1
|
Deline ML, Straub J, Patel M, Subba P, Grashei M, van Heijster FHA, Pirkwieser P, Somoza V, Livingstone JD, Beazely M, Kendall B, Gingras MJP, Leonenko Z, Höschen C, Harrington G, Kuellmer K, Bian W, Schilling F, Fisher MPA, Helgeson ME, Fromme T. Lithium isotopes differentially modify mitochondrial amorphous calcium phosphate cluster size distribution and calcium capacity. Front Physiol 2023; 14:1200119. [PMID: 37781224 PMCID: PMC10540846 DOI: 10.3389/fphys.2023.1200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.
Collapse
Affiliation(s)
- Marshall L. Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Joshua Straub
- Department of Physics, University of California, Santa Barbara, CA, United States
| | - Manisha Patel
- Department of Physics, University of California, Santa Barbara, CA, United States
| | - Pratigya Subba
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Frits H. A. van Heijster
- Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philip Pirkwieser
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Michael Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Brian Kendall
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michel J. P. Gingras
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- CIFAR, MaRS Centre, Toronto, ON, Canada
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Carmen Höschen
- Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Gertraud Harrington
- Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Katharina Kuellmer
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wangqing Bian
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthew P. A. Fisher
- Department of Physics, University of California, Santa Barbara, CA, United States
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ—Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Alonso-Fernández S, Arribas-Díez I, Fernández-García G, González-Quiñónez N, Jensen ON, Manteca A. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs. J Proteomics 2022; 269:104719. [PMID: 36089190 DOI: 10.1016/j.jprot.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/12/2022]
Abstract
Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO2 affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO2 affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO2 affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.
Collapse
Affiliation(s)
- Sergio Alonso-Fernández
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Arribas-Díez
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gemma Fernández-García
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly González-Quiñónez
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
3
|
Liu G, Guo B, Luo M, Sun S, Lin Q, Kan Q, He Z, Miao J, Du H, Xiao H, Cao Y. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides. Crit Rev Food Sci Nutr 2022; 64:996-1014. [PMID: 36052610 DOI: 10.1080/10408398.2022.2111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Calcium is one of the important elements for human health. Calcium deficiencies can lead to numerous diseases. Calcium chelating peptides have shown potential application in the management of calcium deficiencies. Casein phosphopeptides (CPP) are phosphoseryl-containing fragments of casein by enzymatic hydrolysis or fermentation during manufacture of milk products as well as during intestinal digestion. An increasing number of CPP with the ability to facilitate and enhance the bioavailability of calcium are being discovered and identified. In this review, 249 reported CPP derived from four types of bovine casein (αs1, αs2, β and κ) were collected, and the amino acid sequence and phosphoserine group information were sorted out. This review outlines the current enzyme hydrolysis, detection methods, purification, structure-activity relationship and mechanism of intestinal calcium absorption in vitro and in vivo as well as application of CPP.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Baoyan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Minna Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Shengwei Sun
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qianru Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zeqi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Jeong I, Kim K. Utilizing a granulated coal bottom ash and oyster shells for nutrient removal in eutrophic sediments. MARINE POLLUTION BULLETIN 2022; 177:113549. [PMID: 35303632 DOI: 10.1016/j.marpolbul.2022.113549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Various in-situ capping materials have been studied to remediate contaminated sediments for sustaining a healthy ecosystem in a coastal area. We developed Granulated coal bottom ash and oyster shells (GBO) with different mixing ratios of OS. Pyrolyzed and grounded coal bottom ash and oyster shells were used to produce GBO, which the main chemical elements were analogous to cement. The nutrient-removal abilities of GBO were evaluated through long-term mesocosm experiments. It was found that GBO was an effective in-situ capping material for remediation of eutrophic coastal sediments, decreasing PO4-P and SiO2-Si concentrations in pore water by 88.4% and 56.5%, respectively. The most efficient mixing ratio of coal bottom ash and oyster shells was at a weight ratio of 1:1 for PO4-P and SiO2-Si removal.
Collapse
Affiliation(s)
- Ilwon Jeong
- Department of Ocean Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyunghoi Kim
- Department of Ocean Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Li J, Fan C, Yao Y, Liu Z, Li F, Jiang B. Highly efficient enrichment of intact phosphoproteins by a cadmium ion‐based co‐precipitation strategy. J Sep Sci 2022; 45:1336-1344. [DOI: 10.1002/jssc.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jiangfeng Li
- School of Basic Medical Sciences, Academy of Medical Science Zhengzhou University Zhengzhou China
| | - Chongyuan Fan
- School of Basic Medical Sciences, Academy of Medical Science Zhengzhou University Zhengzhou China
| | - Yating Yao
- School of Basic Medical Sciences, Academy of Medical Science Zhengzhou University Zhengzhou China
| | - Zhaochen Liu
- The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Fangfang Li
- School of Basic Medical Sciences, Academy of Medical Science Zhengzhou University Zhengzhou China
| | - Binghua Jiang
- School of Basic Medical Sciences, Academy of Medical Science Zhengzhou University Zhengzhou China
- Department of Pathology, Anatomy and Cell Biology Thomas Jefferson University Philadelphia PA19107 USA
| |
Collapse
|
6
|
Vianello F, Cecconello A, Magro M. Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation. Int J Mol Sci 2021; 22:7625. [PMID: 34299242 PMCID: PMC8305441 DOI: 10.3390/ijms22147625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Aiming at creating smart nanomaterials for biomedical applications, nanotechnology aspires to develop a new generation of nanomaterials with the ability to recognize different biological components in a complex environment. It is common opinion that nanomaterials must be coated with organic or inorganic layers as a mandatory prerequisite for applications in biological systems. Thus, it is the nanomaterial surface coating that predominantly controls the nanomaterial fate in the biological environment. In the last decades, interdisciplinary studies involving not only life sciences, but all branches of scientific research, provided hints for obtaining uncoated inorganic materials able to interact with biological systems with high complexity and selectivity. Herein, the fragmentary literature on the interactions between bare abiotic materials and biological components is reviewed. Moreover, the most relevant examples of selective binding and the conceptualization of the general principles behind recognition mechanisms were provided. Nanoparticle features, such as crystalline facets, density and distribution of surface chemical groups, and surface roughness and topography were encompassed for deepening the comprehension of the general concept of recognition patterns.
Collapse
Affiliation(s)
| | | | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (F.V.); (A.C.)
| |
Collapse
|
7
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Cui Y, Tabang DN, Zhang Z, Ma M, Alpert AJ, Li L. Counterion Optimization Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal Chem 2021; 93:7908-7916. [PMID: 34042420 DOI: 10.1021/acs.analchem.1c00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A well-hydrated counterion can selectively and dramatically increase retention of a charged analyte in hydrophilic interaction chromatography. The effect is enhanced if the column is charged, as in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). This combination was exploited in proteomics for the isolation of peptides with certain post-translational modifications (PTMs). The best salt additive examined was magnesium trifluoroacetate. The well-hydrated Mg+2 ion promoted retention of peptides with functional groups that retained negative charge at low pH, while the poorly hydrated trifluoroacetate counterion tuned down the retention due to the basic residues. The result was an enhancement in selectivity ranging from 6- to 66-fold. These conditions were applied to a tryptic digest of mouse cortex. Gradient elution produced fractions enriched in peptides with phosphate, mannose-6-phosphate, and N- and O-linked glycans. The numbers of such peptides identified either equaled or exceeded the numbers afforded by the best alternative methods. This method is a productive and convenient way to isolate peptides simultaneously that contain a number of different PTMs, facilitating study of proteins with "crosstalk" modifications. The fractions from the ERLIC column were desalted prior to C-18-reversed phase liquid chromatography-tandem mass spectrometry analysis. Between 47-100% of the peptides with more than one phosphate or sialyl residue or with a mannose-6 phosphate group were not retained by a C-18 cartridge but were retained by a cartridge of porous graphitic carbon. This finding implies that the abundance of such peptides may have been significantly underestimated in some past studies.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zishan Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Andrew J Alpert
- PolyLC Inc., 9151 Rumsey Road, ste. 180, Columbia, Maryland 21045, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| |
Collapse
|
9
|
Na 2CO 3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:271-288. [PMID: 32683046 PMCID: PMC7801222 DOI: 10.1016/j.gpb.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
Abstract
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under Na2CO3 stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the Na2CO3-responsive proteins. A total of 104 and 102 Na2CO3-responsive proteins were identified in leaves and chloroplasts, respectively. In addition, 84 Na2CO3-responsive phosphoproteins were identified, including 56 new phosphorylation sites in 56 phosphoproteins from chloroplasts, which are crucial for the regulation of photosynthesis, ion transport, signal transduction, and energy homeostasis. A full-length PtFBA encoding an alkaligrass chloroplastic fructose-bisphosphate aldolase (FBA) was overexpressed in wild-type cells of cyanobacterium Synechocystis sp. Strain PCC 6803, leading to enhanced Na2CO3 tolerance. All these results indicate that thermal dissipation, state transition, cyclic electron transport, photorespiration, repair of photosystem (PS) II, PSI activity, and ROS homeostasis were altered in response to Na2CO3 stress, which help to improve our understanding of the Na2CO3-responsive mechanisms in halophytes.
Collapse
|
10
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
11
|
Zuo B, Li W, Wu X, Wang S, Deng Q, Huang M. Recent Advances in the Synthesis, Surface Modifications and Applications of Core-Shell Magnetic Mesoporous Silica Nanospheres. Chem Asian J 2020; 15:1248-1265. [PMID: 32083794 DOI: 10.1002/asia.202000045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Indexed: 01/16/2025]
Abstract
The hierarchically structured core-shell magnetic mesoporous silica nanospheres (Mag-MSNs) have attracted extensive attention, particularly in studies involving reliable preparations and diverse applications of the multifunctional nanomaterials in multi-disciplinary fields. Intriguingly, Mag-MSNs have been prepared with well-designed synthesis strategies and used as adsorbent materials, biomedicines, and in proteomics and catalysis due to their excellent magnetic responsiveness, enormous specific surface area and readiness for surface modifications. Through a carefully designed surface modification of Mag-MSNs, the performance and application prospects of the material are greatly improved. Typically, the introduction of various molecular matrices into the shell of Mag-MSNs facilitates the combination of surface modifications and magnetic separation technology. So far, as sustainable chemistry is concerned, it is important to recover the functionalized core-shell Mag-MSNs after the reaction and reuse them without losing activity. In this review, the design conceptions and the construction of core-shell Mag-MSNs are discussed. Furthermore, various surface modification approaches of core-shell Mag-MSNs are summarized, and recent applications of these functionalized nanomaterials in the fields of biomedicine, catalysis, proteomics and wastewater treatment are exemplified.
Collapse
Affiliation(s)
- Bin Zuo
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Wanfang Li
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Xiaoqiang Wu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Qinyue Deng
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| |
Collapse
|
12
|
Goals and Challenges in Bacterial Phosphoproteomics. Int J Mol Sci 2019; 20:ijms20225678. [PMID: 31766156 PMCID: PMC6888350 DOI: 10.3390/ijms20225678] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known dynamic post-translational modification with stunning regulatory and signalling functions in eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance. Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based phosphoproteomic methodologies, it is expected that further innovations will allow for the study of His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our understanding of prokaryotic physiology.
Collapse
|
13
|
Liu M, Torsetnes SB, Wierzbicka C, Jensen ON, Sellergren B, Irgum K. Selective Enrichment of Phosphorylated Peptides by Monolithic Polymers Surface Imprinted with bis-Imidazolium Moieties by UV-Initiated Cryopolymerization. Anal Chem 2019; 91:10188-10196. [DOI: 10.1021/acs.analchem.9b02211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mingquan Liu
- Umeå University, Department of Chemistry, S-901 87 Umeå, Sweden
| | - Silje Bøen Torsetnes
- University of Southern Denmark, Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, Campusvej 55, DK-5230 Odense M, Denmark
| | - Celina Wierzbicka
- Malmö University, Department of Biomedical Sciences, Faculty of Health and Society, S-205 06 Malmö, Sweden
| | - Ole Nørregaard Jensen
- University of Southern Denmark, Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, Campusvej 55, DK-5230 Odense M, Denmark
| | - Börje Sellergren
- Malmö University, Department of Biomedical Sciences, Faculty of Health and Society, S-205 06 Malmö, Sweden
| | - Knut Irgum
- Umeå University, Department of Chemistry, S-901 87 Umeå, Sweden
| |
Collapse
|
14
|
Rioseras B, Shliaha PV, Gorshkov V, Yagüe P, López-García MT, Gonzalez-Quiñonez N, Kovalchuk S, Rogowska-Wrzesinska A, Jensen ON, Manteca A. Quantitative Proteome and Phosphoproteome Analyses of Streptomyces coelicolor Reveal Proteins and Phosphoproteins Modulating Differentiation and Secondary Metabolism. Mol Cell Proteomics 2018; 17:1591-1611. [PMID: 29784711 PMCID: PMC6072539 DOI: 10.1074/mcp.ra117.000515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/15/2018] [Indexed: 02/03/2023] Open
Abstract
Streptomycetes are multicellular bacteria with complex developmental cycles. They are of biotechnological importance as they produce most bioactive compounds used in biomedicine, e.g. antibiotic, antitumoral and immunosupressor compounds. Streptomyces genomes encode many Ser/Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor We identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (first mycelium); secondary metabolite producing hyphae (second mycelium); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signaling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism. Phosphoproteomics revealed 85 unique protein phosphorylation sites, 58 of them differentially phosphorylated during differentiation. Computational analysis suggested that these regulated protein phosphorylation events are implicated in important cellular processes, including cell division, differentiation, regulation of secondary metabolism, transcription, protein synthesis, protein folding and stress responses. We discovered a novel regulated phosphorylation site in the key bacterial cell division protein FtsZ (pSer319) that modulates sporulation and regulates actinorhodin antibiotic production. We conclude that manipulation of distinct protein phosphorylation events may improve secondary metabolite production in industrial streptomycetes, including the activation of cryptic pathways during the screening for new secondary metabolites from streptomycetes.
Collapse
Affiliation(s)
- Beatriz Rioseras
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pavel V Shliaha
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Vladimir Gorshkov
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Paula Yagüe
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María T López-García
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly Gonzalez-Quiñonez
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergey Kovalchuk
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Ole N Jensen
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Angel Manteca
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain;
| |
Collapse
|
15
|
Liu M, Wei Y, Li X, Quek SY, Zhao J, Zhong H, Zhang D, Liu Y. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality. Meat Sci 2018; 141:103-111. [DOI: 10.1016/j.meatsci.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
|
16
|
Yuan ET, Ino Y, Kawaguchi M, Kimura Y, Hirano H, Kinoshita-Kikuta E, Kinoshita E, Koike T. A Phos-tag-based micropipette-tip method for rapid and selective enrichment of phosphopeptides. Electrophoresis 2017. [DOI: 10.1002/elps.201700175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elena Tianfei Yuan
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Yoko Ino
- Advanced Medical Research Center; Yokohama City University; Yokohama Japan
| | - Maho Kawaguchi
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Yayoi Kimura
- Advanced Medical Research Center; Yokohama City University; Yokohama Japan
| | - Hisashi Hirano
- Advanced Medical Research Center; Yokohama City University; Yokohama Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Tohru Koike
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|
17
|
Peng J, Zhang H, Li X, Liu S, Zhao X, Wu J, Kang X, Qin H, Pan Z, Wu R. Dual-Metal Centered Zirconium-Organic Framework: A Metal-Affinity Probe for Highly Specific Interaction with Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35012-35020. [PMID: 27983800 DOI: 10.1021/acsami.6b12630] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The highly specific affinity between probes and phosphopeptides is the fundamental interaction for selective identification of phosphoproteomes that uncover the mechanisms of signal transduction, cell cycle, enzymatic regulation, and gene expression in biological systems. In this study, a metal-affinity probe possessing both interactions of metal oxide affinity chromatography (MOAC) and immobilized metal ion affinity chromatography (IMAC) was facilely prepared by immobilizing zirconium(IV) on a zirconium-organic framework of UiO-66-NH2, which holds dual-metal centers of not only the inherent Zr-O cluster but also the immobilized Zr(IV) center. This dual-metal centered zirconium-organic framework (DZMOF) demonstrates as a highly specific metal-affinity probe toward the extraction of phosphopeptides due to the metal-affinity interactions of MOAC and IMAC toward either mono-phosphorylated or multi-phosphorylated peptides. The binding energies of zirconium 3d5/2 and 3d3/2 in this DZMOF are 183.07 and 185.47 eV, respectively, which are higher than those of the intact UiO-66-NH2 (182.84 and 185.17 eV, respectively), confirming the higher metal-affinity interaction between the DZMOF and phosphopeptides. This high metal-affinity probe presents an unprecedented strong performance in anti-nonspecific interference during the capturing of phosphopeptides of β-casein with the molar ratio of β-casein vs bovine serum albumin up to ca. 1:5000. The enrichment of phosphopeptides from a human saliva sample by DZMOF further confirms the great potential of DZMOF in the extraction of low-abundance phosphopeptides for real complex biological samples.
Collapse
Affiliation(s)
- Jiaxi Peng
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Hongyan Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Xin Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Shengju Liu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Xingyun Zhao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Jing Wu
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences , Wenzhou, 325000, China
| | - Xiaohui Kang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
| | - Hongqiang Qin
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
| | - Zaifa Pan
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology , Hangzhou, 310014, China
| | - Ren'an Wu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
| |
Collapse
|
18
|
Li XS, Yuan BF, Feng YQ. Recent advances in phosphopeptide enrichment: Strategies and techniques. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abstract
The comprehensive study of the phosphoproteome is heavily dependent on appropriate enrichment strategies that are most often, but not exclusively, carried out on the peptide level. In this chapter, I give an overview of the most widely used techniques. In addition to dedicated antibodies, phosphopeptides are enriched by their selective interaction with metals in the form of chelated metal ions or metal oxides. The negative charge of the phosphate group is also exploited in a variety of chromatographic fractionation methods that include different types of ion exchange chromatography, hydrophilic interaction chromatography (HILIC), and electrostatic repulsion HILIC (ERLIC) chromatography. Selected examples from the literature will demonstrate how a combination of these techniques with current high-performance mass spectrometry enables the identification of thousands of phosphorylation sites from various sample types.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Enrichment of phosphorylated peptides and proteins by selective precipitation methods. Bioanalysis 2015; 7:243-52. [PMID: 25587840 DOI: 10.4155/bio.14.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein phosphorylation is one of the most prominent post-translational modifications involved in the regulation of cellular processes. Fundamental understanding of biological processes requires appropriate bioanalytical methods for selectively enriching phosphorylated peptides and proteins. Most of the commonly applied enrichment approaches include chromatographic materials including Fe(3+)-immobilized metal-ion affinity chromatography or metal oxides. In the last years, the introduction of several non-chromatographic isolation technologies has increasingly attracted the interest of many scientists. Such approaches are based on the selective precipitation of phosphorylated peptides and proteins by applying various metal cations. The excellent performance of precipitation-based enrichment methods can be explained by the absence of any stationary phase, resin or sorbent, which usually leads to unspecific binding. This review provides an overview of recently published methods for the selective precipitation of phosphorylated peptides and proteins.
Collapse
|
21
|
Frączyk T, Ruman T, Wilk P, Palmowski P, Rogowska-Wrzesinska A, Cieśla J, Zieliński Z, Nizioł J, Jarmuła A, Maj P, Gołos B, Wińska P, Ostafil S, Wałajtys-Rode E, Shugar D, Rode W. Properties of phosphorylated thymidylate synthase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1922-1934. [PMID: 26315778 DOI: 10.1016/j.bbapap.2015.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/24/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.
Collapse
Affiliation(s)
- Tomasz Frączyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, Rzeszów, Poland
| | - Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Palmowski
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Joanna Cieśla
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Zieliński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, Rzeszów, Poland
| | - Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Maj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Gołos
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Wińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Ostafil
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Wałajtys-Rode
- Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Warsaw, Poland
| | - David Shugar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
22
|
Herring LE, Grant KG, Blackburn K, Haugh JM, Goshe MB. Development of a tandem affinity phosphoproteomic method with motif selectivity and its application in analysis of signal transduction networks. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:166-74. [PMID: 25777480 PMCID: PMC4489695 DOI: 10.1016/j.jchromb.2015.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/26/2022]
Abstract
Phosphorylation is an important post-translational modification that is involved in regulating many signaling pathways. Of particular interest are the growth factor mediated Ras and phosphoinositide 3-kinase (PI3K) signaling pathways which, if misregulated, can contribute to the progression of cancer. Phosphoproteomic methods have been developed to study regulation of signaling pathways; however, due to the low stoichiometry of phosphorylation, understanding these pathways is still a challenge. In this study, we have developed a multi-dimensional method incorporating electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with tandem IMAC/TiO2 enrichment for subsequent phosphopeptide identification by LC/MS/MS. We applied this method to PDGF-stimulated NIH 3T3 cells to provide over 11,000 unique phosphopeptide identifications. Upon motif analysis, IMAC was found to enrich for basophilic kinase substrates while the subsequent TiO2 step enriched for acidophilic kinase substrates, suggesting that both enrichment methods are necessary to capture the full complement of kinase substrates. Biological functions that were over-represented at each PDGF stimulation time point, together with the phosphorylation dynamics of several phosphopeptides containing known kinase phosphorylation sites, illustrate the feasibility of this approach in quantitative phosphoproteomic studies.
Collapse
Affiliation(s)
- Laura E Herring
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States
| | - Kyle G Grant
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-73522, United States
| | - Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States.
| |
Collapse
|
23
|
Martín JF. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb Cell Fact 2014; 13:117. [PMID: 25205075 PMCID: PMC4180148 DOI: 10.1186/s12934-014-0117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of some homologous proteins.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
24
|
Palmowski P, Rogowska-Wrzesinska A, Williamson J, Beck HC, Mikkelsen JD, Hansen HH, Jensen ON. Acute Phencyclidine Treatment Induces Extensive and Distinct Protein Phosphorylation in Rat Frontal Cortex. J Proteome Res 2014; 13:1578-92. [DOI: 10.1021/pr4010794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pawel Palmowski
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - James Williamson
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Hans C. Beck
- Danish Technological Institute, Kongsvang Allé 29, DK-8000 Aarhus, Denmark
| | | | | | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
25
|
Reales-Calderón JA, Sylvester M, Strijbis K, Jensen ON, Nombela C, Molero G, Gil C. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics. J Proteomics 2013; 91:106-35. [DOI: 10.1016/j.jprot.2013.06.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 12/11/2022]
|
26
|
Zheng L, Dong H, Hu L. Zirconium-Cation-Immobilized Core/Shell (Fe3O4@Polymer) Microspheres as an IMAC Material for the Selective Enrichment of Phosphopeptides. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4003377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leyou Zheng
- NHU Co. Ltd. of Zhejiang, 4 Jiangbei Road,
Xinchang, Zhejiang 312500, P. R. China
| | - Huaping Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing,
Zhejiang 312000, P. R. China
| | - Liujiang Hu
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing,
Zhejiang 312000, P. R. China
| |
Collapse
|
27
|
Zhao X, Wang Q, Wang S, Zou X, An M, Zhang X, Ji J. Citric Acid-Assisted Two-Step Enrichment with TiO2 Enhances the Separation of Multi- and Monophosphorylated Peptides and Increases Phosphoprotein Profiling. J Proteome Res 2013; 12:2467-76. [DOI: 10.1021/pr301061q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xuyang Zhao
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Shuxin Wang
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Zou
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingrui An
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Xuefei Zhang
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1025] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Zhong H, Xiao X, Zheng S, Zhang W, Ding M, Jiang H, Huang L, Kang J. Mass spectrometric analysis of mono- and multi-phosphopeptides by selective binding with NiZnFe2O4 magnetic nanoparticles. Nat Commun 2013; 4:1656. [DOI: 10.1038/ncomms2662] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/28/2013] [Indexed: 01/11/2023] Open
|
30
|
A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 925:86-94. [PMID: 23523882 DOI: 10.1016/j.jchromb.2013.02.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/16/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
Abstract
A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol.
Collapse
|
31
|
Güzel Y, Rainer M, Mirza MR, Messner CB, Bonn GK. Highly selective recovery of phosphopeptides using trypsin-assisted digestion of precipitated lanthanide–phosphoprotein complexes. Analyst 2013; 138:2897-905. [DOI: 10.1039/c3an00066d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Schindler J, Ye J, Jensen ON, Nothwang HG. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum. J Neurosci Methods 2012; 213:153-64. [PMID: 23246975 DOI: 10.1016/j.jneumeth.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane proteins are major targets of the signalling cascades, we developed a protocol to monitor their phosphorylation state starting from a single mouse cerebellum. An aqueous polymer two-phase system was used to enrich for plasma membrane proteins. Subsequently, calcium phosphate precipitation, immobilized metal affinity chromatography, and TiO(2) were combined to a sequential extraction procedure prior to mass spectrometric analyses. This strategy resulted in the identification of 1501 different native phosphorylation sites in 507 different proteins. 765 (51%) of these phosphorylation sites were localized with a confidence level of 99% or higher. 41.4% of the identified proteins were allocated to the plasma membrane and about half of the phosphorylation sites have not been reported previously. A bioinformatic screen for 12 consensus sequences identified putative kinases for 642 phosphorylation sites. In summary, the protocol deployed here identified several hundred novel phosphorylation sites of cerebellar proteins. Furthermore, it provides a valuable tool to monitor the plasma membrane proteome from any small brain samples of interest under differing physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Jens Schindler
- Neurogenetics Group, University of Oldenburg, Oldenburg, Germany.
| | | | | | | |
Collapse
|
33
|
Imamura H, Wakabayashi M, Ishihama Y. Analytical strategies for shotgun phosphoproteomics: Status and prospects. Semin Cell Dev Biol 2012; 23:836-42. [PMID: 22683501 DOI: 10.1016/j.semcdb.2012.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022]
|
34
|
López E, Cho WCS. Phosphoproteomics and lung cancer research. Int J Mol Sci 2012; 13:12287-12314. [PMID: 23202899 PMCID: PMC3497273 DOI: 10.3390/ijms131012287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 12/28/2022] Open
Abstract
Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed.
Collapse
Affiliation(s)
- Elena López
- Hospital Universitario Niño Jesús, Department of Oncohematology of Children, Madrid 28009, Spain; E-Mail:
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
35
|
Beltran L, Cutillas PR. Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 2012; 43:1009-24. [PMID: 22821267 DOI: 10.1007/s00726-012-1288-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/03/2012] [Indexed: 12/27/2022]
Abstract
Phosphoproteomics is increasingly used to address a wide range of biological questions. However, despite some success, techniques for phosphoproteomics are not without challenges. Phosphoproteins are present in cells in low abundance relative to their unphosphorylated counterparts; therefore phosphorylated proteins (or phosphopeptides after protein digestion) are rarely detected in standard shotgun proteomics experiments. Thus, extraction of phosphorylated polypeptides from complex mixtures is a critical step in the success of phosphoproteomics experiments. Intense research over the last decade has resulted in the development of powerful techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Here, we review how the development of IMAC, MOAC, chemical derivatization and antibody affinity purification and chromatography is contributing to the evolution of phosphoproteomics techniques. Although further developments are needed for the technology to reach maturity, current state-of-the-art techniques can already be used as powerful tools for biological research.
Collapse
Affiliation(s)
- Luisa Beltran
- Analytical Signalling Group, Centre for Cell Signalling, Barts Cancer Institute-CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | | |
Collapse
|
36
|
|
37
|
Analysing signalling networks by mass spectrometry. Amino Acids 2012; 43:1061-74. [PMID: 22821269 DOI: 10.1007/s00726-012-1293-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 04/03/2012] [Indexed: 12/31/2022]
Abstract
Sequence analysis of the human genome and the association of genetic aberrations with diseases have provided a rough framework whereby the impact of individual genotypes can be assessed. To fully understand the effect of individual and co-occurring genetic aberrations, as well as their individual and collected contribution to the development of diseases, it is critical to analyse the matching proteome and to determine how the organisation, expression level and function of protein networks are affected. Sensitive mass spectrometric platforms in combination with innovative workflows allow qualitative and quantitative analyses of the cellular as well as the extracellular proteome. Importantly, in addition to specifically identifying the content of the proteome, several aspects of the proteomic organisation can be analysed including protein complexes, protein modifications, enzymatic activities and subcellular/organelle localisation. Together, these measurements will provide novel insight into the biological effect of disease-causing mutations ultimately coupling genotype and phenotype.
Collapse
|
38
|
A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation. Anal Bioanal Chem 2012; 404:853-62. [DOI: 10.1007/s00216-012-6215-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
39
|
Fonslow BR, Niessen SM, Singh M, Wong CCL, Xu T, Carvalho PC, Choi J, Park SK, Yates JR. Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT. J Proteome Res 2012; 11:2697-709. [PMID: 22509746 DOI: 10.1021/pr300200x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we report the characterization and optimization of single-step inline enrichment of phosphopeptides directly from small amounts of whole cell and tissue lysates (100-500 μg) using a hydroxyapatite (HAP) microcolumn and Multidimensional Protein Identification Technology (MudPIT). In comparison to a triplicate HILIC-IMAC phosphopeptide enrichment study, ∼80% of the phosphopeptides identified using HAP-MudPIT were unique. Similarly, analysis of the consensus phosphorylation motifs between the two enrichment methods illustrates the complementarity of calcium- and iron-based enrichment methods and the higher sensitivity and selectivity of HAP-MudPIT for acidic motifs. We demonstrate how the identification of more multiply phosphorylated peptides from HAP-MudPIT can be used to quantify phosphorylation cooperativity. Through optimization of HAP-MudPIT on a whole cell lysate we routinely achieved identification and quantification of ca. 1000 phosphopeptides from a ∼1 h enrichment and 12 h MudPIT analysis on small quantities of material. Finally, we applied this optimized method to identify phosphorylation sites from a mass-limited mouse brain region, the amygdala (200-500 μg), identifying up to 4000 phosphopeptides per run.
Collapse
Affiliation(s)
- Bryan R Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fang G, Gao W, Deng Q, Qian K, Han H, Wang S. Highly selective capture of phosphopeptides using a nano titanium dioxide–multiwalled carbon nanotube nanocomposite. Anal Biochem 2012; 423:210-7. [DOI: 10.1016/j.ab.2012.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
|
41
|
Güzel Y, Rainer M, Mirza MR, Bonn GK. Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions. Anal Bioanal Chem 2012; 403:1323-31. [DOI: 10.1007/s00216-012-5917-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 11/29/2022]
|
42
|
Savino R, Terracciano R. Mesopore-assisted profiling strategies in clinical proteomics for drug/target discovery. Drug Discov Today 2012; 17:143-52. [DOI: 10.1016/j.drudis.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/23/2011] [Accepted: 10/07/2011] [Indexed: 12/29/2022]
|
43
|
Verma N, Bäuerlein C, Pink M, Rettenmeier AW, Schmitz-Spanke S. Proteome and phosphoproteome of primary cultured pig urothelial cells. Electrophoresis 2011; 32:3600-11. [DOI: 10.1002/elps.201100220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J Biol Chem 2011; 287:4904-13. [PMID: 22174420 DOI: 10.1074/jbc.m111.307264] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important posttranslational modification of proteins in living cells and primarily serves regulatory purposes. Several methods were employed for isolating phosphopeptides from proteolytically digested plasma membranes of Arabidopsis thaliana. After a mass spectrometric analysis of the resulting peptides we could identify 10 different phosphorylation sites in plasma membrane H(+)-ATPases AHA1, AHA2, AHA3, and AHA4/11, five of which have not been reported before, bringing the total number of phosphosites up to 11, which is substantially higher than reported so far for any other P-type ATPase. Phosphosites were almost exclusively (9 of 10) in the terminal regulatory domains of the pumps. The AHA2 isoform was subsequently expressed in the yeast Saccharomyces cerevisiae. The plant protein was phosphorylated at multiple sites in yeast, and surprisingly, seven of nine of the phosphosites identified in AHA2 were identical in the plant and fungal systems even though none of the target sequences in AHA2 show homology to proteins of the fungal host. These findings suggest an unexpected accessibility of the terminal regulatory domain of plasma membrane H(+)-ATPase to protein kinase action.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
45
|
Pink M, Verma N, Polato F, Bonn GK, Baba HA, Rettenmeier AW, Schmitz-Spanke S. Precipitation by lanthanum ions: A straightforward approach to isolating phosphoproteins. J Proteomics 2011; 75:375-83. [DOI: 10.1016/j.jprot.2011.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 12/01/2022]
|
46
|
Mao Y, Zamdborg L, Kelleher NL, Hendrickson CL, Marshall AG. Identification of Phosphorylated Human Peptides by Accurate Mass Measurement Alone. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 308:357-361. [PMID: 22866021 PMCID: PMC3409838 DOI: 10.1016/j.ijms.2011.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At sufficiently high mass accuracy, it is possible to distinguish phosphorylated from unmodified peptides by mass measurement alone. We examine the feasibility of that idea, tested against a library of all possible in silico tryptic digest peptides from the human proteome database. The overlaps between in silico tryptic digest phosphopeptides generated from known phosphorylated proteins (1-12 sites) and all possible unmodified human peptides are considered for assumed mass error ranges of ±10, ±50, ±100, ±1,000, and ±10,000 ppb. We find that for mass error ±50 ppb, 95% of all phosphorylated human tryptic peptides can be distinguished from nonmodified peptides by accurate mass alone through the entire nominal mass range. We discuss the prospect of on-line LC MS/MS to identify phosphopeptide precursor ions in MS1 for selected dissociation in MS2 to identify the peptide and site(s) of phosphorylation.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Leonid Zamdborg
- Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL 61801
| | - Neil L. Kelleher
- Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL 61801
| | - Christopher L. Hendrickson
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| |
Collapse
|
47
|
Manteca A, Ye J, Sánchez J, Jensen ON. Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res 2011; 10:5481-92. [PMID: 21999169 DOI: 10.1021/pr200762y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one of the bacteria encoding the largest number of eukaryotic type kinases, the biological role of protein phosphorylation in this bacterium has not been extensively studied before. In this issue, the variations of the phosphoproteome of S. coelicolor were characterized. Most distinct Ser/Thr/Tyr phosphorylation events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized phosphorylation motif "x(pT)xEx".
Collapse
Affiliation(s)
- Angel Manteca
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | | | | | |
Collapse
|
48
|
Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2011; 43:1025-47. [PMID: 22002794 PMCID: PMC3418503 DOI: 10.1007/s00726-011-1111-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
Abstract
Rapid changes of protein phosphorylation play a crucial role in the regulation of many cellular processes. Being post-translationally modified, phosphoproteins are often present in quite low abundance and tend to co-exist with their unphosphorylated isoform within the cell. To make their identification more practicable, the use of enrichment protocols is often required. The enrichment strategies can be performed either at the level of phosphoproteins or at the level of phosphopeptides. Both approaches have their advantages and disadvantages. Most enriching strategies are based on chemical modifications, affinity chromatography to capture peptides and proteins containing negatively charged phosphate groups onto a positively charged matrix, or immunoprecipitation by phospho-specific antibodies. In this article, the most up-to-date enrichment techniques are discussed, taking into account their optimization, and highlighting their advantages and disadvantages. Moreover, these methods are compared to each other, revealing their complementary nature in providing comprehensive coverage of the phosphoproteome.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, Czech Republic
| | | |
Collapse
|
49
|
López E, Wesselink JJ, López I, Mendieta J, Gómez-Puertas P, Muñoz SR. Technical phosphoproteomic and bioinformatic tools useful in cancer research. J Clin Bioinforma 2011; 1:26. [PMID: 21967744 PMCID: PMC3195713 DOI: 10.1186/2043-9113-1-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/03/2011] [Indexed: 12/22/2022] Open
Abstract
Reversible protein phosphorylation is one of the most important forms of cellular regulation. Thus, phosphoproteomic analysis of protein phosphorylation in cells is a powerful tool to evaluate cell functional status. The importance of protein kinase-regulated signal transduction pathways in human cancer has led to the development of drugs that inhibit protein kinases at the apex or intermediary levels of these pathways. Phosphoproteomic analysis of these signalling pathways will provide important insights for operation and connectivity of these pathways to facilitate identification of the best targets for cancer therapies. Enrichment of phosphorylated proteins or peptides from tissue or bodily fluid samples is required. The application of technologies such as phosphoenrichments, mass spectrometry (MS) coupled to bioinformatics tools is crucial for the identification and quantification of protein phosphorylation sites for advancing in such relevant clinical research. A combination of different phosphopeptide enrichments, quantitative techniques and bioinformatic tools is necessary to achieve good phospho-regulation data and good structural analysis of protein studies. The current and most useful proteomics and bioinformatics techniques will be explained with research examples. Our aim in this article is to be helpful for cancer research via detailing proteomics and bioinformatic tools.
Collapse
Affiliation(s)
- Elena López
- Centro de Investigación i+12 del Hospital Universitario 12 de Octubre, Avda de Córdoba s/n Madrid, 28041, Spain
| | - Jan-Jaap Wesselink
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) Campus de Cantoblanco, c/Nicolás Cabrera, 1, 28049 Madrid, Spain.,Biomol-Informatics, S.L., Parque Científico de Madrid, Campus de Cantoblanco, c/Faraday 7, 28049 Madrid, Spain
| | - Isabel López
- Servicio de Hematología Hospital QUIRÓN, Madrid, Diego de Velázquez 1 28223, Pozuelo Madrid Spain
| | - Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) Campus de Cantoblanco, c/Nicolás Cabrera, 1, 28049 Madrid, Spain.,Biomol-Informatics, S.L., Parque Científico de Madrid, Campus de Cantoblanco, c/Faraday 7, 28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) Campus de Cantoblanco, c/Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Sarbelio Rodríguez Muñoz
- Servicio de Digestivo, Hospital Universitario 12 Octubre, Avda de Córdoba s/n Madrid, 28041, Spain
| |
Collapse
|
50
|
Wang X, Stewart PA, Cao Q, Sang QXA, Chung LWK, Emmett MR, Marshall AG. Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2011; 10:3920-8. [PMID: 21786837 DOI: 10.1021/pr2000144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androgen-repressed human prostate cancer, ARCaP, grows and is highly metastatic to bone and soft tissues in castrated mice. The molecular mechanisms underlying the aberrant responses to androgen are not fully understood. Here, we apply state-of-the-art mass spectrometry methods to investigate the phosphoproteome profiles in ARCaP cells. Because protein biological phosphorylation is always substoichiometric and the ionization efficiency of phosphopeptides is low, selective enrichment of phosphorylated proteins/peptides is required for mass spectrometric analysis of phosphorylation from complex biological samples. Therefore, we compare the sensitivity, efficiency, and specificity for three established enrichment strategies: calcium phosphate precipitation (CPP), immobilized metal ion affinity chromatography (IMAC), and TiO(2)-modified metal oxide chromatography. Calcium phosphate precipitation coupled with the TiO(2) approach offers the best strategy to characterize phosphorylation in ARCaP cells. We analyzed phosphopeptides from ARCaP cells by LC-MS/MS with a hybrid LTQ/FT-ICR mass spectrometer. After database search and stringent filtering, we identified 385 phosphoproteins with an average peptide mass error of 0.32 ± 0.6 ppm. Key identified oncogenic pathways include the mammalian target of rapamycin (mTOR) pathway and the E2F signaling pathway. Androgen-induced proliferation inhibitor (APRIN) was detected in its phosphorylated form, implicating a molecular mechanism underlying the ARCaP phenotype.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | | | | | | | |
Collapse
|