the phosphorylated and nonphosphorylated forms. In this way, site-specific data on the degree of phosphorylation can be measured, generating the most detailed level of phosphorylation status analysis of proteins. To highlight the experimental challenges in this type of quantitative protein phosphorylation analysis, we discuss the typical workflows for mass spectrometry-based proteomics with a focus on the quantitative analysis of peptide/phosphopeptide ratios. We review workflows for measuring site-specific degrees of phosphorylation including the label-free approach, differential stable isotope labeling of analytes, and methods based on the addition of stable isotope labeled peptide/phosphopeptide pairs as internal standards. The discussion also includes the determination of phosphopeptide isoform abundance data for multiply phosphorylated motifs that contain information about the connectivity of phosphorylation events. The review closes with a prospective on the use of intact stable isotope labeled proteins as internal standards and a summarizing discussion of the typical accuracies of the individual methods.
Collapse
Affiliation(s)
- Martin E Boehm
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
Jabeen F, Hussain D, Fatima B, Musharraf SG, Huck CW, Bonn GK, Najam-ul-Haq M. Silica–Lanthanum Oxide: Pioneer Composite of Rare-Earth Metal Oxide in Selective Phosphopeptides Enrichment. Anal Chem 2012; 84:10180-5. [DOI: 10.1021/ac3023197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fahmida Jabeen
- Division of Analytical
Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- Division of Analytical
Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Batool Fatima
- Division of Analytical
Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - S. Ghulam Musharraf
- H. E. J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Christian W. Huck
- Institute of Analytical
Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gűnther K. Bonn
- Institute of Analytical
Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Muhammad Najam-ul-Haq
- Division of Analytical
Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
- Institute of Analytical
Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
39
|
Cerqueira FR, Ferreira RS, Oliveira AP, Gomes AP, Ramos HJO, Graber A, Baumgartner C. MUMAL: multivariate analysis in shotgun proteomics using machine learning techniques. BMC Genomics 2012; 13 Suppl 5:S4. [PMID: 23095859 PMCID: PMC3477001 DOI: 10.1186/1471-2164-13-s5-s4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The shotgun strategy (liquid chromatography coupled with tandem mass spectrometry) is widely applied for identification of proteins in complex mixtures. This method gives rise to thousands of spectra in a single run, which are interpreted by computational tools. Such tools normally use a protein database from which peptide sequences are extracted for matching with experimentally derived mass spectral data. After the database search, the correctness of obtained peptide-spectrum matches (PSMs) needs to be evaluated also by algorithms, as a manual curation of these huge datasets would be impractical. The target-decoy database strategy is largely used to perform spectrum evaluation. Nonetheless, this method has been applied without considering sensitivity, i.e., only error estimation is taken into account. A recently proposed method termed MUDE treats the target-decoy analysis as an optimization problem, where sensitivity is maximized. This method demonstrates a significant increase in the retrieved number of PSMs for a fixed error rate. However, the MUDE model is constructed in such a way that linear decision boundaries are established to separate correct from incorrect PSMs. Besides, the described heuristic for solving the optimization problem has to be executed many times to achieve a significant augmentation in sensitivity. Results Here, we propose a new method, termed MUMAL, for PSM assessment that is based on machine learning techniques. Our method can establish nonlinear decision boundaries, leading to a higher chance to retrieve more true positives. Furthermore, we need few iterations to achieve high sensitivities, strikingly shortening the running time of the whole process. Experiments show that our method achieves a considerably higher number of PSMs compared with standard tools such as MUDE, PeptideProphet, and typical target-decoy approaches. Conclusion Our approach not only enhances the computational performance, and thus the turn around time of MS-based experiments in proteomics, but also improves the information content with benefits of a higher proteome coverage. This improvement, for instance, increases the chance to identify important drug targets or biomarkers for drug development or molecular diagnostics.
Collapse
Affiliation(s)
- Fabio R Cerqueira
- Department of Informatics, Federal University of Viçosa, 36570-000 Minas Geras, Brazil.
| | | | | | | | | | | | | |
Collapse
|
40
|
Holland JW, Gupta R, Deeth HC, Alewood PF. UHT milk contains multiple forms of αS1-casein that undergo degradative changes during storage. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Chevalier F, Depagne J, Hem S, Chevillard S, Bensimon J, Bertrand P, Lebeau J. Accumulation of cyclophilin A isoforms in conditioned medium of irradiated breast cancer cells. Proteomics 2012; 12:1756-66. [DOI: 10.1002/pmic.201100319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jordane Depagne
- CEA, DSV, iRCM; Plateforme de Protéomique; Fontenay-aux-Roses France
| | - Sonia Hem
- INRA, UR 1199,; Laboratoire de Protéomique Fonctionnelle; Montpellier France
| | - Sylvie Chevillard
- CEA, DSV, iRCM, SREIT; Laboratoire de Cancérologie Expérimentale; Fontenay-aux-Roses France
| | - Julie Bensimon
- CEA, DSV, iRCM, SREIT; Laboratoire de Cancérologie Expérimentale; Fontenay-aux-Roses France
| | - Pascale Bertrand
- CEA, DSV, iRCM; Plateforme de Protéomique; Fontenay-aux-Roses France
- CEA, DSV, IRCM, SIGRR; Laboratoire des Mécanismes de la Recombinaison; Fontenay-aux-Roses France
| | - Jérôme Lebeau
- CEA, DSV, iRCM, SREIT; Laboratoire de Cancérologie Expérimentale; Fontenay-aux-Roses France
| |
Collapse
|
42
|
El Idrissi K, Eddarir S, Tokarski C, Rolando C. Immobilized metal affinity chromatography using open tubular capillary for phosphoprotein analysis: Comparison between polymer brush coating and surface functionalization. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2852-9. [DOI: 10.1016/j.jchromb.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 11/27/2022]
|
43
|
Kučerová Z, Muselová H, Přikryl P, Tichá M. Phosphoprotein electrophoresis in the presence of Fe(III) ions. J Sep Sci 2011; 34:1875-9. [DOI: 10.1002/jssc.201100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/10/2022]
|
44
|
Kouvonen P, Rainio EM, Suni V, Koskinen P, Corthals GL. Enrichment and sequencing of phosphopeptides on indium tin oxide coated glass slides. MOLECULAR BIOSYSTEMS 2011; 7:1828-37. [PMID: 21523302 DOI: 10.1039/c0mb00269k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Unambiguous identification of phosphorylation sites is of premier importance to biologists, who seek to understand the role of phosphorylation from the perspective of site-specific control of biological phenomena. Despite this widely asked and highly specific information, many methods developed are aimed at analysis of complete proteomes, indeed even phospho-proteomes, surpassing the basic requests of many biologists. We have therefore further developed a simple method that specifically deals with the analysis of multiple phosphorylation sites on singular proteins or small collections of proteins. With this method, the whole purification process, from sample application to MALDI-MS analysis, can be performed on commercially available indium tin oxide (ITO) coated glass slides. We show that fifteen (15) samples can be purified within one hour, and that low femtomole sensitivity can be achieved. This limit of identification is demonstrated by the successful MS/MS-based identification of 6 fmol of monophosphopeptide from β-casein. We demonstrate that the method can be applied for identifying phosphorylation sites from recombinant and cell-derived biological protein samples. Since ITO-coated glass slides are inexpensive and available from several suppliers the method is readily and inexpensively available to other researchers. Taken together, the presented protocols and materials render this method as an extremely fast and sensitive phosphopeptide identification protocol that should aid biologists in discovery and validation of phosphorylation sites.
Collapse
Affiliation(s)
- Petri Kouvonen
- University of Turku, Centre for Biotechnology, Turku, Finland
| | | | | | | | | |
Collapse
|
45
|
Kouvonen P, Rainio EM, Suni V, Koskinen P, Corthals GL. Data combination from multiple matrix-assisted laser desorption/ionization (MALDI) matrices: opportunities and limitations for MALDI analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3493-3495. [PMID: 21072807 DOI: 10.1002/rcm.4785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
46
|
Novotna L, Emmerova T, Horak D, Kucerova Z, Ticha M. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment. J Chromatogr A 2010; 1217:8032-40. [DOI: 10.1016/j.chroma.2010.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/06/2010] [Accepted: 08/23/2010] [Indexed: 11/25/2022]
|
47
|
Hem S, Gherardini PF, Fortéa JOY, Hourdel V, Morales MA, Watanabe R, Pescher P, Kuzyk MA, Smith D, Borchers CH, Zilberstein D, Helmer-Citterich M, Namane A, Späth GF. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics 2010; 10:3868-83. [DOI: 10.1002/pmic.201000305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Perlova TY, Goloborodko AA, Margolin Y, Pridatchenko ML, Tarasova IA, Gorshkov AV, Moskovets E, Ivanov AR, Gorshkov MV. Retention time prediction using the model of liquid chromatography of biomacromolecules at critical conditions in LC-MS phosphopeptide analysis. Proteomics 2010; 10:3458-68. [DOI: 10.1002/pmic.200900837] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Wang N, Li L. Reproducible microwave-assisted acid hydrolysis of proteins using a household microwave oven and its combination with LC-ESI MS/MS for mapping protein sequences and modifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1573-1587. [PMID: 20547072 DOI: 10.1016/j.jasms.2010.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
A new set-up for microwave-assisted acid hydrolysis (MAAH) with high efficiency and reproducibility to degrade proteins into peptides for mass spectrometry analysis is described. It is based on the use of an inexpensive domestic microwave oven and can be used for low volume protein solution digestion. This set-up has been combined with liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI QTOF MS) for mapping protein sequences and characterizing phosphoproteins. It is demonstrated that for bovine serum albumin (BSA), with a molecular mass of about 67,000 Da, 1292 peptides (669 unique sequences) can be detected from a 2 microg hydrolysate generated by trifluoroacetic acid (TFA) MAAH. These peptides cover the entire protein sequence, allowing the identification of an amino acid substitution in a natural variant of BSA. It is shown that for a simple phosphoprotein containing one phosphoform, beta-casein, direct analysis of the hydrolysate generates a comprehensive peptide map that can be used to identify all five known phosphorylation sites. For characterizing a complex phosphoprotein consisting of different phosphoforms with varying numbers of phosphate groups and/or phosphorylation sites, such as bovine alpha(S1)-casein, immobilized metal-ion affinity chromatography (IMAC) is used to enrich the phosphopeptides from the hydrolysate, followed by LC-ESI MS analysis. The MS/MS data generated from the initial hydrolysate and the phosphopeptide-enriched fraction, in combination with MS analysis of the intact protein sample, allow us to reveal the presence of three different phosphoforms of bovine alpha(S1)-casein and assign the phosphorylation sites to each phosphoform with high confidence.
Collapse
Affiliation(s)
- Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
50
|
Abstract
The current status of de novo sequencing of peptides by MS/MS is reviewed with focus on collision cell MS/MS spectra. The relation between peptide structure and observed fragment ion series is discussed and the exhaustive extraction of sequence information from CID spectra of protonated peptide ions is described. The partial redundancy of the extracted sequence information and a high mass accuracy are recognized as key parameters for dependable de novo sequencing by MS. In addition, the benefits of special techniques enhancing the generation of long uninterrupted fragment ion series for de novo peptide sequencing are highlighted. Among these are terminal (18)O labeling, MS(n) of sodiated peptide ions, N-terminal derivatization, the use of special proteases, and time-delayed fragmentation. The emerging electron transfer dissociation technique and the recent progress of MALDI techniques for intact protein sequencing are covered. Finally, the integration of bioinformatic tools into peptide de novo sequencing is demonstrated.
Collapse
Affiliation(s)
- Joerg Seidler
- Molecular Structure Analysis, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|