1
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Durydivka O, Gazdarica M, Vecerkova K, Radenkovic S, Blahos J. Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene 2024; 892:147851. [PMID: 37783296 DOI: 10.1016/j.gene.2023.147851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Alternative splicing can often result in the expression of distinct protein isoforms from a single gene, with specific composition and properties. SH3-containing GRB2-like protein 3-interacting protein 1 (Sgip1) is a brain-enriched protein that regulates clathrin-mediated endocytosis and interferes with the internalization of cannabinoid receptor 1. Several research groups have studied the physiological importance of Sgip1, and four Sgip1 protein isoforms have been described to date, while the NCBI Gene database predicts the expression of 20 splice variants from the Sgip1 gene in mice. In this work, we cloned 15 Sgip1 splice variants from the mouse brain, including 11 novel splice variants. The cloned splice variants differed in exon composition within two Sgip1 regions: the membrane phospholipid-binding domain and the proline-rich region. All the Sgip1 splice isoforms had similar stability and comparable ability to inhibit the internalization of cannabinoid receptor 1. None of the isoforms influenced the internalization of the µ-opioid receptor. We confirm the expression of Sgip1 splice variants described in previous studies or predicted in silico. Our data provide a basis for further studies exploring the significance of Sgip1 splicing, and we suggest a new classification of Sgip1 splice variants to unify their nomenclature.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Vecerkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Silvia Radenkovic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
3
|
Donta MS, Srivastava Y, Di Mauro CM, Paulucci-Holthauzen A, Waxham MN, McCrea PD. p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro. Front Cell Neurosci 2023; 17:1151249. [PMID: 37082208 PMCID: PMC10112520 DOI: 10.3389/fncel.2023.1151249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer's disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina M. Di Mauro
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions. J Biol Chem 2022; 298:102384. [PMID: 35987383 PMCID: PMC9520037 DOI: 10.1016/j.jbc.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent protein kinase (PKA), adaptor protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.
Collapse
|
5
|
Silbern I, Pan KT, Fiosins M, Bonn S, Rizzoli SO, Fornasiero EF, Urlaub H, Jahn R. Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling. Mol Cell Proteomics 2021; 20:100061. [PMID: 33582301 PMCID: PMC7995663 DOI: 10.1016/j.mcpro.2021.100061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
Synaptic transmission is mediated by the regulated exocytosis of synaptic vesicles. When the presynaptic membrane is depolarized by an incoming action potential, voltage-gated calcium channels open, resulting in the influx of calcium ions that triggers the fusion of synaptic vesicles (SVs) with the plasma membrane. SVs are recycled by endocytosis. Phosphorylation of synaptic proteins plays a major role in these processes, and several studies have shown that the synaptic phosphoproteome changes rapidly in response to depolarization. However, it is unclear which of these changes are directly linked to SV cycling and which might regulate other presynaptic functions that are also controlled by calcium-dependent kinases and phosphatases. To address this question, we analyzed changes in the phosphoproteome using rat synaptosomes in which exocytosis was blocked with botulinum neurotoxins (BoNTs) while depolarization-induced calcium influx remained unchanged. BoNT-treatment significantly alters the response of the synaptic phoshoproteome to depolarization and results in reduced phosphorylation levels when compared with stimulation of synaptosomes by depolarization with KCl alone. We dissect the primary Ca2+-dependent phosphorylation from SV-cycling-dependent phosphorylation and confirm an effect of such SV-cycling-dependent phosphorylation events on syntaxin-1a-T21/T23, synaptobrevin-S75, and cannabinoid receptor-1-S314/T322 on exo- and endocytosis in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Ivan Silbern
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Maksims Fiosins
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
6
|
Yadav RK, Minz E, Mehan S. Understanding Abnormal c-JNK/p38MAPK Signaling in Amyotrophic Lateral Sclerosis: Potential Drug Targets and Influences on Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:417-429. [PMID: 33557726 DOI: 10.2174/1871527320666210126113848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
c-JNK (c-Jun N-terminal kinase) and p38 mitogen-activated protein kinase (MAPK) family members work in a cell-specific manner to regulate neuronal signals. The abnormal activation of these cellular signals can cause glutamate excitotoxicity, disrupted protein homeostasis, defective axonal transport, and synaptic dysfunction. Various pre-clinical and clinical findings indicate that the up-regulation of c-JNK and p38MAPK signaling is associated with neurological disorders. Exceptionally, a significant amount of experimental data has recently shown that dysregulated c-JNK and p38MAPK are implicated in the damage to the central nervous system, including amyotrophic lateral sclerosis. Furthermore, currently available information has shown that c- JNK/p38MAPK signaling inhibitors may be a promising therapeutic alternative for improving histopathological, functional, and demyelination defects related to motor neuron disabilities. Understanding the abnormal activation of c-JNK/p38MAPK signaling and the prediction of motor neuron loss may help identify important therapeutic interventions that could prevent neurocomplications. Based on the involvement of c-JNK/p38MAPK signaling in the brain, we have assumed that the downregulation of the c-JNK/p38MAPK signaling pathway could trigger neuroprotection and neurotrophic effects towards clinicopathological presentations of ALS and other brain diseases. Thus, this research-based review also outlines the inhibition of c-JNK and p38MAPK signal downregulation in the pursuit of disease-modifying therapies for ALS.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Elizabeth Minz
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
7
|
Adegbola A, Lutz R, Nikkola E, Strom SP, Picker J, Wynshaw-Boris A. Disruption of CTNND2, encoding delta-catenin, causes a penetrant attention deficit disorder and myopia. HGG ADVANCES 2020; 1:100007. [PMID: 33718894 PMCID: PMC7948131 DOI: 10.1016/j.xhgg.2020.100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with poorly understood pathophysiology and genetic mechanisms. A balanced chromosomal translocation interrupts CTNND2 in several members of a family with profound attentional deficit and myopia, and disruption of the gene was found in a separate unrelated individual with ADHD and myopia. CTNND2 encodes a brain-specific member of the adherens junction complex essential for postsynaptic and dendritic development, a site of potential pathophysiology in attentional disorders. Therefore, we propose that the severe and highly penetrant nature of the ADHD phenotype in affected individuals identifies CTNND2 as a potential gateway to ADHD pathophysiology similar to the DISC1 translocation in psychosis or AUTS2 in autism.
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lutz
- Department of Genetic Medicine, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Child and Adolescent Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
9
|
Raj S, Sasidharan S, Balaji SN, Saudagar P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol Res 2020; 119:2025-2037. [DOI: 10.1007/s00436-020-06736-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
|
10
|
Butler CW, Wilson YM, Mills SA, Gunnersen JM, Murphy M. Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory. Neurobiol Learn Mem 2019; 168:107139. [PMID: 31843653 DOI: 10.1016/j.nlm.2019.107139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Memory is thought to be encoded within networks of neurons within the brain, but the identity of the neurons involved and circuits they form have not been described for any memory. Previously, we used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in different regions of the brain which were specifically activated following fear conditioning. This suggested that these populations of neurons form nodes in a network that encodes fear memory. In particular, one population of learning activated neurons was found within a discrete region of the lateral amygdala (LA), a key nucleus required for fear conditioning. In order to provide evidence that this population is directly involved in fear conditioning, we have analysed the expression of a key molecular requirement for fear conditioning in LA, phosphorylated Extracellular Signal Regulated Kinase 1 and 2 (pERK1/2). The only neurons in LA that specifically expressed pERK1/2 following auditory fear conditioning were in the ventrolateral nucleus of the LA (LAvl), in the same discrete region where we found learning specific FTL+ neurons. Double labelling experiments in FTL mice showed that a substantial proportion of the learning activated neurons expressed both pERK1/2 and FTL. These experiments provide clear evidence that the learning specific neurons we identified within LAvl are directly involved in auditory fear conditioning. In addition, learning specific expression of pERK1/2 was found in a dense network of dendrites contained within the border region of the LAvl. This network of dendrites may represent an activated dendritic field involved in fear conditioning in LA.
Collapse
Affiliation(s)
- Christopher W Butler
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yvette M Wilson
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samuel A Mills
- Biological Optical Microscopy Platform, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark Murphy
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
11
|
Jin DZ, Mao LM, Wang JQ. The Role of Extracellular Signal-Regulated Kinases (ERK) in the Regulation of mGlu5 Receptors in Neurons. J Mol Neurosci 2018; 66:629-638. [PMID: 30430306 PMCID: PMC6312115 DOI: 10.1007/s12031-018-1193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
The metabotropic glutamate (mGlu) receptor 5 is a G protein-coupled receptor and is densely expressed in the mammalian brain. Like other glutamate receptors, mGlu5 receptors are tightly regulated by posttranslational modifications such as phosphorylation, although underlying mechanisms are incompletely investigated. In this study, we investigated the role of a prime kinase, extracellular signal-regulated kinase 1 (ERK1), in the phosphorylation and regulation of mGlu5 receptors in vitro and in striatal neurons. We found that recombinant ERK1 proteins directly bound to the C-terminal tail (CT) of mGlu5 receptors in vitro. Endogenous ERK1 also interacted with mGlu5 receptor proteins in adult rat striatal neurons in vivo. The kinase showed the ability to phosphorylate mGlu5 receptors. A serine residue in the distal region of mGlu5 CT was found to be a primary phosphorylation site sensitive to ERK1. In functional studies, we found that pharmacological inhibition of ERK with an inhibitor U0126 reduced the efficacy of mGlu5 receptors in stimulating production of cytoplasmic inositol-1,4,5-triphosphate, a major downstream conventional signaling event, in striatal neurons under normal conditions. These results identify mGlu5 as a new biochemical substrate of ERK1. The kinase can interact with and phosphorylate an intracellular domain of mGlu5 receptors in striatal neurons and thereby control its signaling efficacy.
Collapse
Affiliation(s)
- Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
12
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
13
|
An Essential Role of Fyn in the Modulation of Metabotropic Glutamate Receptor 1 in Neurons. eNeuro 2017; 4:eN-NWR-0096-17. [PMID: 28948209 PMCID: PMC5608834 DOI: 10.1523/eneuro.0096-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/26/2022] Open
Abstract
Fyn is a member of the Src family of nonreceptor tyrosine kinases and is broadly expressed in the CNS. As a synapse-enriched kinase, Fyn interacts with and phosphorylates local substrates to regulate synaptic transmission and plasticity, although our knowledge of specific targets of Fyn at synaptic sites remains incomplete and the accurate role of Fyn in regulating synaptic proteins is poorly understood. In this study, we initiated an effort to explore the interaction of Fyn with a metabotropic glutamate receptor (mGluR). We found that recombinant Fyn directly binds to mGluR1a at a consensus binding motif located in the intracellular C-terminus (CT) of mGluR1a in vitro. Similarly, endogenous Fyn interacts with mGluR1a in adult rat cerebellar neurons in vivo. Active Fyn phosphorylates mGluR1a at a conserved tyrosine residue in the CT region. In cerebellar neurons and transfected HEK293T cells, the Fyn-mediated tyrosine phosphorylation of mGluR1a is constitutively active and acts to facilitate the surface expression of mGluR1a and to potentiate the mGluR1a postreceptor signaling. These results support mGluR1a to be a novel substrate of Fyn. Fyn, by binding to and phosphorylating mGluR1a, potentiates surface expression and signaling of the receptors.
Collapse
|
14
|
Brumbaugh K, Liao WC, Houchins JP, Cooper J, Stoesz S. Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. Methods Mol Biol 2017; 1554:1-40. [PMID: 28185181 DOI: 10.1007/978-1-4939-6759-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.
Collapse
Affiliation(s)
- Kathy Brumbaugh
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA.
| | - Wen-Chie Liao
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - J P Houchins
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Jeff Cooper
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Steve Stoesz
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| |
Collapse
|
15
|
Synaptic ERK2 Phosphorylates and Regulates Metabotropic Glutamate Receptor 1 In Vitro and in Neurons. Mol Neurobiol 2016; 54:7156-7170. [PMID: 27796752 DOI: 10.1007/s12035-016-0225-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
A synaptic pool of extracellular signal-regulated kinases (ERK) controls synaptic transmission, although little is known about its underlying signaling mechanisms. Here, we found that synaptic ERK2 directly binds to postsynaptic metabotropic glutamate receptor 1a (mGluR1a). This binding is direct and the ERK-binding site is located in the intracellular C-terminus (CT) of mGluR1a. Parallel with this binding, ERK2 phosphorylates mGluR1a at a cluster of serine residues in the distal part of mGluR1a-CT. In rat cerebellar neurons, ERK2 interacts with mGluR1a at synaptic sites, and active ERK constitutively phosphorylates mGluR1a under normal conditions. This basal phosphorylation is critical for maintaining adequate surface expression of mGluR1a. ERK is also essential for controlling mGluR1a signaling in triggering distinct postreceptor signaling transduction pathways. In summary, we have demonstrated that mGluR1a is a sufficient substrate of ERK2. ERK that interacts with and phosphorylates mGluR1a is involved in the regulation of the trafficking and signaling of mGluR1.
Collapse
|
16
|
Mao LM, Wang JQ. Regulation of Group I Metabotropic Glutamate Receptors by MAPK/ERK in Neurons. JOURNAL OF NATURE AND SCIENCE 2016; 2:e268. [PMID: 28008418 PMCID: PMC5170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Group I metabotropic glutamate receptors (mGluR1 and mGluR5 subtypes) are regulated by protein kinases. A recent focus is mitogen-activated protein kinases (MAPK). A prototypic subclass of MAPKs, extracellular signal-regulated kinases (ERK), is densely expressed in adult brain postmitotic neurons. This kinase resides in not only the cytoplasm around the nucleus, also the neuronal peripheral structures such as synapses. Recombinant ERK2 binds to C terminal tails of mGluR1a in vitro and native ERK1/2 forms complexes with mGluR1/5 in neurons in vivo. Association of ERK with mGluR1/5 enables the kinase to phosphorylate mGluR1/5 at a cluster of serine sites in the distal C terminus, including a serine residue within the Homer binding site. The ERK-mediated phosphorylation of mGluR1/5 promotes surface expression of mGluR1a in cerebellar neurons. ERK also regulates mGluR1/5 signaling and functions. Among different functional outputs surveyed, ERK exerts an output-specific role in either potentiating or inhibiting their activities. In sum, synaptic group I mGluRs are sufficient substrates of MAPK/ERK. Phosphorylation of mGluR1/5 by ERK has a significant impact on subcellular expression and function of phospho-modified receptors.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
17
|
Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis. Nat Protoc 2015; 11:37-45. [DOI: 10.1038/nprot.2015.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Synaptically Localized Mitogen-Activated Protein Kinases: Local Substrates and Regulation. Mol Neurobiol 2015; 53:6309-6315. [PMID: 26567109 DOI: 10.1007/s12035-015-9535-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are expressed in postmitotic neurons and act as important regulators in intracellular signaling. In addition to their nuclear distribution and roles in regulating gene expression, MAPKs, especially the extracellular signal-regulated kinase (ERK) subclass, reside in peripheral dendritic spines and synapses, including the postsynaptic density (PSD) microdomain. This peripheral pool of MAPKs/ERKs is either constitutively active or sensitive to changing synaptic input. Active MAPKs directly interact with and phosphorylate local substrates to alter their trafficking and subcellular/subsynaptic distributions, through which MAPKs regulate function of substrates and contribute to long-lasting synaptic plasticity. A number of physiologically relevant substrates of MAPKs have been identified at synaptic sites. Central among them are key synaptic scaffold proteins (PSD-95 and PSD-93), cadherin-associated proteins (δ-catenin), Kv4.2 K+ channels, and metabotropic glutamate receptors. Through a reversible phosphorylation event, MAPKs rapidly and efficiently modulate the function of these substrates and thus determine the strength of synaptic transmission. This review summarizes the recent progress in cell biology of synaptic MAPKs and analyzes roles of this specific pool of MAPKs in regulating local substrates and synaptic plasticity.
Collapse
|
19
|
|
20
|
Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL. Enzymatic reactions on immobilised substrates. Chem Soc Rev 2014; 42:6378-405. [PMID: 23579870 DOI: 10.1039/c3cs60018a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Road, Manchester, M1 7DN, UK
| | | | | | | |
Collapse
|
21
|
AKT kinase pathway: a leading target in cancer research. ScientificWorldJournal 2013; 2013:756134. [PMID: 24327805 PMCID: PMC3845396 DOI: 10.1155/2013/756134] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/23/2023] Open
Abstract
AKT1, a serine/threonine-protein kinase also known as AKT kinase, is involved in the regulation of various signalling downstream pathways including metabolism, cell proliferation, survival, growth, and angiogenesis. The AKT kinases pathway stands among the most important components of cell proliferation mechanism. Several approaches have been implemented to design an efficient drug molecule to target AKT kinases, although the promising results have not been confirmed. In this paper we have documented the detailed molecular insight of AKT kinase protein and proposed a probable doxorubicin based approach in inhibiting miR-21 based cancer cell proliferation. Moreover, the inhibition of miR-21 activation by raising the FOXO3A concentration seems promising in reducing miR-21 mediated cancer activation in cell. Furthermore, the use of next generation sequencing and computational drug design approaches will greatly assist in designing a potent drug molecule against the associated cancer cases.
Collapse
|
22
|
microRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience 2013; 241:188-205. [DOI: 10.1016/j.neuroscience.2013.02.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 12/21/2022]
|
23
|
Zhou J, Jones DR, Duong DM, Levey AI, Lah JJ, Peng J. Proteomic analysis of postsynaptic density in Alzheimer's disease. Clin Chim Acta 2013; 420:62-8. [PMID: 23537733 DOI: 10.1016/j.cca.2013.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/03/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The loss of synaptic function is a pivotal mechanism in the development of Alzheimer's Disease (AD). Structural changes and loss of plasticity in the postsynaptic density (PSD) may contribute to the pathogenesis. However, the underlying molecular events triggering synaptic dysfunction remain elusive. We report a quantitative proteomic analysis of the PSD from human postmortem brain tissues of possible and definite AD cases. METHODS The analysis used both discovery and targeted mass spectrometry approaches and was repeated with biological replicates. During the discovery study, we compared several hundred proteins in the PSD-enriched fractions and found that 25 proteins were differentially regulated in AD. RESULTS Interestingly, the majority of these protein changes were larger in definite AD cases than in possible AD cases. In the targeted analysis, we measured the level of 9 core PSD proteins and found that only IRSp53 was highly down-regulated in AD. The alteration of selected proteins (i.e. internexin and IRSp53) was further validated by immunoblotting against 7 control and 8 AD cases. CONCLUSIONS These results expand our understanding of how AD impacts PSD composition, and hints at new hypotheses for AD pathogenesis.
Collapse
Affiliation(s)
- Jianying Zhou
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, United States
| | | | | | | | | | | |
Collapse
|
24
|
Kunde SA, Rademacher N, Tzschach A, Wiedersberg E, Ullmann R, Kalscheuer VM, Shoichet SA. Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum Genet 2013; 132:461-71. [DOI: 10.1007/s00439-012-1260-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
|
25
|
Seo J, Hong J, Lee SJ, Choi SY. c-Jun N-terminal phosphorylation is essential for hippocampal synaptic plasticity. Neurosci Lett 2012; 531:14-9. [PMID: 23041047 DOI: 10.1016/j.neulet.2012.09.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022]
Abstract
c-Jun N-terminal kinase (JNK), a member of the MAPK family, is an important regulatory factor of synaptic plasticity as well as neuronal differentiation and cell death. Recently, JNK has been reported to modulate synaptic plasticity by the direct phosphorylation of synaptic proteins. The specific role of c-Jun phosphorylation in JNK mediated synaptic plasticity, however, remains unclear. In this study, we investigated the effects of c-Jun phosphorylation on synaptic structure and function by using c-Jun mutant mice, c-JunAA, in which the active phosphorylation sites at serines 63 and 73 were replaced by alanines. The gross hippocampal anatomy and number of spines on hippocampal pyramidal neurons were normal in c-JunAA mice. Basal synaptic transmission, input-output ratios, and paired-pulse facilitation (PPF) were also no different in c-JunAA compared with wild-type mice. Notably, however, the induction of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses in c-JunAA mice was impaired, whereas induction of long-term depression (LTD) was normal. These data suggest that phosphorylation of the c-Jun N-terminus is required for LTP formation in the hippocampus, and may help to better characterize JNK-mediated modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Jinsoo Seo
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, South Korea
| | | | | | | |
Collapse
|
26
|
Roselli F, Livrea P, Almeida OFX. CDK5 is essential for soluble amyloid β-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS One 2011; 6:e23097. [PMID: 21829588 PMCID: PMC3146526 DOI: 10.1371/journal.pone.0023097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023] Open
Abstract
The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca(2+) influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss.
Collapse
Affiliation(s)
- Francesco Roselli
- Neuroadaptation Group, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
- * E-mail: (FR); (OFXA)
| | - Paolo Livrea
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Osborne F. X. Almeida
- Neuroadaptation Group, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (FR); (OFXA)
| |
Collapse
|
27
|
Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:971968. [PMID: 21637385 PMCID: PMC3100106 DOI: 10.1155/2011/971968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/12/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
Abstract
Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.
Collapse
|
28
|
Brumbaugh K, Johnson W, Liao WC, Lin MS, Houchins JP, Cooper J, Stoesz S, Campos-Gonzalez R. Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 2011; 717:3-43. [PMID: 21370022 DOI: 10.1007/978-1-61779-024-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation is a universal key posttranslational modification that affects the activity and other properties of intracellular proteins. Phosphosite-specific antibodies can be produced as polyclonals or monoclonals in different animal species, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is key for their use in proteomics and profiling of disease.
Collapse
|
29
|
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1619-33. [PMID: 21167873 DOI: 10.1016/j.bbamcr.2010.12.012] [Citation(s) in RCA: 670] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
The MAPK cascades are central signaling pathways that regulate a wide variety of stimulated cellular processes, including proliferation, differentiation, apoptosis and stress response. Therefore, dysregulation, or improper functioning of these cascades, is involved in the induction and progression of diseases such as cancer, diabetes, autoimmune diseases, and developmental abnormalities. Many of these physiological, and pathological functions are mediated by MAPK-dependent transcription of various regulatory genes. In order to induce transcription and the consequent functions, the signals transmitted via the cascades need to enter the nucleus, where they may modulate the activity of transcription factors and chromatin remodeling enzymes. In this review, we briefly cover the composition of the MAPK cascades, as well as their physiological and pathological functions. We describe, in more detail, many of the important nuclear activities of the MAPK cascades, and we elaborate on the mechanisms of ERK1/2 translocation into the nucleus, including the identification of their nuclear translocation sequence (NTS) binding to the shuttling protein importin7. Overall, the nuclear translocation of signaling components may emerge as an important regulatory layer in the induction of cellular processes, and therefore, may serve as targets for therapeutic intervention in signaling-related diseases such as cancer and diabetes. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Alexander Plotnikov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Isreal
| | | | | | | |
Collapse
|
30
|
Huang TN, Chang HP, Hsueh YP. CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem 2010; 112:1562-73. [PMID: 20067577 DOI: 10.1111/j.1471-4159.2010.06569.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent serine kinase (CASK), a causative gene in X-linked mental retardation, acts as a multi-domain scaffold protein and interacts with more than 20 cellular proteins in different subcellular regions of neurons. It is of interest, therefore, to explore whether post-translational modification regulates CASK's protein-protein interactions. Here, we provide evidence that CASK is phosphorylated by protein kinase A (PKA), identifying residue S562 in the PSD-95-Dlg-ZO-1 domain and residue T724 in the guanylate kinase domain as PKA sites by an in vitro PKA kinase reaction and site-directed mutagenesis. Although the role of S562 phosphorylation is not clear, T724 phosphorylation up-regulates the interaction between CASK and T-box transcription factor T-brain-1 (Tbr-1). NMDAR2b, a downstream target of the CASK-Tbr-1 complex, was then used to explore the significance of CASK phosphorylation by PKA. In cultured cortical neurons, the PKA pathway stimulates both the protein expression and the promoter activity of NMDAR2b. Deletion of the Tbr-1-binding sites greatly reduces the 3'-5'-cyclic AMP responsiveness of the NMDAR2b promoter, and the CASK T724A mutation does not promote the 3'-5'-cyclic AMP responsiveness of NMDAR2b. In conclusion, our data provide evidence that PKA phosphorylates CASK, regulates the nuclear function of CASK, and consequently modulates NMDAR2b expression.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|