1
|
Srivastava V, Muralidharan A, Swaminathan A, Poulose A. Anxiety in aquatics: Leveraging machine learning models to predict adult zebrafish behavior. Neuroscience 2025; 565:577-587. [PMID: 39675692 DOI: 10.1016/j.neuroscience.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Accurate analysis of anxiety behaviors in animal models is pivotal for advancing neuroscience research and drug discovery. This study compares the potential of DeepLabCut, ZebraLab, and machine learning models to analyze anxiety-related behaviors in adult zebrafish. Using a dataset comprising video recordings of unstressed and pre-stressed zebrafish, we extracted features such as total inactivity duration/immobility, time spent at the bottom, time spent at the top and turn angles (large and small). We observed that the data obtained using DeepLabCut and ZebraLab were highly correlated. Using this data, we annotated behaviors as anxious and not anxious and trained several machine learning models, including Logistic Regression, Decision Tree, K-Nearest Neighbours (KNN), Random Forests, Naive Bayes Classifiers, and Support Vector Machines (SVMs). The effectiveness of these machine learning models was validated and tested on independent datasets. We found that some machine learning models, such as Decision Tree and Random Forests, performed excellently to differentiate between anxious and non-anxious behavior, even in the control group, where the differences between subjects were more subtle. Our findings show that upcoming technologies, such as machine learning models, are able to effectively and accurately analyze anxiety behaviors in zebrafish and provide a cost-effective method to analyze animal behavior.
Collapse
Affiliation(s)
- Vartika Srivastava
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Anagha Muralidharan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Amrutha Swaminathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
2
|
Lawson A, Annunziato M, Bashirova N, Eeza MNH, Matysik J, Alia A, Berry JP. High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Identifies Impairment of Metabolism by T-2 Toxin, in Relation to Toxicity, in Zebrafish Embryo Model. Toxins (Basel) 2024; 16:424. [PMID: 39453200 PMCID: PMC11511446 DOI: 10.3390/toxins16100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Among the widespread trichothecene mycotoxins, T-2 toxin is considered the most toxic congener. In the present study, we utilized high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), coupled to the zebrafish (Danio rerio) embryo model, as a toxicometabolomics approach to elucidate the cellular, molecular and biochemical pathways associated with T-2 toxicity. Aligned with previous studies in the zebrafish embryo model, exposure to T-2 toxin was lethal in the high parts-per-billion (ppb) range, with a median lethal concentration (LC50) of 105 ppb. Exposure to the toxins was, furthermore, associated with system-specific alterations in the production of reactive oxygen species (ROS), including decreased ROS production in the liver and increased ROS in the brain region, in the exposed embryos. Moreover, metabolic profiling based on HRMAS NMR revealed the modulation of numerous, interrelated metabolites, specifically including those associated with (1) phase I and II detoxification, and antioxidant pathways; (2) disruption of the phosphocholine lipids of cell membranes; (3) mitochondrial energy metabolism, including apparent disruption of the tricarboxylic acid (TCA) cycle, and the electron transport chain of oxidative phosphorylation, as well as "upstream" effects on carbohydrate, i.e., glucose metabolism; and (4) several compensatory catabolic pathways. Taken together, these observations enabled development of an integrated, system-level model of T-2 toxicity in relation to human and animal health.
Collapse
Affiliation(s)
- Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
| | - Mark Annunziato
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Muhamed N. Hashem Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
| | - A. Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John. P. Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X, Sun L. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience 2024; 27:109944. [PMID: 38784018 PMCID: PMC11111832 DOI: 10.1016/j.isci.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/23/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
5
|
Zhou Z, Sun Y, Yang J, Abliz Z. Mapping the Metabolic Characteristics and Perturbation of Adult Casper Zebrafish by Ambient Mass Spectrometry Imaging. Metabolites 2024; 14:204. [PMID: 38668332 PMCID: PMC11051737 DOI: 10.3390/metabo14040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Casper, a type of transparent mutant-line zebrafish, was generated to overcome the opaque trunk of an adult zebrafish for tumor modeling to realize real-time visualization of transplanted cells in vivo. However, the molecular information at the metabolic level has not received much attention. Herein, a spatially resolved metabolomics method based on an airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) system for whole-body zebrafish was used to investigate small molecules and the distribution of adult casper (Mitfaw2/w2, roya9/a9) and the differences from wild-type zebrafish. Finally, the spatial distribution information of more than 1500 endogenous ions was obtained in positive and negative detection modes, and 186 metabolites belonging to a variety of structural categories were identified or annotated. Compared with wild-type samples, 85 variables, including 37 known metabolites, were screened out. In addition, the disordered metabolic pathways caused by the genetic mutation were excavated, involving downregulation of purine metabolism and arachidonic acid metabolism, upregulation of glycerophospholipid metabolism, and biosynthesis of unsaturated fatty acids. All these results were observed in the most intuitive way through MSI. This study revealed important metabolic characteristics of and perturbation in adult casper zebrafish, and provides indispensable fundamental knowledge for tumor research based on it.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China;
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Yue Sun
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Ji Yang
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China;
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Henke AN, Chilukuri S, Langan LM, Brooks BW. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168455. [PMID: 37979845 DOI: 10.1016/j.scitotenv.2023.168455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Environmental toxicology and ecotoxicology research efforts are employing proteomics with fish models as New Approach Methodologies, along with in silico, in vitro and other omics techniques to elucidate hazards of toxicants and toxins. We performed a critical review of toxicology studies with fish models using proteomics and reported fundamental parameters across experimental design, sample preparation, mass spectrometry, and bioinformatics of fish, which represent alternative vertebrate models in environmental toxicology, and routinely studied animals in ecotoxicology. We observed inconsistencies in reporting and methodologies among experimental designs, sample preparations, data acquisitions and bioinformatics, which can affect reproducibility of experimental results. We identified a distinct need to develop reporting guidelines for proteomics use in environmental toxicology and ecotoxicology, increased QA/QC throughout studies, and method optimization with an emphasis on reducing inconsistencies among studies. Several recommendations are offered as logical steps to advance development and application of this emerging research area to understand chemical hazards to public health and the environment.
Collapse
Affiliation(s)
- Abigail N Henke
- Department of Biology, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA
| | | | - Laura M Langan
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| |
Collapse
|
7
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
8
|
Matys J, Turska-Szewczuk A, Gieroba B, Kurzylewska M, Pękala-Safińska A, Sroka-Bartnicka A. Evaluation of Proteomic and Lipidomic Changes in Aeromonas-Infected Trout Kidney Tissue with the Use of FT-IR Spectroscopy and MALDI Mass Spectrometry Imaging. Int J Mol Sci 2022; 23:ijms232012551. [PMID: 36293421 PMCID: PMC9604335 DOI: 10.3390/ijms232012551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting from Aeromonas sobria and A. salmonicida subsp. salmonicida infection in trout kidney tissue samples. We successfully applied FT-IR (Fourier transform infrared) spectroscopy and MALDI-MSI (matrix-assisted laser desorption/ionization mass spectrometry imaging) to monitor changes in the structure and compositions of lipids, secondary conformation of proteins, and provide useful information concerning disease progression. Our findings indicate that the following spectral bands’ absorbance ratios (spectral biomarkers) can be used to discriminate healthy tissue from pathologically altered tissue, for example, lipids (CH2/CH3), amide I/amide II, amide I/CH2 and amide I/CH3. Spectral data obtained from 10 single measurements of each specimen indicate numerous abnormalities concerning proteins, lipids, and phospholipids induced by Aeromonas infection, suggesting significant disruption of the cell membranes. Moreover, the increase in the content of lysolipids such as lysophosphosphatidylcholine was observed. The results of this study suggest the application of both methods MALDI-MSI and FT-IR as accurate methods for profiling biomolecules and identifying biochemical changes in kidney tissue during the progression of Aeromonas infection.
Collapse
Affiliation(s)
- Joanna Matys
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Barbara Gieroba
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Anna Sroka-Bartnicka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| |
Collapse
|
9
|
Chen F, Ma B, Lin Y, Luo X, Xu T, Zhang Y, Chen F, Li Y, Zhang Y, Luo B, Zhang Q, Xie X. Comparative maternal protein profiling of mouse biparental and uniparental embryos. Gigascience 2022; 11:giac084. [PMID: 36056732 PMCID: PMC9440387 DOI: 10.1093/gigascience/giac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maternal proteins have important roles during early embryonic development. However, our understanding of maternal proteins is still very limited. The integrated analysis of mouse uniparental (parthenogenetic) and biparental (fertilized) embryos at the protein level creates a protein expression landscape that can be used to explore preimplantation mouse development. RESULTS Using label-free quantitative mass spectrometry (MS) analysis, we report on the maternal proteome of mouse parthenogenetic embryos at pronucleus, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages and highlight dynamic changes in protein expression. In addition, comparison of proteomic profiles of parthenogenotes and fertilized embryos highlights the different fates of maternal proteins. Enrichment analysis uncovered a set of maternal proteins that are strongly correlated with the subcortical maternal complex, and we report that in parthenogenotes, some of these maternal proteins escape the fate of protein degradation. Moreover, we identified a new maternal factor-Fbxw24, and highlight its importance in early embryonic development. We report that Fbxw24 interacts with Ddb1-Cul4b and may regulate maternal protein degradation in mouse. CONCLUSIONS Our study provides an invaluable resource for mechanistic analysis of maternal proteins and highlights the role of the novel maternal factor Fbw24 in regulating maternal protein degradation during preimplantation embryo development.
Collapse
Affiliation(s)
- Fumei Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Buguo Ma
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Tao Xu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yuan Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Fang Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yanfei Li
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yaoyao Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| |
Collapse
|
10
|
Liu J, Lian H, Yu J, Wu J, Chen X, wang P, tian L, Yang Y, Yang J, Li D, Guo S. Study on diverse pathological characteristics of heart failure in different stages based on proteomics. J Cell Mol Med 2022; 26:1169-1182. [PMID: 35048506 PMCID: PMC8831959 DOI: 10.1111/jcmm.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heart failure is a process characterized by significant disturbance of protein turnover. To elucidate the alterations in cardiac protein expression during the various phases of heart failure and to understand the nature of the processes involved, we analysed the proteome in an established heart failure model at different time points to monitor thousands of different proteins simultaneously. Here, heart failure was induced by transverse aortic constriction (TAC) in KM mice. At 2, 4 and 12 weeks after operation, protein expression profiles were determined in sham‐operated (controls) and TAC mice, using label‐free quantitative proteomics, leading to identification and quantification of almost 4000 proteins. The results of the KEGG pathway enrichment analysis and GO function annotation revealed critical pathways associated with the transition from cardiac hypertrophy to heart failure, such as energy pathways and matrix reorganization. Our study suggests that in the pathophysiology of heart failure, alterations of protein groups related to cardiac energy substrate metabolism and cytoskeleton remodelling could play the more dominant roles for the signalling that eventually results in contractile dysfunction and heart failure.
Collapse
Affiliation(s)
- Jinying Liu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Hongjian Lian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Alexa League Central Hospital Inner Mongolia China
| | - Jiang Yu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Jie Wu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Xiangyang Chen
- Youcare Pharmaceutical Group Drug Research Institute Beijing China
| | - Peng wang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Lei tian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Yunfei Yang
- Beijing Qinglian Biotech Co., Ltd Beijing China
| | - Jiaqi Yang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Dong Li
- School of Basic Medical Sciences Anhui Medical University Hefei China
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (PHOENIX Center) Beijing Institute of Lifeomics Beijing China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
11
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021; 249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden.; Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain..
| |
Collapse
|
12
|
Yan Y, Wang J, Dong X, Cai Y, Wang Y, Ren L, Zhang C, Tao M, Luo K, Zeng Y, Liu S. Quantitative proteomic analysis of hepatic tissue in allotetraploid hybridized from red crucian carp and common carp identified crucial proteins and pathways associated with metabolism and growth rate. Proteomics 2021; 22:e2100115. [PMID: 34713569 DOI: 10.1002/pmic.202100115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Allotetraploid is a new species produced by distant hybridization between red crucian carp (Carassius auratus red var., abbreviated as RCC) and common carp (Cyprinus carpio L., abbreviated as CC). There is a significant difference in growth rate between allotetraploid and its parents. However, the underlying molecular mechanism is largely unknown. In this study, to find direct evidence associated with metabolism and growth rate in protein level, we performed quantitative proteomics analysis on liver tissues between allotetraploid and its parents. A total of 2502 unique proteins were identified and quantified by SWATH-MS in our proteomics profiling. Subsequently, comprehensive bioinformatics analyses including gene ontology enrichment analysis, pathway and network analysis, and protein-protein interaction analysis (PPI) were conducted based on differentially expressed proteins (DEPs) between allotetraploid and its parents. The results revealed several significant DEPs involved in metabolism pathways in liver. More specifically, the integrative analysis highlighted that the DEPs ACSBG1, OAT, and LDHBA play vital roles in metabolism pathways including "pentose phosphate pathway," "TCA cycle," and "glycolysis and gluconeogenesis." These could directly affect the growth rate in fresh water fishes by regulating the metabolism, utilization, and exchange of substance and energy. Since the liver is the central place for metabolism activity in animals, we firstly established the comprehensive and quantitative proteomics knowledge base for liver tissue from freshwater fishes, our study may serve as an irreplaceable reference for further studies regarding fishes' culture and growth.
Collapse
Affiliation(s)
- Yujie Yan
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China.,National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Junting Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yisheng Cai
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yude Wang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Li Ren
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Chun Zhang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Min Tao
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Kaikun Luo
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yong Zeng
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China.,National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shaojun Liu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
13
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
14
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Coombs KM. Update on Proteomic approaches to uncovering virus-induced protein alterations and virus -host protein interactions during the progression of viral infection. Expert Rev Proteomics 2020; 17:513-532. [PMID: 32910682 DOI: 10.1080/14789450.2020.1821656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Viruses induce profound changes in the cells they infect. Understanding these perturbations will assist in designing better therapeutics to combat viral infection. System-based proteomic assays now provide unprecedented opportunity to monitor large numbers of cellular proteins. AREAS COVERED This review will describe various quantitative and functional mass spectrometry-based methods, and complementary non-mass spectrometry-based methods, such as aptamer profiling and proximity extension assays, and examples of how each are used to delineate how viruses affect host cells, identify which viral proteins interact with which cellular proteins, and how these change during the course of a viral infection. PubMed was searched multiple times prior to manuscript submissions and revisions, using virus, viral, proteomics; in combination with each keyword. The most recent examples of published works from each search were then analyzed. EXPERT OPINION There has been exponential growth in numbers and types of proteomic analyses in recent years. Continued development of reagents that allow increased multiplexing and deeper proteomic probing of the cell, at quantitative and functional levels, enhancements that target more important protein modifications, and improved bioinformatics software tools and pathway prediction algorithms will accelerate this growth and usher in a new era of host proteome understanding.
Collapse
Affiliation(s)
- Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics and Systems Biology , Winnipeg, Manitoba, Canada.,Manitoba Institute of Child Health , Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Mohammad-Beigi H, Scavenius C, Jensen PB, Kjaer-Sorensen K, Oxvig C, Boesen T, Enghild JJ, Sutherland DS, Hayashi Y. Tracing the In Vivo Fate of Nanoparticles with a "Non-Self" Biological Identity. ACS NANO 2020; 14:10666-10679. [PMID: 32806026 DOI: 10.1021/acsnano.0c05178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pia Bomholt Jensen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas Boesen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Duncan S Sutherland
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Analysis of factor V in zebrafish demonstrates minimal levels needed for early hemostasis. Blood Adv 2020; 3:1670-1680. [PMID: 31167819 DOI: 10.1182/bloodadvances.2018029066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/17/2019] [Indexed: 12/28/2022] Open
Abstract
In humans, coagulation factor V (FV) deficiency is a rare, clinically heterogeneous bleeding disorder, suggesting that genetic modifiers may contribute to disease expressivity. Zebrafish possess many distinct advantages including high fecundity, optical clarity, external development, and homology with the mammalian hemostatic system, features that make it ideal for genetic studies. Our aim was to study the role of FV in zebrafish through targeted mutagenesis and apply the model to the study of human F5 variants. CRISPR-mediated genome editing of the zebrafish f5 locus was performed, generating mutants homozygous for a 49 base pair deletion in exon 4. Thrombus formation secondary to vascular endothelial injury was absent in f5 -/- mutant embryos and larvae. Despite this severe hemostatic defect, homozygous mutants survived before succumbing to severe hemorrhage in adulthood. Human F5 variants of uncertain significance from patients with FV deficiency were evaluated, and the causative mutations identified and stratified by their ability to restore thrombus formation in larvae. Analysis of these novel mutations demonstrates variable residual FV function, with minimal activity being required to restore hemostasis in response to laser-induced endothelial injury. This in vivo evaluation may be beneficial for patients whose factor activity levels lack correlation with bleeding symptomatology, although limitations exist. Furthermore, homozygous mutant embryos tolerate what is a severe and lethal defect in mammals, suggesting the possibility of species-specific factors enabling survival, and allowing further study not possible in the mouse. Identification of these factors or other genetic modifiers could lead to novel therapeutic modalities.
Collapse
|
18
|
Karapetian M, Tsikarishvili S, Kulikova N, Kurdadze A, Zaalishvili G. Genotoxic effects of topoisomerase poisoning and PARP inhibition on zebrafish embryos. DNA Repair (Amst) 2020; 87:102772. [DOI: 10.1016/j.dnarep.2019.102772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
|
19
|
Honan MC, Greenwood SL. Characterization of variations within the rumen metaproteome of Holstein dairy cattle relative to morning feed offering. Sci Rep 2020; 10:3179. [PMID: 32081893 PMCID: PMC7035244 DOI: 10.1038/s41598-020-59974-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Few studies have utilized proteomic techniques to progress our knowledge of protein-mediated pathways within the rumen microbial community, and no previous research has used these techniques to investigate the patterns or variations of these proteins within this community. It was hypothesized that there would be fluctuations of rumen microbial protein abundances due to feed intake-mediated nutrient availability and that these could be identified using non gel-based proteomic techniques. This study investigated the fluctuations of bovine rumen metaproteome utilizing three mid to late-lactation Holsteins. Rumen fluid was collected at three timepoints on three days relative to their first morning feed offering (0 h, 4 h, and 6 h). Samples were pooled within timepoint within cow across day, analyzed using LC-MS/MS techniques, and analyzed for variations across hour of sampling using PROC MIXED of SAS with orthogonal contrasts to determine linear and quadratic effects. A total of 658 proteins were characterized across 19 microbial species, with 68 proteins identified from a variety of 15 species affected by time of collection. Translation-related proteins such as 50S and 30S ribosomal protein subunit variants and elongation factors were positively correlated with hour of sampling. Results suggest that as nutrients become more readily available, microbes shift from conversion-focused biosynthetic routes to more encompassing DNA-driven pathways.
Collapse
Affiliation(s)
- Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA
| | - Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA.
| |
Collapse
|
20
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
21
|
Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos. Int J Mol Sci 2019; 20:ijms20246359. [PMID: 31861170 PMCID: PMC6940819 DOI: 10.3390/ijms20246359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Zebrafish is a well-recognized organism for investigating vertebrate development and human diseases. However, the data on zebrafish proteome are scarce, particularly during embryogenesis. This is mostly due to the overwhelming abundance of egg yolk proteins, which tend to mask the detectable presence of less abundant proteins. We developed an efficient procedure to reduce the amount of yolk in zebrafish early embryos to improve the Liquid chromatography-tandem mass spectrometry (LC-MS)-based shotgun proteomics analysis. We demonstrated that the deyolking procedure resulted in a greater number of proteins being identified. This protocol resulted in approximately 2-fold increase in the number of proteins identified in deyolked samples at cleavage stages, and the number of identified proteins increased greatly by 3-4 times compared to non-deyolked samples in both oblong and bud stages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a high number of functional proteins differentially accumulated in the deyolked versus non-deyolked samples. The most prominent enrichments after the deyolking procedure included processes, functions, and components related to cellular organization, cell cycle, control of replication and translation, and mitochondrial functions. This deyolking procedure improves both qualitative and quantitative proteome analyses and provides an innovative tool in molecular embryogenesis of polylecithal animals, such as fish, amphibians, reptiles, or birds.
Collapse
|
22
|
Zhao X, Chen J, Zhang W, Yang C, Ma X, Zhang S, Zhang X. Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2646-2654. [PMID: 31628596 DOI: 10.1007/s13361-019-02334-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/24/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Lipids exert substantial influences on vertebrate embryogenesis, but their metabolic dynamics at detailed structural levels remains elusive, primarily owing to the lack of a tool capable of resolving their huge structural diversity. Herein, we present the first large-scale and spatiotemporal monitoring of unsaturated lipids with C=C specificity in single developing zebrafish embryos enabled by photochemical derivatization and tandem mass spectrometry (MS). The lipid isomer composition was found extremely stable in yolk throughout embryogenesis, while notable differences in ratios of C=C location (e.g., PC 16:0_16:1 (7) vs. 16:0_16:1 (9)) and fatty acyl composition isomers (e.g., PC 16:1_18:1 vs. 16:0_18:2) were unveiled between blastomeres and yolk from zygote to 4 h post fertilization (hpf). From 24 hpf onwards, lipid isomer compositions in embryo head and tail evolved distinctively with development, suggesting a meticulously regulated lipid remodeling essential for cell division and differentiation. This work has laid the foundation for functional studies of structurally defined lipids in vertebrate embryology.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiying Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengdui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Dynamics of Non-Canonical Amino Acid-Labeled Intra- and Extracellular Proteins in the Developing Mouse. Cell Mol Bioeng 2019; 12:495-509. [PMID: 31719929 DOI: 10.1007/s12195-019-00592-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Mapping protein synthesis and turnover during development will provide insight into functional tissue assembly; however, quantitative in vivo characterization has been hindered by a lack of tools. To address this gap, we previously demonstrated murine embryos can be labeled with the non-canonical amino acid azidohomoalanine (Aha), which enables the enrichment and identification of newly synthesized proteins. Using this technique, we now show how protein turnover varies as a function of both time and cellular compartment during murine development. Methods Pregnant C57BL/6 mice were injected with Aha or PBS (control) at different embryonic time points. Aha-labeled proteins from homogenized E12.5 and E15.5 embryos were conjugated with diazo biotin-alkyne, bound to NeutrAvidin beads, selectively released, then processed for either SDS-PAGE or LC-MS/MS. For turnover studies, embryos were harvested 0-48 h after Aha injection at E12.5, separated into different cellular fractions based on solubility, and analyzed via western blotting. Results We developed an enhanced method for isolating Aha-labeled proteins from embryos that minimizes background signal from unlabeled proteins and avidin contamination. Approximately 50% of all identified proteins were found only in Aha samples. Comparing proteins present in both Aha and PBS samples, 90% were > 2-fold enriched in Aha-treated embryos. Furthermore, this method could resolve differences in the Aha-labeled proteome between developmental time points. Newly synthesized Aha-labeled proteins were observed by 3 h and peak labeling was around 6 h. Notably, extracellular matrix and cytoskeletal turnover appeared lower than the cytosolic fraction. Conclusions The methods developed in this work enable the identification and quantification of protein synthesis and turnover in different tissue fractions during development. This will provide insight into functional tissue assembly and ultimately inform the design of regenerative therapies that seek to promote growth and repair.
Collapse
|
24
|
McCool EN, Chen D, Li W, Liu Y, Sun L. Capillary zone electrophoresis-tandem mass spectrometry using ultraviolet photodissociation (213 nm) for large-scale top-down proteomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2855-2861. [PMID: 31608127 PMCID: PMC6788745 DOI: 10.1039/c9ay00585d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has attracted attention recently for large-scale top-down proteomics that aims to characterize proteoforms in cells at a global scale and with high throughput. In this work, CZE-MS/MS with ultraviolet photodissociation (UVPD) was evaluated for large-scale top-down proteomics for the first time. Roughly, 600 proteoforms and 369 proteins were identified from a zebrafish brain sample via coupling size exclusion chromatography (SEC) fractionation to CZE-UVPD. The dataset represents one of the largest top-down proteomics datasets using UVPD. Single-shot CZE-UVPD identified 227 proteoforms of 139 proteins from one SEC fraction of the zebrafish brain sample. The SEC-CZE-UVPD system identified zebrafish brain proteoforms in a mass range of 3-21 kDa. The UVPD with 213-nm photons produced reasonably good gas-phase fragmentation of proteoforms. For instance, 75% backbone cleavages were observed for Parvalbumin-7 with about 12-kDa molecular weight. The system detected various post-translational modifications (PTMs) from the zebrafish brain sample, including N-terminal acetylation, trimethylation and myristoylation of N-terminal glycine. Two different proteoforms of calmodulin, with either only N-terminal acetylation or both N-terminal acetylation and K115 trimethylation, were identified in the zebrafish brain sample. To our best knowledge, there is no experimental evidence reported in the literature on the two proteoforms of calmodulin in the zebrafish brain.
Collapse
Affiliation(s)
- Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Wenxue Li
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, United States
| | - Yansheng Liu
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
- Corresponding author. , Phone: 1-517-353-0498
| |
Collapse
|
25
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:2646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton's Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
26
|
Li X, Zhang C, Gong T, Ni X, Li J, Zhan D, Liu M, Song L, Ding C, Xu J, Zhen B, Wang Y, Qin J. A time-resolved multi-omic atlas of the developing mouse stomach. Nat Commun 2018; 9:4910. [PMID: 30464175 PMCID: PMC6249217 DOI: 10.1038/s41467-018-07463-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian stomach is structurally highly diverse and its organ functionality critically depends on a normal embryonic development. Although there have been several studies on the morphological changes during stomach development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive, temporal proteome and transcriptome atlas of the mouse stomach at multiple developmental stages. Quantitative analysis of 12,108 gene products allows identifying three distinct phases based on changes in proteins and RNAs and the gain of stomach functions on a longitudinal time scale. The transcriptome indicates functionally important isoforms relevant to development and identifies several functionally unannotated novel splicing junction transcripts that we validate at the peptide level. Importantly, many proteins differentially expressed in stomach development are also significantly overexpressed in diffuse-type gastric cancer. Overall, our study provides a resource to understand stomach development and its connection to gastric cancer tumorigenesis.
Collapse
Affiliation(s)
- Xianju Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chunchao Zhang
- Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tongqing Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Department of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Department of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jianming Xu
- Department of Gastrointestinal Oncology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples from proteins of treatment/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
28
|
Parolini M, Bini L, Magni S, Rizzo A, Ghilardi A, Landi C, Armini A, Del Giacco L, Binelli A. Exposure to cocaine and its main metabolites altered the protein profile of zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:603-614. [PMID: 28993024 DOI: 10.1016/j.envpol.2017.09.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Illicit drugs have been identified as emerging aquatic pollutants because of their widespread presence in freshwaters and potential toxicity towards aquatic organisms. Among illicit drug residues, cocaine (COC) and its main metabolites, namely benzoylecgonine (BE) and ecgonine methyl ester (EME), are commonly detected in freshwaters worldwide at concentration that can induce diverse adverse effects to non-target organisms. However, the information of toxicity and mechanisms of action (MoA) of these drugs, mainly of COC metabolites, to aquatic species is still fragmentary and inadequate. Thus, this study was aimed at investigating the toxicity of two concentrations (0.3 and 1.0 μg/L) of COC, BE and EME similar to those found in aquatic ecosystems on zebrafish (Danio rerio) embryos at 96 h post fertilization through a functional proteomics approach. Exposure to COC and both its metabolites significantly altered the protein profile of zebrafish embryos, modulating the expression of diverse proteins belonging to different functional classes, including cytoskeleton, eye constituents, lipid transport, lipid and energy metabolism, and stress response. Expression of vitellogenins and crystallins was modulated by COC and both its main metabolites, while only BE and EME altered proteins related to lipid and energy metabolism, as well as to oxidative stress response. Our data confirmed the potential toxicity of low concentrations of COC, BE and EME, and helped to shed light on their MoA on an aquatic vertebrate during early developmental period.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, I-20133 Milano, Italy.
| | - Luca Bini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Alessandro Rizzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, I-20133 Milano, Italy
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandro Armini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
29
|
Gao Y, Liu X, Tang B, Li C, Kou Z, Li L, Liu W, Wu Y, Kou X, Li J, Zhao Y, Yin J, Wang H, Chen S, Liao L, Gao S. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep 2017; 21:3957-3969. [DOI: 10.1016/j.celrep.2017.11.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
|
30
|
Yilmaz O, Patinote A, Nguyen TV, Com E, Lavigne R, Pineau C, Sullivan CV, Bobe J. Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio). PLoS One 2017; 12:e0188084. [PMID: 29145436 PMCID: PMC5690628 DOI: 10.1371/journal.pone.0188084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chromatography and tandem mass spectrometry. Obtained spectra were searched against a zebrafish proteome database and detected proteins were annotated, categorized and quantified based on normalized spectral counts. Manually curated and automated enrichment analyses revealed poor quality eggs to be deficient of proteins involved in protein synthesis and energy and lipid metabolism, and of some vitellogenin products and lectins, and to have a surfeit of proteins involved in endo-lysosomal activities, autophagy, and apoptosis, and of some oncogene products, lectins and egg envelope proteins. Results of pathway and network analyses suggest that this aberrant proteomic profile results from failure of oocytes giving rise to poor quality eggs to properly transit through final maturation, and implicated Wnt signaling in the etiology of this defect. Quantitative comparisons of abundant proteins in good versus poor quality eggs revealed 17 candidate egg quality markers. Thus, the zebrafish egg proteome is clearly linked to embryo developmental potential, a phenomenon that begs further investigation to elucidate the root causes of poor egg quality, presently a serious and intractable problem in livestock and human reproductive medicine.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Laboratory of Fish Physiology and Genomics, INRA UR1037, Rennes Cedex, France
| | - Amélie Patinote
- Laboratory of Fish Physiology and Genomics, INRA UR1037, Rennes Cedex, France
| | - Thao Vi Nguyen
- Laboratory of Fish Physiology and Genomics, INRA UR1037, Rennes Cedex, France
| | | | | | | | | | - Julien Bobe
- Laboratory of Fish Physiology and Genomics, INRA UR1037, Rennes Cedex, France
- * E-mail:
| |
Collapse
|
31
|
Peuchen EH, Cox OF, Sun L, Hebert AS, Coon JJ, Champion MM, Dovichi NJ, Huber PW. Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development. Sci Rep 2017; 7:15647. [PMID: 29142207 PMCID: PMC5688136 DOI: 10.1038/s41598-017-15936-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Abstract
The earliest stages of animal development are largely controlled by changes in protein phosphorylation mediated by signaling pathways and cyclin-dependent kinases. In order to decipher these complex networks and to discover new aspects of regulation by this post-translational modification, we undertook an analysis of the X. laevis phosphoproteome at seven developmental stages beginning with stage VI oocytes and ending with two-cell embryos. Concurrent measurement of the proteome and phosphoproteome enabled measurement of phosphosite occupancy as a function of developmental stage. We observed little change in protein expression levels during this period. We detected the expected phosphorylation of MAP kinases, translational regulatory proteins, and subunits of APC/C that validate the accuracy of our measurements. We find that more than half the identified proteins possess multiple sites of phosphorylation that are often clustered, where kinases work together in a hierarchical manner to create stretches of phosphorylated residues, which may be a means to amplify signals or stabilize a particular protein conformation. Conversely, other proteins have opposing sites of phosphorylation that seemingly reflect distinct changes in activity during this developmental timeline.
Collapse
Affiliation(s)
- Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Olivia F Cox
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Alex S Hebert
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
32
|
Lombard-Banek C, Portero EP, Onjiko RM, Nemes P. New-generation mass spectrometry expands the toolbox of cell and developmental biology. Genesis 2017; 55. [PMID: 28095647 DOI: 10.1002/dvg.23012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Systems cell biology understanding of development requires characterization of all the molecules produced in the biological system. Decades of research and new-generation sequencing provided functional information on key genes and transcripts. However, there is less information available on how differential gene expression translates into the domains of functionally important proteins, peptides, and metabolites, and how changes in these molecules impact development. Mass spectrometry (MS) is the current technology of choice for the detection and quantification of large numbers of proteins and metabolites, because it requires no use of antibodies, functional probes, or a priori knowledge of molecules produced in the system. This review focuses on recent technologies that have improved MS sensitivity for proteins and metabolites and enabled new functionalities to assess their temporal and spatial changes during vertebrate embryonic development. This review highlights case studies, in which new-generation MS tools have enabled the study of hundreds-to-thousands of proteins and metabolites in tissues, cell populations, and single cells in model systems of vertebrate development, particularly the frog (Xenopus), zebrafish, and mouse. New-generation MS expands the toolbox of cell and developmental studies, raising exciting potentials to advance basic and translational research in the life sciences.
Collapse
Affiliation(s)
| | - Erika P Portero
- Department of Chemistry, The George Washington University, Washington, DC, 20052
| | - Rosemary M Onjiko
- Department of Chemistry, The George Washington University, Washington, DC, 20052
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, DC, 20052
| |
Collapse
|
33
|
In silico predicted reproductive endocrine transcriptional regulatory networks during zebrafish (Danio rerio) development. J Theor Biol 2017; 417:51-60. [PMID: 28111318 DOI: 10.1016/j.jtbi.2017.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
Abstract
The interconnected topology of transcriptional regulatory networks (TRNs) readily lends to mathematical (or in silico) representation and analysis as a stoichiometric matrix. Such a matrix can be 'solved' using the mathematical method of extreme pathway (ExPa) analysis, which identifies uniquely activated genes subject to transcription factor (TF) availability. In this manuscript, in silico multi-tissue TRN models of brain, liver and gonad were used to study reproductive endocrine developmental programming in zebrafish (Danio rerio) from 0.25h post fertilization (hpf; zygote) to 90 days post fertilization (dpf; adult life stage). First, properties of TRN models were studied by sequentially activating all genes in multi-tissue models. This analysis showed the brain to exhibit lowest proportion of co-regulated genes (19%) relative to liver (23%) and gonad (32%). This was surprising given that the brain comprised 75% and 25% more TFs than liver and gonad respectively. Such 'hierarchy' of co-regulatory capability (brain<liver<gonad) indicated presence of highly gene-specific TRNs in the brain, alluding to its role as 'master controller' of endocrine function. Second, TRN models were constrained with varying TF availabilities during zebrafish development. Normalized numbers of genes active during development showed concomitant activations between brain and gonad from 10 to 12 hpf (embryonic life stage) up to 30-90 dpf (adult life stage). This indicated a putative 'syncing' between the brain and gonad, and initiation of an early reproductive endocrine developmental program. Finally, comparison of in vivo active genes with those predicted in silico showed relatively good agreement for brain (49%), liver (27%) and gonad (32%). The multi-tissue TRN models presented can lend diagnostic insights into the effects of changing environmental and/or genetic constraints on reproductive endocrine function.
Collapse
|
34
|
Nie CH, Wan SM, Tomljanovic T, Treer T, Hsiao CD, Wang WM, Gao ZX. Comparative proteomics analysis of teleost intermuscular bones and ribs provides insight into their development. BMC Genomics 2017; 18:147. [PMID: 28183283 PMCID: PMC5301324 DOI: 10.1186/s12864-017-3530-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Intermuscular bones (IBs) and ribs both are a part of skeletal system in teleosts, but with different developing process. The chemical composition of fish IBs and ribs as well as the underlying mechanism about their development have not been investigated. In the present study, histological structures showed that one bone cavity containing osteoclasts were existed in ribs, but not in IBs of Megalobrama amblycephala. We constructed the first proteomics map for fish bones including IBs and ribs, and identified the differentially expressed proteins between IBs and ribs through iTRAQ LC-MS/MS proteomic analysis. RESULTS The proteins extracted from IBs and ribs at 1- to 2-year old M. amblycephala were quantified 2,342 proteins, with 1,451 proteins annotated with GO annotation in biological processes, molecular function and cellular component. A number of bone related proteins as well as pathways were identified in the study. A total of 93 and 154 differently expressed proteins were identified in comparison groups of 1-IB-vs-1-Rib and 2-IB-vs-2-Rib, which indicated the obvious differences of chemical composition between these two bone tissues. The two proteins (vitronectin b precursor and matrix metalloproteinase-2) related to osteoclasts differentiation were significantly up-regulated in ribs compared with IBs (P < 0.05), which was in accordance with the results from histological structures. In comparison groups of 1-IB-vs-2-IB and 1-Rib-vs-2-Rib, 33 and 51 differently expressed proteins were identified and the function annotation results showed that these proteins were involved in regulating bone development and differentiation. Subsequently, 11 and 13 candidate proteins in comparison group of 1-IB-vs-1-Rib and 1-IB-vs-2-IB related to bone development were validated by MRM assays. CONCLUSIONS Our present study suggested the different key proteins involved in the composition of fish ribs and IBs as well as their growth development. These findings could provide important clues towards further understanding of fish skeletal system and the roles of proteins playing in regulating diverse biological processes in fish.
Collapse
Affiliation(s)
- Chun-Hong Nie
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan, 430070 China
| | - Shi-Ming Wan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan, 430070 China
| | - Tea Tomljanovic
- Department for Fisheries, Beekeeping, Game management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Tomislav Treer
- Department for Fisheries, Beekeeping, Game management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan, 430070 China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070 Hubei China
| |
Collapse
|
35
|
Incorporation of non-canonical amino acids into the developing murine proteome. Sci Rep 2016; 6:32377. [PMID: 27572480 PMCID: PMC5004113 DOI: 10.1038/srep32377] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/09/2016] [Indexed: 12/25/2022] Open
Abstract
Analysis of the developing proteome has been complicated by a lack of tools that can be easily employed to label and identify newly synthesized proteins within complex biological mixtures. Here, we demonstrate that the methionine analogs azidohomoalanine and homopropargylglycine can be globally incorporated into the proteome of mice through facile intraperitoneal injections. These analogs contain bio-orthogonal chemical handles to which fluorescent tags can be conjugated to identify newly synthesized proteins. We show these non-canonical amino acids are incorporated into various tissues in juvenile mice and in a concentration dependent manner. Furthermore, administration of these methionine analogs to pregnant dams during a critical stage of murine development, E10.5-12.5 when many tissues are assembling, does not overtly disrupt development as assessed by proteomic analysis and normal parturition and growth of pups. This successful demonstration that non-canonical amino acids can be directly administered in vivo will enable future studies that seek to characterize the murine proteome during growth, disease and repair.
Collapse
|
36
|
Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human. Sci Rep 2016; 6:24329. [PMID: 27071722 PMCID: PMC4829857 DOI: 10.1038/srep24329] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/24/2016] [Indexed: 02/08/2023] Open
Abstract
Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish.
Collapse
|
37
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
38
|
Chicano-Gálvez E, Asensio E, Cañavate JP, Alhama J, López-Barea J. Proteomic analysis through larval development ofSolea senegalensisflatfish. Proteomics 2015; 15:4105-19. [DOI: 10.1002/pmic.201500176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/30/2015] [Accepted: 09/09/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| |
Collapse
|
39
|
Petushkova NA, Kuznetsova GP, Larina OV, Kisrieva YS, Samenkova NF, Trifonova OP, Miroshnichenko YV, Zolotarev KV, Karuzina II, Ipatova OM, Lisitsa AV. One-dimensional proteomic profiling of Danio rerio embryo vitellogenin to estimate quantum dot toxicity. Proteome Sci 2015; 13:17. [PMID: 25964724 PMCID: PMC4426544 DOI: 10.1186/s12953-015-0072-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vitellogenin (Vtg) is the major egg yolk protein (YP) in most oviparous species and may be useful as an indicator in ecotoxicological testing at the biochemical level. In this study, we obtained detailed information about the Vtgs of Danio rerio embryos by cutting SDS-PAGE gel lanes into thin slices, and analyzing them slice-by-slice with (MALDI-TOF) mass spectrometry. RESULTS We conducted three proteomic analyses, comparing embryonic Danio rerio Vtg cleavage products after exposure for 48 h to CdSecore/ZnSshell quantum dots (QDs), after exposure to a mixture of the components used for quantum dot synthesis (MCS-QDs), and in untreated embryos. The Vtg mass spectrometric profiles of the QDs-treated embryos differed from those of the unexposed or MCS-QDs-treated embryos. CONCLUSION This study demonstrates the possible utility of Vtg profiling in D. rerio embryos as a sensitive diagnostic tool to estimate nanoparticle toxicity.
Collapse
Affiliation(s)
- Natalia A Petushkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
- />Postgen Tech LLC, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Galina P Kuznetsova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olesya V Larina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Yulia S Kisrieva
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Natalia F Samenkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Oxana P Trifonova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | | | - Konstantin V Zolotarev
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Irina I Karuzina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olga M Ipatova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Andrey V Lisitsa
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| |
Collapse
|
40
|
Ezzati P, Komher K, Severini G, Coombs KM. Comparative proteomic analyses demonstrate enhanced interferon and STAT-1 activation in reovirus T3D-infected HeLa cells. Front Cell Infect Microbiol 2015; 5:30. [PMID: 25905045 PMCID: PMC4388007 DOI: 10.3389/fcimb.2015.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022] Open
Abstract
As obligate intracellular parasites, viruses are exclusively and intimately dependent upon their host cells for replication. During replication viruses induce profound changes within cells, including: induction of signaling pathways, morphological changes, and cell death. Many such cellular perturbations have been analyzed at the transcriptomic level by gene arrays and recent efforts have begun to analyze cellular proteomic responses. We recently described comparative stable isotopic (SILAC) analyses of reovirus, strain type 3 Dearing (T3D)-infected HeLa cells. For the present study we employed the complementary labeling strategy of iTRAQ (isobaric tags for relative and absolute quantitation) to examine HeLa cell changes induced by T3D, another reovirus strain, type 1 Lang, and UV-inactivated T3D (UV-T3D). Triplicate replicates of cytosolic and nuclear fractions identified a total of 2375 proteins, of which 50, 57, and 46 were significantly up-regulated, and 37, 26, and 44 were significantly down-regulated by T1L, T3D, and UV-T3D, respectively. Several pathways, most notably the Interferon signaling pathway and the EIF2 and ILK signaling pathways, were induced by virus infection. Western blots confirmed that cells were more strongly activated by live T3D as demonstrated by elevated levels of key proteins like STAT-1, ISG-15, IFIT-1, IFIT-3, and Mx1. This study expands our understanding of reovirus-induced host responses.
Collapse
Affiliation(s)
- Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba Winnipeg, MB, Canada
| | - Krysten Komher
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Giulia Severini
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Kevin M Coombs
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba Winnipeg, MB, Canada ; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada ; Manitoba Institute of Child Health, John Buhler Research Centre Winnipeg, MB, Canada
| |
Collapse
|
41
|
Andreeva AM, Lamas NE, Serebryakova MV, Ryabtseva IP, Bolshakov VV. Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of cyprinidae. BIOCHEMISTRY (MOSCOW) 2015; 80:208-18. [PMID: 25756535 DOI: 10.1134/s0006297915020078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reorganization of the low-molecular-weight fraction of cyprinid plasma was analyzed using various electrophoretic techniques (disc electrophoresis, electrophoresis in polyacrylamide concentration gradient, in polyacrylamide with urea, and in SDS-polyacrylamide). The study revealed coordinated changes in the low-molecular-weight protein fractions with seasonal dynamics and related reproductive rhythms of fishes. We used cultured species of the Cyprinidae family with sequenced genomes for the detection of these interrelations in fresh-water and anadromous cyprinid species. The common features of organization of fish low-molecular-weight plasma protein fractions made it possible to make reliable identification of their proteins. MALDI mass-spectrometry analysis revealed the presence of the same proteins (hemopexin, apolipoproteins, and serpins) in the low-molecular-weight plasma fraction in wild species and cultured species with sequenced genomes (carp, zebrafish). It is found that the proteins of the first two classes are organized as complexes made of protein oligomers. Stoichiometry of these complexes changes in concordance with the seasonal and reproductive rhythms.
Collapse
Affiliation(s)
- A M Andreeva
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia.
| | | | | | | | | |
Collapse
|
42
|
Zheng L, Yu J, Shi H, Xia L, Xin Q, Zhang Q, Zhao H, Luo J, Jin W, Li D, Zhou J. Quantitative toxicoproteomic analysis of zebrafish embryos exposed to a retinoid X receptor antagonist UVI3003. J Appl Toxicol 2015; 35:1049-57. [DOI: 10.1002/jat.3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Liang Zheng
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
- Department of Cancer Biology and Pharmacology; University of Illinois College of Medicine; One Illini Drive Peoria IL 61605 USA
| | - Jianlan Yu
- Asia Pacific Application Support Center; AB SCIEX; 888 Tianlin Road Shanghai 200233 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Liang Xia
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Qi Xin
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Qiang Zhang
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Heng Zhao
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Ji Luo
- Asia Pacific Application Support Center; AB SCIEX; 888 Tianlin Road Shanghai 200233 China
| | - Wenhai Jin
- Asia Pacific Application Support Center; AB SCIEX; 888 Tianlin Road Shanghai 200233 China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Junliang Zhou
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| |
Collapse
|
43
|
Biava PM, Canaider S, Facchin F, Bianconi E, Ljungberg L, Rotilio D, Burigana F, Ventura C. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells. Curr Pharm Biotechnol 2015; 16:782-792. [PMID: 26201607 PMCID: PMC5384357 DOI: 10.2174/1389201016666150629102825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/07/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022]
Abstract
In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.
Collapse
Affiliation(s)
- Pier M Biava
- Scientific Institute of Research and Care Multimedica, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 2014; 111:16830-5. [PMID: 25385584 DOI: 10.1073/pnas.1406997111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cardiovascular safety of nonsteroidal antiinflammatory drugs (NSAIDs) may be influenced by interactions with antiplatelet doses of aspirin. We sought to quantitate precisely the propensity of commonly consumed NSAIDs—ibuprofen, naproxen, and celecoxib—to cause a drug-drug interaction with aspirin in vivo by measuring the target engagement of aspirin directly by MS. We developed a novel assay of cyclooxygenase-1 (COX-1) acetylation in platelets isolated from volunteers who were administered aspirin and used conventional and microfluidic assays to evaluate platelet function. Although ibuprofen, naproxen, and celecoxib all had the potential to compete with the access of aspirin to the substrate binding channel of COX-1 in vitro, exposure of volunteers to a single therapeutic dose of each NSAID followed by 325 mg aspirin revealed a potent drug-drug interaction between ibuprofen and aspirin and between naproxen and aspirin but not between celecoxib and aspirin. The imprecision of estimates of aspirin consumption and the differential impact on the ability of aspirin to inactivate platelet COX-1 will confound head-to-head comparisons of distinct NSAIDs in ongoing clinical studies designed to measure their cardiovascular risk.
Collapse
|
45
|
Alli Shaik A, Wee S, Li RHX, Li Z, Carney TJ, Mathavan S, Gunaratne J. Functional Mapping of the Zebrafish Early Embryo Proteome and Transcriptome. J Proteome Res 2014; 13:5536-50. [DOI: 10.1021/pr5005136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asfa Alli Shaik
- Institute
of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673, Singapore
| | - Sheena Wee
- Institute
of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673, Singapore
| | - Rachel Hai Xia Li
- Institute
of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673, Singapore
| | - Zhen Li
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, 138672, Singapore
| | - Tom J. Carney
- Institute
of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673, Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang
Avenue, 639798, Singapore
| | - Sinnakaruppan Mathavan
- Genome
Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, 138672, Singapore
| | - Jayantha Gunaratne
- Institute
of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673, Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang
Avenue, 639798, Singapore
- Department
of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| |
Collapse
|
46
|
Rhee JS, Lee JS. Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus. MARINE POLLUTION BULLETIN 2014; 85:532-541. [PMID: 24759509 DOI: 10.1016/j.marpolbul.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Genome resources have advantages for understanding diverse areas such as biological patterns and functioning of organisms. Omics platforms are useful approaches for the study of organs and organisms. These approaches can be powerful screening tools for whole genome, proteome, and metabolome profiling, and can be used to understand molecular changes in response to internal and external stimuli. This methodology has been applied successfully in freshwater model fish such as the zebrafish Danio rerio and the Japanese medaka Oryzias latipes in research areas such as basic physiology, developmental biology, genetics, and environmental biology. However, information is still scarce about model fish that inhabit brackish water or seawater. To develop the self-fertilizing killifish Kryptolebias marmoratus as a potential model species with unique characteristics and research merits, we obtained genomic information about K. marmoratus. We address ways to use these data for genome-based molecular mechanistic studies. We review the current state of genome information on K. marmoratus to initiate omics approaches. We evaluate the potential applications of integrated omics platforms for future studies in environmental science, developmental biology, and biomedical research. We conclude that information about the K. marmoratus genome will provide a better understanding of the molecular functions of genes, proteins, and metabolites that are involved in the biological functions of this species. Omics platforms, particularly combined technologies that make effective use of bioinformatics, will provide powerful tools for hypothesis-driven investigations and discovery-driven discussions on diverse aspects of this species and on fish and vertebrates in general.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Marine Science, College of Natural Science, Incheon National University, Incheon 406-772, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
47
|
Manuel R, Gorissen M, Roca CP, Zethof J, van de Vis H, Flik G, van den Bos R. Inhibitory avoidance learning in zebrafish (Danio rerio): effects of shock intensity and unraveling differences in task performance. Zebrafish 2014; 11:341-52. [PMID: 25004302 DOI: 10.1089/zeb.2013.0970] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The zebrafish (Danio rerio) is increasingly used as a model in neurobehavioral and neuroendocrine studies. The inhibitory avoidance paradigm has been proposed as tool to study mechanisms underlying learning and memory in zebrafish. In this paradigm subjects receive a shock after entering the black compartment of a black-white box. On the next day, latency to enter the black compartment is assessed; higher latencies are indicative of increased avoidance learning. Here, we aimed to understand the effects of different shock intensities (0, 1, 3, and 9 V) and to unravel variation in inhibitory avoidance learning in an in-house reared Tuebingen Long-Fin zebrafish (D. rerio) strain. While median latencies had increased in the 1, 3, and 9 V groups, no increase in median latency was found in the 0 V group. In addition, higher shock intensities resulted in a higher number of avoiders (latency ≥180 s) over nonavoiders (latency <60 s). Both changes are indicative of increased avoidance learning. We assessed whole-body cortisol content and the expression levels of genes relevant to stress, anxiety, fear, and learning 2 h after testing. Shock intensity was associated with whole-body cortisol content and the expression of glucocorticoid receptor alpha [nr3c1(alpha)], cocaine- and amphetamine-regulated transcript (cart4), and mineralocorticoid receptor (nr3c2), while avoidance behavior was associated with whole-body cortisol content only. The inhibitory avoidance paradigm in combination with measuring whole-body cortisol content and gene expression is suitable to unravel (genetic) mechanisms of fear avoidance learning. Our data further show differences in brain-behavior relationships underlying fear avoidance learning and memory in zebrafish. These findings serve as starting point for further unraveling differences in brain-behavior relationships underlying (fear avoidance) learning and memory in zebrafish.
Collapse
Affiliation(s)
- Remy Manuel
- 1 Department of Animal Physiology, Institute of Water and Wetland Research, Radboud University Nijmegen , Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Effects of Fullerene C60 on Proteomic Profile of Danio Rerio Fish Embryos. Bull Exp Biol Med 2014; 156:694-8. [DOI: 10.1007/s10517-014-2427-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 10/25/2022]
|
49
|
Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development. Sci Rep 2014; 4:4365. [PMID: 24626130 PMCID: PMC3953746 DOI: 10.1038/srep04365] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023] Open
Abstract
While there is a rich literature on transcription dynamics during the development of many organisms, protein data is limited. We used iTRAQ isotopic labeling and mass spectrometry to generate the largest developmental proteomic dataset for any animal. Expression dynamics of nearly 4,000 proteins of Xenopuslaevis was generated from fertilized egg to neurula embryo. Expression clusters into groups. The cluster profiles accurately reflect the major events that mark changes in gene expression patterns during early Xenopus development. We observed decline in the expression of ten DNA replication factors after the midblastula transition (MBT), including a marked decline of the licensing factor XCdc6. Ectopic expression of XCdc6 leads to apoptosis; temporal changes in this protein are critical for proper development. Measurement of expression in single embryos provided no evidence for significant protein heterogeneity between embryos at the same stage of development.
Collapse
|
50
|
van der Plas-Duivesteijn SJ, Mohammed Y, Dalebout H, Meijer A, Botermans A, Hoogendijk JL, Henneman AA, Deelder AM, Spaink HP, Palmblad M. Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues. J Proteome Res 2014; 13:1537-44. [PMID: 24460240 DOI: 10.1021/pr4010585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spectral libraries provide a sensitive and accurate method for identifying peptides from tandem mass spectra, complementary to searching genome-derived databases or sequencing de novo. Their application requires comprehensive libraries including peptides from low-abundant proteins. Here we describe a method for constructing such libraries using biological differentiation to "fractionate" the proteome by harvesting adult organs and tissues and build comprehensive libraries for identifying proteins in zebrafish (Danio rerio) embryos and larvae (an important and widely used model system). Hierarchical clustering using direct comparison of spectra was used to prioritize organ selection. The resulting and publicly available library covers 14,164 proteins, significantly improved the number of peptide-spectrum matches in zebrafish developmental stages, and can be used on data from different instruments and laboratories. The library contains information on tissue and organ expression of these proteins and is also applicable for adult experiments. The approach itself is not limited to zebrafish but would work for any model system.
Collapse
|