1
|
Huo Z, Tu H, Ren J, Zhang X, Qi Y, Situ C, Li Y, Guo Y, Guo X, Zhu H. Lectin-Based SP3 Technology Enables N-Glycoproteomic Analysis of Mouse Oocytes. J Proteome Res 2024; 23:2137-2147. [PMID: 38787631 DOI: 10.1021/acs.jproteome.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
N-glycosylation is one of the most universal and complex protein post-translational modifications (PTMs), and it is involved in many physiological and pathological activities. Owing to the low abundance of N-glycoproteins, enrichment of N-glycopeptides for mass spectrometry analysis usually requires a large amount of peptides. Additionally, oocyte protein N-glycosylation has not been systemically characterized due to the limited sample amount. Here, we developed a glycosylation enrichment method based on lectin and a single-pot, solid-phase-enhanced sample preparation (SP3) technology, termed lectin-based SP3 technology (LectinSP3). LectinSP3 immobilized lectin on the SP3 beads for N-glycopeptide enrichment. It could identify over 1100 N-glycosylation sites and 600 N-glycoproteins from 10 μg of mouse testis peptides. Furthermore, using the LectinSP3 method, we characterized the N-glycoproteome of 1000 mouse oocytes in three replicates and identified a total of 363 N-glycosylation sites from 215 N-glycoproteins. Bioinformatics analysis revealed that these oocyte N-glycoproteins were mainly enriched in cell adhesion, fertilization, and sperm-egg recognition. Overall, the LectinSP3 method has all procedures performed in one tube, using magnetic beads. It is suitable for analysis of a low amount of samples and is expected to be easily adaptable for automation. In addition, our mouse oocyte protein N-glycosylation profiling could help further characterize the regulation of oocyte functions.
Collapse
Affiliation(s)
- Zian Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Simultaneous analysis of cellular glycoproteome and phosphoproteome in cervical carcinoma by one-pot specific enrichment. Anal Chim Acta 2022; 1195:338693. [DOI: 10.1016/j.aca.2021.338693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023]
|
3
|
Assessment of FDA-Approved Drugs as a Therapeutic Approach for Niemann-Pick Disease Type C1 Using Patient-Specific iPSC-Based Model Systems. Cells 2022; 11:cells11030319. [PMID: 35159129 PMCID: PMC8834315 DOI: 10.3390/cells11030319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Niemann-Pick type C1 (NP-C1) is a fatal, progressive neurodegenerative disease caused by mutations in the NPC1 gene. Mutations of NPC1 can result in a misfolded protein that is subsequently marked for proteasomal degradation. Such loss-of-function mutations lead to cholesterol accumulation in late endosomes and lysosomes. Pharmacological chaperones (PCs) are described to protect misfolded proteins from proteasomal degradation and are being discussed as a treatment strategy for NP-C1. Here, we used a combinatorial approach of high-throughput in silico screening of FDA-approved drugs and in vitro biochemical assays to identify potential PCs. The effects of the hit compounds identified by molecular docking were compared in vitro with 25-hydroxycholesterol (25-HC), which is known to act as a PC for NP-C1. We analyzed cholesterol accumulation, NPC1 protein content, and lysosomal localization in patient-specific fibroblasts, as well as in neural differentiated and hepatocyte-like cells derived from patient-specific induced pluripotent stem cells (iPSCs). One compound, namely abiraterone acetate, showed comparable results to 25-HC and restored NPC1 protein level, corrected the intracellular localization of NPC1, and consequently decreased cholesterol accumulation in NPC1-mutated fibroblasts and iPSC-derived neural differentiated and hepatocyte-like cells. The discovered PC altered not only the pathophysiological phenotype of cells carrying the I1061T mutation— known to be responsive to treatment with PCs—but an effect was also observed in cells carrying other NPC1 missense mutations. Therefore, we hypothesize that the PCs studied here may serve as an effective treatment strategy for a large group of NP-C1 patients.
Collapse
|
4
|
Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the longissimus thoracis of yaks. Curr Res Food Sci 2022; 5:1494-1507. [PMID: 36132491 PMCID: PMC9483648 DOI: 10.1016/j.crfs.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Yaks (Bos mutus) live in the Qinghai–Tibet plateau. The quality of yak meat is unique due to its genetic and physiological characteristics. Identification of the proteome of yak muscle could help to reveal its meat-quality properties. The common proteome, phosphoproteome, and N-glycoproteome of yak longissimus thoracis (YLT) were analyzed by liquid chromatography-tandem mass spectrometry-based shotgun analysis. A total of 1812 common proteins, 1303 phosphoproteins (3918 phosphorylation sites), and 204 N-glycoproteins (285 N-glycosylation sites) were identified in YLT. The common proteins in YLT were involved mainly in myofibril structure and energy metabolism; phosphoproteins were associated primarily with myofibril organization, regulation of energy metabolism, and signaling; N-glycoproteins were engaged mainly in extracellular-matrix organization, cellular immunity, and organismal homeostasis. We reported, for the first time, the “panorama” of the YLT proteome, specifically the N-glycoproteome of YLT. Our results provide essential information for understanding post mortem physiology (rigor mortis and aging) and the quality of yak meat. A total of 2650 proteins were identified in yak longissimus thoracis. Common proteins were involved mainly in myofibril structure and energy metabolism. Phosphoproteins were associated with myofibrils, energy metabolism, and signaling. N-glycoproteins were engaged mainly in ECM organization, immunity, and homeostasis.
Collapse
|
5
|
Hydrophilic arginine-functionalized mesoporous polydopamine-graphene oxide composites for glycopeptides analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1189:123049. [PMID: 34840084 DOI: 10.1016/j.jchromb.2021.123049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
Considering the importance of glycopeptides in the clinical diagnosis of cancer and some serious diseases, the identification of glycopeptides from complex biological samples has attracted considerable attention. Effective pre-enrichment before mass spectrometry analysis plays an important role. In this work, a kind of hydrophilic two-dimensional composites (denoted as GO@MPDA@Arg) based on mesoporous polydopamine-graphene oxide were used to selectively enrich glycopeptides in biological samples. The mesoporous polydopamine (MPDA) layer self-assembled with template Pluronic F127 provided more binding sites to load arginine, and bound arginine enhanced the hydrophilicity of the material. As a result, GO@MPDA@Arg composites exhibited excellent enrichment performance for glycopeptides, containing good selectivity (IgG digests : BSA digests = 1:50, molar ratio), low detection limit for IgG digests (10 fmol μL-1), high loading capacity for IgG digests (200 μg mg-1), and good size exclusion (IgG digests : IgG : BSA = 1:100:100, mass ratio). In addition, mouse brain tissue was selected as the actual biological sample to further study the enrichment effect of GO@MPDA@Arg composites. In three parallel experiments, a total of 401 glycopeptides belonging to 233 glycoproteins were enriched from 200 μg digestion of mouse brain extract. The enrichment results demonstrate that GO@MPDA@Arg composites have application potential for glycopeptides enrichment in protein post-translational modification research.
Collapse
|
6
|
Nayak S, Zhao Y, Mao Y, Li N. System-Wide Quantitative N-Glycoproteomic Analysis from K562 Cells and Mouse Liver Tissues. J Proteome Res 2021; 20:5196-5202. [PMID: 34596409 DOI: 10.1021/acs.jproteome.1c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a key regulator of many biological processes, glycosylation is an essential post-translational modification (PTM) in the living system. Over 50% of human proteins are known to be glycosylated. Alterations in glycoproteins are directly linked to many diseases, making it crucial to understand system-wide glycosylation changes. The majority of known glycoproteins are from plasma membrane; however, glycosylation is a dynamic process that occurs throughout multiple subcellular organelles and involves sets of enzymes, chaperones, transporters, and sugar donor molecules. Many glycoproteins are expressed not only in plasma membranes but also in subcellular organelles. Here, we developed a mass-spectrometry-based quantitative workflow for the system-wide N-glycoproteomic analysis of membrane and cytosolic proteins extracted using a MEM-PER kit. The kit facilitates the extraction and solubilization of both membrane and cytosolic proteins in a simple, efficient, and reproducible manner. We analyzed the K562 cell line and mouse liver tissue to evaluate this approach. A total of 934 glycosites, 5154 glycopeptides, and 536 glycoproteins from the K562 cell line and a total of 1449 glycosites, 7549 glycopeptides, and 660 glycoproteins from mouse liver tissue were identified. This simple and reproducible approach provides a unique way to understand system-wide glycosylation in biological processes and enables the identification and quantitation of glycan profiles at glycosylation sites in proteins.
Collapse
Affiliation(s)
- Shruti Nayak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
7
|
Cui Y, Tabang DN, Zhang Z, Ma M, Alpert AJ, Li L. Counterion Optimization Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal Chem 2021; 93:7908-7916. [PMID: 34042420 DOI: 10.1021/acs.analchem.1c00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A well-hydrated counterion can selectively and dramatically increase retention of a charged analyte in hydrophilic interaction chromatography. The effect is enhanced if the column is charged, as in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). This combination was exploited in proteomics for the isolation of peptides with certain post-translational modifications (PTMs). The best salt additive examined was magnesium trifluoroacetate. The well-hydrated Mg+2 ion promoted retention of peptides with functional groups that retained negative charge at low pH, while the poorly hydrated trifluoroacetate counterion tuned down the retention due to the basic residues. The result was an enhancement in selectivity ranging from 6- to 66-fold. These conditions were applied to a tryptic digest of mouse cortex. Gradient elution produced fractions enriched in peptides with phosphate, mannose-6-phosphate, and N- and O-linked glycans. The numbers of such peptides identified either equaled or exceeded the numbers afforded by the best alternative methods. This method is a productive and convenient way to isolate peptides simultaneously that contain a number of different PTMs, facilitating study of proteins with "crosstalk" modifications. The fractions from the ERLIC column were desalted prior to C-18-reversed phase liquid chromatography-tandem mass spectrometry analysis. Between 47-100% of the peptides with more than one phosphate or sialyl residue or with a mannose-6 phosphate group were not retained by a C-18 cartridge but were retained by a cartridge of porous graphitic carbon. This finding implies that the abundance of such peptides may have been significantly underestimated in some past studies.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zishan Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Andrew J Alpert
- PolyLC Inc., 9151 Rumsey Road, ste. 180, Columbia, Maryland 21045, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Silbern I, Fang P, Ji Y, Christof L, Urlaub H, Pan KT. Relative Quantification of Phosphorylated and Glycosylated Peptides from the Same Sample Using Isobaric Chemical Labelling with a Two-Step Enrichment Strategy. Methods Mol Biol 2021; 2228:185-203. [PMID: 33950492 DOI: 10.1007/978-1-0716-1024-4_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) are essential for the regulation of all cellular processes. The interplay of various PTMs on a single protein or different proteins comprises a complexity that we are far from understanding in its entirety. Reliable strategies for the enrichment and accurate quantification of PTMs are needed to study as many PTMs on proteins as possible. In this protocol we present a liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based workflow that enables the enrichment and quantification of phosphorylated and N-glycosylated peptides from the same sample. After extraction and digestion of proteins, we label the peptides with stable isotope-coded tandem mass tags (TMTs) and enrich N-glycopeptides and phosphopeptides by using zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) and titanium dioxide (TiO2) beads, respectively. Labelled and enriched N-glycopeptides and phosphopeptides are further separated by high pH (basic) reversed-phase chromatography and analyzed by LC/MS/MS. The enrichment strategies, together with quantification of two different PTM types from the same sample, allow investigation of the interplay of those two PTMs, which are important for signal transduction inside the cell (phosphorylation), as well as for messaging between cells through decoration of the cellular surface (glycosylation).
Collapse
Affiliation(s)
- Ivan Silbern
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pan Fang
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Lenz Christof
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
10
|
Selective enrichment of sialylated glycopeptides with mesoporous poly-melamine-formaldehyde (mPMF) material. Anal Bioanal Chem 2020; 412:1497-1508. [PMID: 32025769 DOI: 10.1007/s00216-020-02415-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Analysis of glycoprotein sialylation is challenging due to the relatively low abundance of sialylated glycopeptides (SGPs) in complex biosamples and low signals of SGPs in mass spectrometry. In this study, a mesoporous poly-melamine-formaldehyde (mPMF) polymer was prepared and utilized as the high-efficiency sorbent for SGPs. The mPMF polymer featured high surface area (755.4 m2 g-1) and high density of amine and triazine functional groups. This polymer demonstrated high enrichment selectivity (resistant to 100 molar fold interference of BSA) and superior adsorption capacity (560 mg g-1) for SGPs. The high performance of mPMF toward SGPs ascribes to the unique physicochemical properties of mPMF and high density of accessible binding sites for glycopeptides. Further application of mPMF to HeLa S3 cell lysate resulted in 576 characterized glycopeptides with 218 unique glycosylation sites. This finding provides a new choice of promising extraction approach for characterization of protein glycosylation. Graphical abstract A mesoporous poly-melamine-formaldehyde (mPMF) polymer was prepared and utilized as the high-efficiency enrichment sorbent for sialylated glycopeptides (SGPs).
Collapse
|
11
|
Zhu H, Aloor A, Ma C, Kondengaden SM, Wang PG. Mass Spectrometric Analysis of Protein Glycosylation. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1346.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- He Zhu
- These authors contributed equally
| | | | | | | | - Peng George Wang
- Current Address: Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
12
|
Cui Y, Yang K, Tabang DN, Huang J, Tang W, Li L. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2491-2501. [PMID: 31286442 PMCID: PMC6917886 DOI: 10.1007/s13361-019-02230-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Simultaneous enrichment of glyco- and phosphopeptides will benefit the studies of biological processes regulated by these posttranslational modifications (PTMs). It will also reveal potential crosstalk between these two ubiquitous PTMs. Unlike custom-designed multifunctional solid phase extraction (SPE) materials, operating strong anion exchange (SAX) resin in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) mode provides a readily available strategy to analytical labs for enrichment of these PTMs for subsequent mass spectrometry (MS)-based characterization. However, the choice of mobile phase has largely relied on empirical rules from hydrophilic interaction chromatography (HILIC) or ion-exchange chromatography (IEX) without further optimization and adjustments. In this study, ten mobile phase compositions of ERLIC were systematically compared; the impact of multiple factors including organic phase proportion, ion pairing reagent, pH, and salt on the retention of glycosylated and phosphorylated peptides was evaluated. This study demonstrated good enrichment of glyco- and phosphopeptides from the nonmodified peptides in a complex tryptic digest. Moreover, the enriched glyco- and phosphopeptides elute in different fractions by orthogonal retention mechanisms of hydrophilic interaction and electrostatic interaction in ERLIC, maximizing the LC-MS identification of each PTM. The optimized mobile phase can be adapted to the ERLIC HPLC system, where the high resolution in separating multiple PTMs will benefit large-scale MS-based PTM profiling and in-depth characterization.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | | | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Weiping Tang
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
14
|
Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Mikrochim Acta 2019; 186:159. [DOI: 10.1007/s00604-019-3274-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/20/2019] [Indexed: 11/26/2022]
|
15
|
Cho KC, Chen L, Hu Y, Schnaubelt M, Zhang H. Developing Workflow for Simultaneous Analyses of Phosphopeptides and Glycopeptides. ACS Chem Biol 2019; 14:58-66. [PMID: 30525447 DOI: 10.1021/acschembio.8b00902] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enrichment of modified peptides from global peptides is inevitable in mass spectrometric analysis protein modifications because of their importance in the study of cellular functions and low abundance in the global proteomic analysis. Recent advances in enrichment methods for modified peptides such as phosphopeptides and intact glycopeptides (IGPs) show that the methods for proteomic analyses of both protein modifications are robust. We have recently observed and reported a large number of IGPs from phosphoproteomic analysis using IMAC-based phosphopeptides enrichment procedure. To determine whether phosphorylated peptides could be specifically isolated from coenriched IGPs in IMAC experiments with different pH, IMAC procedures were performed at different pH conditions, and we found that the enrichment of phosphopeptides at pH 2.0 was the optimal condition for having the highest number of phosphopeptide identifications; however, coenrichment of phosphopeptides and glycopeptides was inevitable in the entire pH range. The hydrophilic enrichments of IGPs performed before or after IMAC enrichment were evaluated subsequently to determine the optimal workflow for simultaneous analyses of phosphopeptides and glycopeptides, and IMAC enrichment followed by hydrophilic enrichment was chosen as the optimized workflow. Applying the workflow to the TMT-labeled peptides from luminal and basal-like type of breast cancer patient-derived xenograft (PDX) models allowed quantitative analyses of phospho- and glycoproteomics with 17582 phosphopeptides and 3468 glycopeptides identified, and 1237 phosphopeptides and 236 glycopeptides showed significant expression differences between luminal and basal-like, respectively. This method allows simultaneous analyses of phosphoprotein and glycoprotein modifications, extending our understanding of roles of glycosylation and phosphorylation in biology and diseases.
Collapse
Affiliation(s)
- Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
16
|
Wolters-Eisfeld G, Mercanoglu B, Hofmann BT, Wolpers T, Schnabel C, Harder S, Steffen P, Bachmann K, Steglich B, Schrader J, Gagliani N, Schlüter H, Güngör C, Izbicki JR, Wagener C, Bockhorn M. Loss of complex O-glycosylation impairs exocrine pancreatic function and induces MODY8-like diabetes in mice. Exp Mol Med 2018; 50:1-13. [PMID: 30305605 PMCID: PMC6180059 DOI: 10.1038/s12276-018-0157-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cosmc is ubiquitously expressed and acts as a specific molecular chaperone assisting the folding and stability of core 1 synthase. Thus, it plays a crucial role in the biosynthesis of O-linked glycosylation of proteins. Here, we show that ablation of Cosmc in the exocrine pancreas of mice causes expression of truncated O-glycans (Tn antigen), resulting in exocrine pancreatic insufficiency with decreased activities of digestive enzymes and diabetes. To understand the molecular causes of the pleiotropic phenotype, we used Vicia villosa agglutinin to enrich Tn antigen-modified proteins from Cosmc-KO pancreatic lysates and performed a proteomic analysis. Interestingly, a variety of proteins were identified, of which bile salt-activated lipase (also denoted carboxyl-ester lipase, Cel) was the most abundant. In humans, frameshift mutations in CEL cause maturity-onset diabetes of the young type 8 (MODY8), a monogenic syndrome of diabetes and pancreatic exocrine dysfunction. Here, we provide data suggesting that differentially O-glycosylated Cel could negatively affect beta cell function. Taken together, our findings demonstrate the importance of correct O-glycan formation for normal exocrine and endocrine pancreatic function, implying that aberrant O-glycans might be relevant for pathogenic mechanisms of the pancreas.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany.
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Bianca T Hofmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Thomas Wolpers
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Claudia Schnabel
- Metabolic Laboratory and Newborn Screening, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics-Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Pascal Steffen
- Mass Spectrometric Proteomics-Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kai Bachmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Jörg Schrader
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics-Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
17
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
18
|
Goh CW, Lee IC, Sundaram JR, George SE, Yusoff P, Brush MH, Sze NSK, Shenolikar S. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J Biol Chem 2017; 293:163-176. [PMID: 29109149 DOI: 10.1074/jbc.m117.814111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34-/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Catherine Wenhui Goh
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore
| | - Irene Chengjie Lee
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jeyapriya Rajameenakshi Sundaram
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Simi Elizabeth George
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Permeen Yusoff
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Matthew Hayden Brush
- Ontology Development group, Oregon Health and Science University, Portland, Oregon 97239
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shirish Shenolikar
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Psychiatry and Behavioral Sciences and Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
| |
Collapse
|
19
|
Zou X, Jie J, Yang B. Single-Step Enrichment of N-Glycopeptides and Phosphopeptides with Novel Multifunctional Ti4+-Immobilized Dendritic Polyglycerol Coated Chitosan Nanomaterials. Anal Chem 2017; 89:7520-7526. [DOI: 10.1021/acs.analchem.7b01209] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiajuan Zou
- Medical
and Healthy Analytical Center, Beijing Key Laboratory of Tumor Systems
Biology, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Jianzheng Jie
- Department
of Gastrointestinal Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Beijing100029, China
| | - Bin Yang
- Medical
and Healthy Analytical Center, Beijing Key Laboratory of Tumor Systems
Biology, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| |
Collapse
|
20
|
Totten SM, Feasley CL, Bermudez A, Pitteri SJ. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC. J Proteome Res 2017; 16:1249-1260. [PMID: 28199111 DOI: 10.1021/acs.jproteome.6b00849] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| | - Christa L Feasley
- ThermoFisher Scientific , 1400 Northpoint Parkway Suite 10, West Palm Beach, Florida 33407, United States
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| |
Collapse
|
21
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
22
|
Zahedi RP. Joining forces: studying multiple post-translational modifications to understand dynamic disease mechanisms. Expert Rev Proteomics 2016; 13:1055-1057. [PMID: 27584944 DOI: 10.1080/14789450.2016.1231577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- René P Zahedi
- a Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , Germany
| |
Collapse
|
23
|
Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment. Talanta 2016; 158:361-367. [DOI: 10.1016/j.talanta.2016.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
|
24
|
Wang J, Wang Y, Gao M, Zhang X, Yang P. Facile synthesis of hydrophilic polyamidoxime polymers as a novel solid-phase extraction matrix for sequential characterization of glyco- and phosphoproteomes. Anal Chim Acta 2015; 907:69-76. [PMID: 26803004 DOI: 10.1016/j.aca.2015.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 11/15/2022]
Abstract
Selective enrichment of glycopeptides or phosphopeptides with great biological significance is essential for high-throughput mass spectrometry analysis. However, most previously reported methods only focused on enriching either glycopeptides or phosphopeptides rather than enriching them both. In this work, for the first time, a facile route was developed for the synthesis of polyamidoxime polymers with intrinsic hydrophilic skeletons and attractive long chain structure. The polyamidoxime materials (co-PAN) were synthesized from polyacrylonitrile (PAN) precursor and were successfully used for selective enrichment of glycopeptides. After that, co-PAN as a matrix functionalized with titanium ions (co-PAN@Ti(4+)) could efficiently enrich phosphopeptides. The performances of the polymers for sequential selective and effective enrichment of glycopeptides and phosphopeptides were evaluated with standard peptide mixtures and human serum. Moreover, the efficiency of enrichment of the material was still retained after being used repeatedly. These results demonstrated that the polymers showed great potential in the practical application of proteomics.
Collapse
Affiliation(s)
- Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yanan Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Lichtman JS, Alsentzer E, Jaffe M, Sprockett D, Masutani E, Ikwa E, Fragiadakis GK, Clifford D, Huang BE, Sonnenburg JL, Huang KC, Elias JE. The effect of microbial colonization on the host proteome varies by gastrointestinal location. ISME JOURNAL 2015; 10:1170-81. [PMID: 26574685 DOI: 10.1038/ismej.2015.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/02/2015] [Accepted: 09/18/2015] [Indexed: 01/06/2023]
Abstract
Endogenous intestinal microbiota have wide-ranging and largely uncharacterized effects on host physiology. Here, we used reverse-phase liquid chromatography-coupled tandem mass spectrometry to define the mouse intestinal proteome in the stomach, jejunum, ileum, cecum and proximal colon under three colonization states: germ-free (GF), monocolonized with Bacteroides thetaiotaomicron and conventionally raised (CR). Our analysis revealed distinct proteomic abundance profiles along the gastrointestinal (GI) tract. Unsupervised clustering showed that host protein abundance primarily depended on GI location rather than colonization state and specific proteins and functions that defined these locations were identified by random forest classifications. K-means clustering of protein abundance across locations revealed substantial differences in host protein production between CR mice relative to GF and monocolonized mice. Finally, comparison with fecal proteomic data sets suggested that the identities of stool proteins are not biased to any region of the GI tract, but are substantially impacted by the microbiota in the distal colon.
Collapse
Affiliation(s)
- Joshua S Lichtman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Alsentzer
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mia Jaffe
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Sprockett
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Masutani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Elvis Ikwa
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Gabriela K Fragiadakis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Bevan Emma Huang
- Digital Productivity Flagship, Commonwealth Scientific and Industrial Research Organization, Dutton Park, Queensland, Australia
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Wakabayashi M, Kyono Y, Sugiyama N, Ishihama Y. Extended Coverage of Singly and Multiply Phosphorylated Peptides from a Single Titanium Dioxide Microcolumn. Anal Chem 2015; 87:10213-21. [DOI: 10.1021/acs.analchem.5b01216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masaki Wakabayashi
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29, Yoshida-Shimo-Adachi-Cho,
Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yutaka Kyono
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29, Yoshida-Shimo-Adachi-Cho,
Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29, Yoshida-Shimo-Adachi-Cho,
Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29, Yoshida-Shimo-Adachi-Cho,
Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
27
|
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol 2015; 16:213. [PMID: 26415775 PMCID: PMC4587738 DOI: 10.1186/s13059-015-0760-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
Background Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0760-8) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Adav SS, Hwa HH, de Kleijn D, Sze SK. Improving Blood Plasma Glycoproteome Coverage by Coupling Ultracentrifugation Fractionation to Electrostatic Repulsion-Hydrophilic Interaction Chromatography Enrichment. J Proteome Res 2015; 14:2828-38. [PMID: 26044363 DOI: 10.1021/acs.jproteome.5b00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Blood plasma is considered to be an excellent source of disease biomarkers because it contains proteins, lipids, metabolites, cell, and cell-derived extracellular vesicles from different cellular origins including diseased tissues. Most secretory and membranous proteins that can be found in plasma are glycoproteins; therefore, the plasma glycoproteome is one of the major subproteomes that is highly enriched with disease biomarkers. As a result, the glycoproteome has attracted much attention in clinical proteomic research. The modification of proteins with glycans regulates a wide range of functions in biology, but profiling plasma glycoproteins on a global scale has been hampered by the presence of low stoichiometry of glycoproteins in a complex high abundance plasma proteome background and lack of effective analytical technique. This study aims to improve plasma glycoproteome coverage using pig plasma as a model sample with a two-step strategy. The first step involves fractionation of the plasma proteins using ultracentrifugation into supernatant and pellet that is believed to contain low abundant glycoproteins. In the second step, further enrichment of glycopeptides was achieved in both fractions by adopting electrostatic repulsion hydrophilic interaction chromatography (ERLIC) coupled to tandem mass spectrometry (LC-MS/MS) analysis. The coverage of enriched glycoproteins in supernatant, pellet, and whole plasma sample as control was compared. Using this simple sample fractionation approach by ultracentrifugation and further ERLIC enrichment technique, sample complexity was reduced and glycoproteome coverage was significantly enhanced in supernatant and pellet fractions (by >50%) compared with whole plasma sample. This study showed that when ultracentrifugation is coupled to ERLIC glycopeptides enrichment and glycoproteome identification are significantly improved. This study demonstrates the combination of ultracentrifugation and ERLIC as a useful method for discovering plasma glycoprotein disease biomarkers.
Collapse
Affiliation(s)
- Sunil S Adav
- †School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,‡KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Ho Hee Hwa
- §Department of Cardiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | | | - Siu Kwan Sze
- †School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
29
|
Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 2015; 12:235-53. [PMID: 25955281 PMCID: PMC4487610 DOI: 10.1586/14789450.2015.1042867] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.
Collapse
Affiliation(s)
- Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| |
Collapse
|
30
|
Alpert AJ, Hudecz O, Mechtler K. Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography. Anal Chem 2015; 87:4704-11. [PMID: 25827581 PMCID: PMC4423237 DOI: 10.1021/ac504420c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/31/2015] [Indexed: 02/08/2023]
Abstract
Most phosphoproteomics experiments rely on prefractionation of tryptic digests before online liquid chromatography-mass spectrometry. This study compares the potential and limitations of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and anion-exchange chromatography (AEX). At a pH higher than 5, phosphopeptides have two negative charges per residue and are well-retained in AEX. However, peptides with one or two phosphate groups are not separated from peptides with multiple Asp or Glu residues, interfering with the identification of phosphopeptides. At a pH of 2, phosphate residues have just a single negative charge but Asp and Glu are uncharged. This facilitates the separation of phosphopeptides from unmodified acidic peptides. Singly phosphorylated peptides are retained weakly under these conditions, due to electrostatic repulsion, unless hydrophilic interaction is superimposed in the ERLIC mode. Weak anion-exchange (WAX) and strong anion-exchange (SAX) columns were compared, with both peptide standards and a HeLa cell tryptic digest. The SAX column exhibited greater retention at pH 6 than did the WAX column. However, only about 60% as many phosphopeptides were identified with SAX at pH 6 than via ERLIC at pH 2. In one ERLIC run, 12 467 phosphopeptides were identified, including 4233 with more than one phosphate. We conclude that chromatography of phosphopeptides is best performed at low pH in the ERLIC mode. Under those conditions, the performances of the SAX and WAX materials were comparable. The data have been deposited with the ProteomeXchange with identifier PXD001333.
Collapse
Affiliation(s)
- Andrew J. Alpert
- PolyLC
Inc., 9151 Rumsey Road,
Ste. 175, Columbia, Maryland 21045, United States
| | - Otto Hudecz
- Research
Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
- Institute
of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Research
Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
- Institute
of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
31
|
Herring LE, Grant KG, Blackburn K, Haugh JM, Goshe MB. Development of a tandem affinity phosphoproteomic method with motif selectivity and its application in analysis of signal transduction networks. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:166-74. [PMID: 25777480 PMCID: PMC4489695 DOI: 10.1016/j.jchromb.2015.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/26/2022]
Abstract
Phosphorylation is an important post-translational modification that is involved in regulating many signaling pathways. Of particular interest are the growth factor mediated Ras and phosphoinositide 3-kinase (PI3K) signaling pathways which, if misregulated, can contribute to the progression of cancer. Phosphoproteomic methods have been developed to study regulation of signaling pathways; however, due to the low stoichiometry of phosphorylation, understanding these pathways is still a challenge. In this study, we have developed a multi-dimensional method incorporating electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with tandem IMAC/TiO2 enrichment for subsequent phosphopeptide identification by LC/MS/MS. We applied this method to PDGF-stimulated NIH 3T3 cells to provide over 11,000 unique phosphopeptide identifications. Upon motif analysis, IMAC was found to enrich for basophilic kinase substrates while the subsequent TiO2 step enriched for acidophilic kinase substrates, suggesting that both enrichment methods are necessary to capture the full complement of kinase substrates. Biological functions that were over-represented at each PDGF stimulation time point, together with the phosphorylation dynamics of several phosphopeptides containing known kinase phosphorylation sites, illustrate the feasibility of this approach in quantitative phosphoproteomic studies.
Collapse
Affiliation(s)
- Laura E Herring
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States
| | - Kyle G Grant
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-73522, United States
| | - Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States.
| |
Collapse
|
32
|
Sok Hwee Cheow E, Hwan Sim K, de Kleijn D, Neng Lee C, Sorokin V, Sze SK. Simultaneous Enrichment of Plasma Soluble and Extracellular Vesicular Glycoproteins Using Prolonged Ultracentrifugation-Electrostatic Repulsion-hydrophilic Interaction Chromatography (PUC-ERLIC) Approach. Mol Cell Proteomics 2015; 14:1657-71. [PMID: 25862729 DOI: 10.1074/mcp.o114.046391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Plasma glycoproteins and extracellular vesicles represent excellent sources of disease biomarkers, but laboratory detection of these circulating structures are limited by their relatively low abundance in complex biological fluids. Although intensive research has led to the development of effective methods for the enrichment and isolation of either plasma glycoproteins or extracellular vesicles from clinical materials, at present it is not possible to enrich both structures simultaneously from individual patient sample, a method that affords the identification of biomarker combinations from both entities for the prediction of clinical outcomes will be clinically useful. We have therefore developed an enrichment method for use in mass spectrometry-based proteomic profiling that couples prolonged ultracentrifugation with electrostatic repulsion-hydrophilic interaction chromatography, to facilitate the recovery of both glycoproteins and extracellular vesicles from nondepleted human plasma. Following prolonged ultracentrifugation, plasma glycoproteins and extracellular vesicles were concentrated as a yellow suspension, and simultaneous analyses of low abundant secretory and vesicular glycoproteins was achieved in a single LC-MS/MS run. Using this systematic prolonged ultracentrifugation-electrostatic repulsion-hydrophilic interaction chromatography approach, we identified a total of 127 plasma glycoproteins at a high level of confidence (FDR ≤ 1%), including 48 glycoproteins with concentrations ranging from pg to ng/ml. The novel enrichment method we report should facilitate future human plasma-based proteome and glycoproteome that will identify novel biomarkers, or combinations of secreted and vesicle-derived biomarkers, that can be used to predict clinical outcomes in human patients.
Collapse
Affiliation(s)
- Esther Sok Hwee Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kae Hwan Sim
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Dominique de Kleijn
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ¶Experimental Cardiology Laboratory, Cardiology, University Medical Center Utrecht, the Netherlands & Interuniversity Cardiovascular Institute of the Netherlands, Utrecht, the Netherlands
| | - Chuen Neng Lee
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ‖National University Heart Centre, Department of Cardiac, Thoracic and Vascular Surgery, Singapore 119228; **Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Vitaly Sorokin
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ‖National University Heart Centre, Department of Cardiac, Thoracic and Vascular Surgery, Singapore 119228; **Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551;
| |
Collapse
|
33
|
Kfir N, Lev-Maor G, Glaich O, Alajem A, Datta A, Sze S, Meshorer E, Ast G. SF3B1 Association with Chromatin Determines Splicing Outcomes. Cell Rep 2015; 11:618-29. [DOI: 10.1016/j.celrep.2015.03.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 01/08/2023] Open
|
34
|
Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2015; 14:63-81. [PMID: 24643043 DOI: 10.3233/cbm-130375] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Tn antigen is a tumor-associated carbohydrate antigen that is not normally expressed in peripheral tissues or blood cells. Expression of this antigen, which is found in a majority of human carcinomas of all types, arises from a blockage in the normal O-glycosylation pathway in which glycans are extended from the common precursor GalNAcα1-O-Ser/Thr (Tn antigen). This precursor is generated in the Golgi apparatus on newly synthesized glycoproteins by a family of polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs) and then extended to the common core 1 O-glycan Galβ1-3GalNAcα1-O-Ser/Thr (T antigen) by a single enzyme termed the T-synthase (core 1 β3-galactosyltransferase or C1GalT). Formation of the active form of the T-synthase requires a unique molecular chaperone termed Cosmc, encoded by Cosmc on the X-chromosome (Xq24 in humans, Xc3 in mice). Cosmc resides in the endoplasmic reticulum (ER) and prevents misfolding, aggregation, and proteasome-dependent degradation of newly synthesized T-synthase. Loss of expression of active T-synthase or Cosmc can lead to expression of the Tn antigen, along with its sialylated version Sialyl Tn antigen as observed in several cancers. Both genetic and epigenetic pathways, in addition to potential metabolic regulation, can result in abnormal expression of the Tn antigen. Engineered expression of the Tn antigen by disruption of either C1GalT (T-syn) or Cosmc in mice is associated with a tremendous range of pathologies and engineered expression of the Tn antigen in mouse embryos leads to embryonic death. Studies indicate that many membrane glycoproteins expressing the Tn antigen and/or truncated O-glycans may be dysfunctional, due to degradation and/or misfolding. Thus, expression of normal O-glycans is associated with health and homeostasis whereas truncation of O-glycans, e.g. the Tn and/or Sialyl Tn antigens is associated with cancer and other pathologies.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajindra P Aryal
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew R Kudelka
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Wang H, Sun S, Zhang Y, Chen S, Liu P, Liu B. An off-line high pH reversed-phase fractionation and nano-liquid chromatography–mass spectrometry method for global proteomic profiling of cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:90-5. [DOI: 10.1016/j.jchromb.2014.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/30/2022]
|
36
|
Pan Y, Ma C, Tong W, Fan C, Zhang Q, Zhang W, Tian F, Peng B, Qin W, Qian X. Preparation of Sequence-Controlled Triblock Copolymer-Grafted Silica Microparticles by Sequential-ATRP for Highly Efficient Glycopeptides Enrichment. Anal Chem 2014; 87:656-62. [DOI: 10.1021/ac5034215] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yiting Pan
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Chemical
Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Cheng Ma
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wei Tong
- Tianjin
Key Laboratory for Prevention and Control of Occupational and Environmental
Hazards, Logistics College of CAPF, Tianjin 300162, China
| | - Chao Fan
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qian Zhang
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wanjun Zhang
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fang Tian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Peng
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Weijie Qin
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaohong Qian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
37
|
Qin Y, Zhong Y, Yang G, Ma T, Jia L, Huang C, Li Z. Profiling of concanavalin A-binding glycoproteins in human hepatic stellate cells activated with transforming growth factor-β1. Molecules 2014; 19:19845-67. [PMID: 25460309 PMCID: PMC6270946 DOI: 10.3390/molecules191219845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA) was increased in human hepatic stellate cells (HSCs) following activation by transforming growth factor-β1 (TGF-β1); however, little is known about the ConA-binding glycoproteins (CBGs) of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin) and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2]) were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, Shaanxi, China.
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Ganglong Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Chen Huang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, Shaanxi, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
38
|
Adav SS, Ravindran A, Sze SK. Study of Phanerochaete chrysosporium Secretome Revealed Protein Glycosylation as a Substrate-Dependent Post-Translational Modification. J Proteome Res 2014; 13:4272-80. [DOI: 10.1021/pr500385y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sunil S. Adav
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| | - Anita Ravindran
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| |
Collapse
|
39
|
Ren Y, Hao P, Law SKA, Sze SK. Hypoxia-induced changes to integrin α 3 glycosylation facilitate invasion in epidermoid carcinoma cell line A431. Mol Cell Proteomics 2014; 13:3126-37. [PMID: 25078904 DOI: 10.1074/mcp.m114.038505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a critical microenvironmental factor that drives cancer progression through angiogenesis and metastasis. Glycoproteins, especially those on the plasma membrane, orchestrate this process; however, questions remain regarding hypoxia-perturbed protein glycosylation in cancer cells. We focused on the effects of hypoxia on the integrin family of glycoproteins, which are central to the cellular processes of attachment and migration and have been linked with cancer in humans. We employed electrostatic repulsion hydrophilic interaction chromatography coupled with iTRAQ labeling and LC-MS/MS to identify and quantify glycoproteins expressed in A431. The results revealed that independent of the protein-level change, N-glycosylation modifications of integrin α 3 (ITGA3) were inhibited by hypoxia, unlike in other integrin subunits. A combination of Western blot, flow cytometry, and cell staining assays showed that hypoxia-induced alterations to the glycosylation of ITGA3 prevented its efficient translocation to the plasma membrane. Mutagenesis studies demonstrated that simultaneous mutation of glycosites 6 and 7 of ITGA3 prevented its accumulation at the K562 cell surface, which blocked integrin α 3 and β 1 heterodimer formation and thus abolished ITGA3's interaction with extracellular ligands. By generating A431 cells stably expressing ITGA3 mutated at glycosites 6 and 7, we showed that lower levels of ITGA3 on the cell surface, as induced by hypoxia, conferred an increased invasive ability to cancer cells in vitro under hypoxic conditions. Taken together, these results revealed that ITGA3 translocation to the plasma membrane suppressed by hypoxia through inhibition of glycosylation facilitated cell invasion in A431.
Collapse
Affiliation(s)
- Yan Ren
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551, Singapore
| | - Piliang Hao
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551, Singapore
| | - S K Alex Law
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551, Singapore
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551, Singapore.
| |
Collapse
|
40
|
Sun Z, Sun D, Wang F, Cheng K, Zhang Z, Xu B, Ye M, Wang L, Zou H. Differential analysis of N-glycoproteome between hepatocellular carcinoma and normal human liver tissues by combination of multiple protease digestion and solid phase based labeling. Clin Proteomics 2014; 11:26. [PMID: 25097464 PMCID: PMC4112855 DOI: 10.1186/1559-0275-11-26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/23/2014] [Indexed: 12/25/2022] Open
Abstract
Background Dysregulation of glycoproteins is closely related with many diseases. Quantitative proteomics methods are powerful tools for the detection of glycoprotein alterations. However, in almost all quantitative glycoproteomics studies, trypsin is used as the only protease to digest proteins. This conventional method is unable to quantify N-glycosites in very short or long tryptic peptides and so comprehensive glycoproteomics analysis cannot be achieved. Methods In this study, a comprehensive analysis of the difference of N-glycoproteome between hepatocellular carcinoma (HCC) and normal human liver tissues was performed by an integrated workflow combining the multiple protease digestion and solid phase based labeling. The quantified N-glycoproteins were analyzed by GoMiner to obtain a comparative view of cellular component, biological process and molecular function. Results/conclusions An integrated workflow was developed which enabled the processes of glycoprotein coupling, protease digestion and stable isotope labeling to be performed in one reaction vessel. This workflow was firstly evaluated by analyzing two aliquots of the same protein extract from normal human liver tissue. It was demonstrated that the multiple protease digestion improved the glycoproteome coverage and the quantification accuracy. This workflow was further applied to the differential analysis of N-glycoproteome of normal human liver tissue and that with hepatocellular carcinoma. A total of 2,329 N-glycosites on 1,052 N-glycoproteins were quantified. Among them, 858 N-glycosites were quantified from more than one digestion strategy with over 99% confidence and 1,104 N-glycosites were quantified from only one digestion strategy with over 95% confidence. By comparing the GoMiner results of the N-glycoproteins with and without significant changes, the percentage of membrane and secreted proteins and their featured biological processes were found to be significant different revealing that protein glycosylation may play the vital role in the development of HCC.
Collapse
Affiliation(s)
- Zhen Sun
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Deguang Sun
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Fangjun Wang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Cheng
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhang Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Xu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liming Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Hanfa Zou
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
41
|
Huang BY, Yang CK, Liu CP, Liu CY. Stationary phases for the enrichment of glycoproteins and glycopeptides. Electrophoresis 2014; 35:2091-107. [PMID: 24729282 DOI: 10.1002/elps.201400034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
The analysis of protein glycosylation is important for biomedical and biopharmaceutical research. Recent advances in LC-MS analysis have enabled the identification of glycosylation sites, the characterisation of glycan structures and the identification and quantification of glycoproteins and glycopeptides. However, this type of analysis remains challenging due to the low abundance of glycopeptides in complex protein digests, the microheterogeneity at glycosylation sites, ion suppression effects and the competition for ionisation by co-eluting peptides. Specific sample preparation is necessary for comprehensive and site-specific glycosylation analyses using MS. Therefore, researchers continue to pursue new columns to broaden their applications. The current manuscript covers recent literature published from 2008 to 2013. The stationary phases containing various chemical bonding methods or ligands immobilisation strategies on solid supports that selectively enrich N-linked or sialylated N-glycopeptides are categorised with either physical or chemical modes of binding. These categories include lectin affinity, hydrophilic interactions, boronate affinity, titanium dioxide affinity, hydrazide chemistry and other separation techniques. This review should aid in better understanding the syntheses and physicochemical properties of each type of stationary phases for enriching glycoproteins and glycopeptides.
Collapse
Affiliation(s)
- Bao-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
42
|
Chen R, Seebun D, Ye M, Zou H, Figeys D. Site-specific characterization of cell membrane N-glycosylation with integrated hydrophilic interaction chromatography solid phase extraction and LC-MS/MS. J Proteomics 2014; 103:194-203. [PMID: 24721674 DOI: 10.1016/j.jprot.2014.03.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Glycosylation of membrane proteins plays an important role in cellular behaviors such as cell-cell interaction, immunologic recognition and cell signaling. However, the effective extraction of membrane proteins, the selective isolation of glycopeptides and the mass spectrometric characterization of glycosylation are challenging with current analytical techniques. In this study, a systematic approach was developed which combined: an integrated hydrophilic interaction chromatography solid phase interaction (HILIC SPE) for simultaneous detergent removal and glycopeptide enrichment, and mass spectrometric identification of both protein N-glycosylation sites and site-specific glycan composition. The HILIC SPE conditions were optimized to enable the use of a high concentration of strong detergents, such as SDS and Triton X-100 and to dissolve highly hydrophobic membrane proteins, thus increasing the yield of membrane protein extraction. We illustrated the performance of this approach for the study of membrane protein glycosylation from human embryonic kidney cell lines (HEK 293T). 200μg total protein digest was processed using this approach, leading to the identification of 811 N-glycosylation sites from 567 proteins within two experimental replicates. Furthermore, 177 glycopeptides representing 82 N-glycosites with both glycan composition and peptide sequence were identified by high energy collision dissociation. BIOLOGICAL SIGNIFICANCE A method for systematic characterizing of cell membrane glycosylation has been developed in this manuscript. It is comprised of an integrated hydrophilic interaction chromatography solid phase extraction for the simultaneous detergent removal and intact glycopeptide enrichment. This HILIC SPE significantly increased the efficiency and sensitivity for glycosylation analysis and was combined with high energy collision dissociation to characterize site-specific N-glycosylation from HEK293 cell membrane. Totally 811 N-glycosylation sites from 567 proteins were identified and 177 intact glycopeptides with both glycan composition and peptides sequence were characterized, which provided a solution for site-specific N-glycosylation characterization of membrane.
Collapse
Affiliation(s)
- Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada; Key Lab of Separation Science for Analytical Chemistry, National Chromatography R&A Center, Dalian Institute of Chemical Physics, The Chinese Academy of Science, Dalian 116023, China
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mingliang Ye
- Key Lab of Separation Science for Analytical Chemistry, National Chromatography R&A Center, Dalian Institute of Chemical Physics, The Chinese Academy of Science, Dalian 116023, China
| | - Hanfa Zou
- Key Lab of Separation Science for Analytical Chemistry, National Chromatography R&A Center, Dalian Institute of Chemical Physics, The Chinese Academy of Science, Dalian 116023, China
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry, Faculty of Science, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
43
|
Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J Proteomics 2014; 101:77-87. [DOI: 10.1016/j.jprot.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/30/2022]
|
44
|
Cao L, Yu L, Guo Z, Shen A, Guo Y, Liang X. N-Glycosylation Site Analysis of Proteins from Saccharomyces cerevisiae by Using Hydrophilic Interaction Liquid Chromatography-Based Enrichment, Parallel Deglycosylation, and Mass Spectrometry. J Proteome Res 2014; 13:1485-93. [DOI: 10.1021/pr401049e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liwei Cao
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Long Yu
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aijin Shen
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunü Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
45
|
Quantitative profiling of the rat heart myoblast secretome reveals differential responses to hypoxia and re-oxygenation stress. J Proteomics 2014; 98:138-49. [DOI: 10.1016/j.jprot.2013.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/25/2013] [Accepted: 12/28/2013] [Indexed: 11/18/2022]
|
46
|
Datta A, Qian J, Chong R, Kalaria RN, Francis P, Lai MKP, Chen CP, Sze SK. Novel pathophysiological markers are revealed by iTRAQ-based quantitative clinical proteomics approach in vascular dementia. J Proteomics 2014; 99:54-67. [PMID: 24448401 PMCID: PMC4024194 DOI: 10.1016/j.jprot.2014.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Vascular dementia (VaD) is a leading cause of dementia in the elderly together with Alzheimer's disease with limited treatment options. Poor understanding of the pathophysiology underlying VaD is hindering the development of new therapies. Hence, to unravel its underlying molecular pathology, an iTRAQ-2D-LC-MS/MS strategy was used for quantitative analysis of pooled lysates from Brodmann area 21 of pathologically confirmed cases of VaD and matched non-neurological controls. A total of 144 differentially expressed proteins out of 2281 confidently identified proteins (false discovery rate=0.3%) were shortlisted for bioinformatics analysis. Western blot analysis of selected proteins using samples from individual patients (n=10 per group) showed statistically significant increases in the abundance of SOD1 and NCAM and reduced ATP5A in VaD. This suggested a state of hypometabolism and vascular insufficiency along with an inflammatory condition during VaD. Elevation of SOD1 and increasing trend for iron-storage proteins (FTL, FTH1) may be indicative of an oxidative imbalance that is accompanied by an aberrant iron metabolism. The synaptic proteins did not exhibit a generalized decrease in abundance (e.g. syntaxin) in the VaD subjects. This reported proteome offers a reference data set for future basic or translational studies on VaD. BIOLOGICAL SIGNIFICANCE Our study is the first quantitative clinical proteomic study where iTRAQ-2D-LC-MS/MS strategy has been used to identify the differential proteome in the VaD cortex by comparing VaD and matched control subjects. We generate testable hypothesis about the involvement of various proteins in the vascular and parenchymal events during the evolution of VaD that finally leads to malfunction and demise of brain cells. This study also establishes quantitative proteomics as a complementary approach and viable alternative to existing neurochemical, electron microscopic and neuroimaging techniques that are traditionally being used to understand the molecular pathology of VaD. Our study could inspire fellow researchers to initiate similar retrospective studies targeting various ethnicities, age-groups or sub-types of VaD using brain samples available from brain banks across the world. Meta-analysis of these studies in the future may be able to shortlist candidate proteins or pathways for rationale exploration of therapeutic targets or biomarkers for VaD.
Collapse
Affiliation(s)
- Arnab Datta
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingru Qian
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raj N Kalaria
- Institute for Ageing Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Paul Francis
- Wolfson Centre for Age-related Diseases, King's College London, London, UK
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
47
|
Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 2014; 139:688-704. [DOI: 10.1039/c3an01813j] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Lichti CF, Wildburger NC, Emmett MR, Mostovenko E, Shavkunov AS, Strain SK, Nilsson CL. Post-translational Modifications in the Human Proteome. TRANSLATIONAL BIOINFORMATICS 2014. [DOI: 10.1007/978-94-017-9202-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Tran T, Park JM, Kim OH, Kim B, Choi DY, Lee J, Kim K, Oh BC, Lee H. Combined phospho- and glycoproteome enrichment in nephrocalcinosis tissues of phytate-fed rats. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2767-2776. [PMID: 24214862 DOI: 10.1002/rcm.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/27/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Protein post-translational modifications (PTMs) are directly involved in protein function and cellular activities. Among them, glycosylation and phosphorylation are particularly important modifications on proteins located at extracellular and intracellular domains, respectively. However, the combined detection using phospho- and glycoproteomics is limited mainly due to protocol differences. METHODS In this study, we developed a novel method for both phospho- and glycoproteome detection from a single sample batch, in which a titanium dioxide cartridge was used to capture the phosphoproteome, and the flow-through solution was processed for capturing N-linked glycopeptides using hydrazide resin. RESULTS By using 1 mg of protein from kidney tissue lysates from normal and diseased rats, we concurrently identified 437 glycosites/358 phosphosites and 468 glycosites/369 phosphosites in normal and disease kidneys, respectively, by liquid chromatography/tandem mass spectrometric analysis. CONCLUSIONS Compared with individual PTM analyses, the combined PTM analysis clearly provides more broad implications for PTMs related to the pathological status and discovery of biomarker candidates. Furthermore, the combined protocol thoroughly showed its advantages in enrichment efficiency and biological interpretation compared with current methods.
Collapse
Affiliation(s)
- TrangHuyen Tran
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhou W, Jeyaraman K, Yusoff P, Shenolikar S. Phosphorylation at tyrosine 262 promotes GADD34 protein turnover. J Biol Chem 2013; 288:33146-55. [PMID: 24092754 DOI: 10.1074/jbc.m113.504407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, metabolic and environmental stress increases the phosphorylation of the eukaryotic translational initiation factor, eIF2α, and attenuates global protein synthesis. Subsequent transcriptional activation of GADD34 assembles an eIF2α phosphatase that feeds back to restore mRNA translation. Active proteasomal degradation of GADD34 protein then reestablishes the sensitivity of cells to subsequent bouts of stress. Mass spectrometry established GADD34 phosphorylation on multiple serines, threonines, and tyrosines. Phosphorylation at tyrosine 262 enhanced the rate of the GADD34 protein turnover. Substrate-trapping studies identified TC-PTP (PTPN2) as a potential GADD34 phosphatase, recognizing phosphotyrosine 262. Reduced GADD34 protein levels in TC-PTP-null MEFs following ER stress emphasized the importance of TC-PTP in determining the cellular levels of GADD34 protein. The susceptibility of TC-PTP-null MEFs to ER stress-induced apoptosis was significantly ameliorated by ectopic expression of GADD34. The data suggested that GADD34 phosphorylation on tyrosine 262 modulates endoplasmic reticulum stress signaling and cell fate.
Collapse
Affiliation(s)
- Wei Zhou
- From the Signature Research Programs in Cardiovascular and Metabolic Disorders and
| | | | | | | |
Collapse
|