1
|
Gao Y, Ang YS, Yung LYL. CRISPR-Cas12a-Assisted DNA Circuit for Nonmicroscopic Detection of Cell Surface Receptor Clustering. ACS Sens 2025; 10:977-985. [PMID: 39924908 DOI: 10.1021/acssensors.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Protein-protein interactions (PPIs) on the cell surface have been of great interest due to their high clinical relevance and significance; however, the methods for detecting PPIs heavily rely on microscopic instruments. In this work, we designed a Cas12a-assisted DNA circuit for detecting cell surface receptor clustering events without a dependence on microscopy. This nonmicroscopic approach is based on the proximity principle, where localized protein-protein interactions such as receptor clustering are converted into DNA barcodes. These barcodes can then be identified by Cas12a for signal generation in the bulk. The compatibility of the circuit with Cas12a was first experimentally verified. Several leak reactions were identified and minimized. Lastly, we implemented this design in human breast cancer cell line models to distinguish the different levels of human epidermal growth factor receptor 2 (HER2) homodimers and heterodimers with HER1 and HER3 semiquantitatively without the use of a microscope. Overall, our proposed Cas12a-assisted DNA circuit for detecting cell surface receptor clustering shows the potential for fast screening in diagnostic applications and drug discovery, demonstrating the promising use of enzymatic DNA circuits in biological applications.
Collapse
Affiliation(s)
- Yahui Gao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
2
|
Moradi Y, Lee JSH, Armani AM. Detecting Disruption of HER2 Membrane Protein Organization in Cell Membranes with Nanoscale Precision. ACS Sens 2024; 9:52-61. [PMID: 37955934 PMCID: PMC10825864 DOI: 10.1021/acssensors.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
The spatiotemporal organization of proteins within the cell membrane can affect numerous biological functions, including cell signaling, communication, and transportation. Deviations from normal spatial arrangements have been observed in various diseases, and a better understanding of this process is a key stepping stone to advancing development of clinical interventions. However, given the nanometer length scales involved, detecting these subtle changes has primarily relied on complex super-resolution and single-molecule imaging methods. In this work, we demonstrate an alternative fluorescent imaging strategy for detecting protein organization based on a material that exhibits a unique photophysical behavior known as aggregation-induced emission (AIE). Organic AIE molecules have an increase in emission signal when they are in close proximity, and the molecular motion is restricted. This property simultaneously addresses the high background noise and low detection signal that limit conventional widefield fluorescent imaging. To demonstrate the potential of this approach, the fluorescent molecule sensor is conjugated to a human epidermal growth factor receptor 2 (HER2)-specific antibody and used to investigate the spatiotemporal behavior of HER2 clustering in the membrane of HER2-overexpressing breast cancer cells. Notably, the disruption of HER2 clusters in response to an FDA-approved monoclonal antibody therapeutic (Trastuzumab) is successfully detected using a simple widefield fluorescent microscope. While the sensor demonstrated here is optimized for sensing HER2 clustering, it is an easily adaptable platform. Moreover, given the compatibility with widefield imaging, the system has the potential to be used with high-throughput imaging techniques, accelerating investigations into membrane protein spatiotemporal organization.
Collapse
Affiliation(s)
- Yasaman Moradi
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
| | - Jerry S. H. Lee
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
- Keck
School of Medicine, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrea M. Armani
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
| |
Collapse
|
3
|
Screening assays for tyrosine kinase inhibitors:A review. J Pharm Biomed Anal 2022; 223:115166. [DOI: 10.1016/j.jpba.2022.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
|
4
|
Hleihil M, Balakrishnan K, Benke D. Protein phosphatase 2A regulation of GABAB receptors normalizes ischemia-induced aberrant receptor trafficking and provides neuroprotection. Front Mol Neurosci 2022; 15:1015906. [PMID: 36311027 PMCID: PMC9607930 DOI: 10.3389/fnmol.2022.1015906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
One major factor regulating the strength of GABAB receptor signaling and thereby neuronal excitability is the dynamic control of their cell surface expression. GABAB receptors are constitutively internalized and recycled back to the plasma membrane to maintain a stable number of receptors at cell surface for appropriate signaling. Protein phosphatase 2A (PP2A) dependent dephosphorylation of serine 783 (S783) in the GABAB2 subunit is a key event for downregulating GABAB receptor cell surface expression particularly under conditions associated with excitotoxicity. Here, we investigated the role of PP2A in regulating GABAB receptor cell surface expression under physiological and excitotoxic conditions. For this purpose, we developed an interfering peptide (PP2A-Pep) that inhibits the interaction of GABAB receptors with PP2A. Using cultured cortical neurons, we found that PP2A downregulates GABAB receptor cell surface expression by inhibiting recycling of the receptors and thereby promoting degradation of the receptors. Inhibition of the GABAB receptor/PP2A interaction by PP2A-Pep in cultured cortical neurons restored GABAB receptor cell surface expression after excitotoxic stress and inhibited progressing neuronal death even when added 48 h after the insult. To explore the therapeutic potential of PP2A-Pep, we further analyzed effect of PP2A-Pep in the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia. Incubation of brain slices prepared from MCAO-treated mice with PP2A-Pep restored normal GABAB receptor expression and GABAB receptor-mediated inhibition, reduced ischemic-induced overexcitability of neurons, and prevented neuronal death in the ischemic penumbra. This data illustrates the crucial role of regulating GABAB receptor phosphorylation by PP2A for controlling neuronal inhibition and excitability. The results further suggest that interfering with the GABAB receptor/PP2A interaction is a promising strategy for the development of specific therapeutic interventions to treat neurological diseases associated with a disturbed excitation/inhibition balance and downregulation of GABAB receptors.
Collapse
Affiliation(s)
- Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Karthik Balakrishnan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
- Drug Discovery Network Zurich, Zurich, Switzerland
- *Correspondence: Dietmar Benke,
| |
Collapse
|
5
|
Cai W, Xu D, Zeng C, Liao F, Li R, Lin Y, Zhao Y, Dong W, Wang Q, Yang H, Wen D, Gu J, Shentu W, Yu H, Zhang X, Wei J, Duan J. Modulating Lysine Crotonylation in Cardiomyocytes Improves Myocardial Outcomes. Circ Res 2022; 131:456-472. [PMID: 35920168 DOI: 10.1161/circresaha.122.321054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ischemic heart disease is a major global public health challenge, and its functional outcomes remain poor. Lysine crotonylation (Kcr) was recently identified as a post-translational histone modification that robustly indicates active promoters. However, the role of Kcr in myocardial injury is unknown. In this study, we aimed to clarify the pathophysiological significance of Kcr in cardiac injury and explore the underlying mechanism. METHODS We investigated the dynamic change of both the Kcr sites and protein level in left ventricular tissues at 2 time points following sham or cardiac ischemia-reperfusion injury, followed by liquid chromatography-coupled tandem mass tag mass spectrometry. After validation of the enriched protein Kcr by immunoprecipitation and Western blot, the function and mechanism of specific Kcr sites were further investigated in vitro and in vivo by gain- or loss-of-function mutations targeting Kcr sites of selected proteins. RESULTS We found that cardiac ischemia-reperfusion injury triggers preferential Kcr of proteins required for cardiomyocyte contractility, including mitochondrial and cytoskeleton proteins, which occurs largely independently of protein-level changes in the same proteins. Those exhibiting Kcr changes were associated not only with disruption of cardiomyocyte mitochondrial, sarcomere architecture, and gap junction but also with cardiomyocyte autophagy and apoptosis. Modulating site-specific Kcr of selected mitochondrial protein IDH3a (isocitrate dehydrogenase 3 [NAD+] alpha) at K199 and cytoskeletal protein TPM1 (tropomyosin alpha-1 chain) at K28/29 or enhancing general Kcr via sodium crotonate provision not only protects cardiomyocyte from apoptosis by inhibiting BNIP3 (Bcl-2 adenovirus E18 19-kDa-interacting protein 3)-mediated mitophagy or cytoskeleton structure rearrangement but also preserves postinjury myocardial function by inhibiting fibrosis and apoptosis. CONCLUSIONS Our results indicate that Kcr modulation is a key response of cardiomyocytes to ischemia-reperfusion injury and may represent a novel therapeutic target in the context of ischemic heart disease.
Collapse
Affiliation(s)
- Wenqian Cai
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Dacai Xu
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China.,Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai (D.X.)
| | - Chui Zeng
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Fan Liao
- Medical College of South China University of Technology, Guangzhou (F.L., J.D.)
| | - Ruiqi Li
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Yingjiong Lin
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Yue Zhao
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Wenyan Dong
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Qingwen Wang
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Haili Yang
- Pathology Department, The Third Affiliated Hospital of Guangzhou Medical University, China (H.Y.)
| | - Daqiang Wen
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Jianbiao Gu
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Weihui Shentu
- Department of Ultrasonography (W.S., H.Y.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Hongkui Yu
- Department of Ultrasonography (W.S., H.Y.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Xiaochun Zhang
- Radiology Department (X.Z.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Jianrui Wei
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., H.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China.,Medical College of South China University of Technology, Guangzhou (F.L., J.D.)
| |
Collapse
|
6
|
Balakrishnan K, Hleihil M, Bhat MA, Ganley RP, Vaas M, Klohs J, Zeilhofer HU, Benke D. Targeting the interaction of GABA B receptors with CaMKII with an interfering peptide restores receptor expression after cerebral ischemia and inhibits progressive neuronal death in mouse brain cells and slices. Brain Pathol 2022; 33:e13099. [PMID: 35698024 PMCID: PMC9836377 DOI: 10.1111/bpa.13099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 01/21/2023] Open
Abstract
Cerebral ischemia is the leading cause for long-term disability and mortality in adults due to massive neuronal death. Currently, there is no pharmacological treatment available to limit progressive neuronal death after stroke. A major mechanism causing ischemia-induced neuronal death is the excessive release of glutamate and the associated overexcitation of neurons (excitotoxicity). Normally, GABAB receptors control neuronal excitability in the brain via prolonged inhibition. However, excitotoxic conditions rapidly downregulate GABAB receptors via a CaMKII-mediated mechanism and thereby diminish adequate inhibition that could counteract neuronal overexcitation and neuronal death. To prevent the deleterious downregulation of GABAB receptors, we developed a cell-penetrating synthetic peptide (R1-Pep) that inhibits the interaction of GABAB receptors with CaMKII. Administration of this peptide to cultured cortical neurons exposed to excitotoxic conditions restored cell surface expression and function of GABAB receptors. R1-Pep did not affect CaMKII expression or activity but prevented its T286 autophosphorylation that renders it autonomously and persistently active. Moreover, R1-Pep counteracted the aberrant downregulation of G protein-coupled inwardly rectifying K+ channels and the upregulation of N-type voltage-gated Ca2+ channels, the main effectors of GABAB receptors. The restoration of GABAB receptors activated the Akt survival pathway and inhibited excitotoxic neuronal death with a wide time window in cultured neurons. Restoration of GABAB receptors and neuroprotective activity of R1-Pep was verified by using brain slices prepared from mice after middle cerebral artery occlusion (MCAO). Treatment with R1-Pep restored normal GABAB receptor expression and GABA receptor-mediated K+ channel currents. This reduced MCAO-induced neuronal excitability and inhibited neuronal death. These results support the hypothesis that restoration of GABAB receptor expression under excitatory conditions provides neuroprotection and might be the basis for the development of a selective intervention to inhibit progressive neuronal death after ischemic stroke.
Collapse
Affiliation(s)
- Karthik Balakrishnan
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland,Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland,Present address:
Dewpoint Therapeutics GMBHDresdenGermany
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland,Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Musadiq A. Bhat
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Robert P. Ganley
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Markus Vaas
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland,Present address:
Clinical Trial Center ZurichUniversity Hospital of ZurichZurichSwitzerland
| | - Jan Klohs
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland,Institute for Biomedical Engineering, University of Zurich and ETH ZurichZurichSwitzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland,Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland,Drug Discovery Network ZurichZurichSwitzerland,Institute of Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland,Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland,Drug Discovery Network ZurichZurichSwitzerland
| |
Collapse
|
7
|
Mendes T, Herledan A, Leroux F, Deprez B, Lambert JC, Kilinc D. High-Content Screening for Protein-Protein Interaction Modulators Using Proximity Ligation Assay in Primary Neurons. ACTA ACUST UNITED AC 2021; 86:e100. [PMID: 31876395 DOI: 10.1002/cpcb.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The proximity ligation assay (PLA) allows the detection and subcellular localization of protein-protein interactions with high specificity. We recently developed a high-content screening model based on primary hippocampal neurons cultured in 384-well plates and screened a library of ∼1100 compounds using a PLA between tau and bridging integrator 1, a genetic risk factor for Alzheimer's disease. We developed image-segmentation and spot-detection algorithms to delineate PLA signals in the axonal network, but not in cell bodies, from confocal images acquired via a high-throughput microscope. To compare data generated from different plates and through different experiments, we developed a computational routine to optimize the image analysis parameters for each plate and devised a range of quality-control measures to ultimately identify compounds that consistently increase or decrease our read-out. We provide the following protocols. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Routine culture of rat postnatal hippocampal neurons in 384-well plates Basic Protocol 2: Compound incubation using the high-content screening platform Support Protocol 1: Preparation of intermediate plates for compound screening Support Protocol 2: Preparation of intermediate plates for hit validation (dose-response curves) Basic Protocol 3: Proximity ligation assay in 384-well plates Basic Protocol 4: Image acquisition and analysis Support Protocol 3: Optimization of analysis parameters Basic Protocol 5: Identification of hits Basic Protocol 6: Validation of hits based on dose-response curves.
Collapse
Affiliation(s)
- Tiago Mendes
- Université de Lille, INSERM U1167, Institut Pasteur de Lille, Lille, France
| | - Adrien Herledan
- Université de Lille, EGID, INSERM U1177, Institut Pasteur de Lille, Lille, France
| | - Florence Leroux
- Université de Lille, EGID, INSERM U1177, Institut Pasteur de Lille, Lille, France
| | - Benoit Deprez
- Université de Lille, EGID, INSERM U1177, Institut Pasteur de Lille, Lille, France
| | | | - Devrim Kilinc
- Université de Lille, INSERM U1167, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Proximity ligation assay: an ultrasensitive method for protein quantification and its applications in pathogen detection. Appl Microbiol Biotechnol 2021; 105:923-935. [PMID: 33427935 DOI: 10.1007/s00253-020-11049-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
It is of great significance to establish sensitive and accurate pathogen detection methods, considering the continuous emergence or re-emergence of infectious diseases seriously influences the safety of human and animals. Proximity ligation assay (PLA) is developed for the sensitive protein detection and also can be used for the detection of pathogens. PLA employs aptamer or monoclonal/polyclonal antibody-nucleic acid complexes as proximity probes. When the paired proximity probes bind to the same target protein or protein complex, they will be adjacent to each other and form an amplifiable DNA sequence through ligation. Combining the specificity of enzyme-linked immunosorbent assay (ELISA) and sensitivity of polymerase chain reaction (PCR), PLA transforms the detection of protein into the detection of DNA nucleic acid sequence. Therefore, as an ultrasensitive protein assay, PLA has great potential for quantification, localization of protein, and clinical diagnostics. In this review, we summarize the basic principles of PLA and its applications in pathogen detection. KEY POINTS: • Different forms of proximity ligation assay are introduced. • Applications of proximity ligation assay in pathogen detection are summarized. • Proximity ligation assay is an ultrasensitive method to quantify protein and pathogen.
Collapse
|
9
|
Abstract
Aim: PTPIP51 interacts with NFκB signaling at the RelA and IκB level. NFκB signaling is linked to the initiation, progression and metastasis of breast cancer. Her2-amplified breast cancer cells frequently display activation of the NFκB signaling. We aimed to clarify the effects of NFκB inhibition on the NFκB- and MAPK-related interactome of PTPIP51 and cell viability in HaCat cells and SKBR3 cells. Results: IKK-16 selectively reduced cell viability in SKBR3 cells. PDTC induced a formation of the Raf1/14-3-3/PTPIP51 complex in SKBR3 cells, indicating a shift of PTPIP51 into MAPK signaling. Conclusion: IKK-16 selectively inhibits cell viability of SKBR3 cells. In addition, PTPIP51 might serve as the mediator between NFκB signaling and the MAPK pathway in SKBR3. Breast cancer is the most common cancerous disease among women. Prognosis and therapy of breast cancer depends on the expression of hormone and surface receptors such as Her2, which promote tumor growth and invasion via activation of downstream signaling pathways. NFκB signaling represents a downstream signaling pathway that can be activated by Her2. In this study, we demonstrated that inhibition of NFκB signaling with IKK-16 reduces cell viability in breast cancer cells with amplified Her2. Furthermore, we identified PTPIP51 as a potential mediator of crosstalks between the MAPK pathway and NFκB signaling. This signaling pathway could therefore be a target for future drug development.
Collapse
|
10
|
Villafañez F, Gottifredi V, Soria G. Development and Optimization of a Miniaturized Western Blot-Based Screening Platform to Identify Regulators of Post-Translational Modifications. High Throughput 2019; 8:ht8020015. [PMID: 31163614 PMCID: PMC6631403 DOI: 10.3390/ht8020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are fundamental traits of protein functionality and their study has been addressed using several approaches over the past years. However, screening methods developed to detect regulators of PTMs imply many challenges and are usually based on expensive techniques. Herein, we described the development and optimization of a western blot-based platform for identification of regulators of a specific PTM—mono-ubiquitylation of proliferating cell nuclear antigen (PCNA). This cell-based method does not require specific equipment, apart from the basic western blot (WB) devices and minor accessories, which are accessible for most research labs. The modifications introduced to the classical WB protocol allow the performance of PTM analysis from a single well of a 96-well plate with minimal sample manipulation and low intra- and inter-plate variability, making this method ideal to screen arrayed compound libraries in a 96-well format. As such, our experimental pipeline provides the proof of concept to design small screenings of PTM regulators by improving the quantitative accuracy and throughput capacity of classical western blots.
Collapse
Affiliation(s)
- Florencia Villafañez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba X5000, Argentina.
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| | - Vanesa Gottifredi
- Fundación Instituto Leloir_Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405BWE, Argentina.
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba X5000, Argentina.
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| |
Collapse
|
11
|
Crosstalks of the PTPIP51 interactome revealed in Her2 amplified breast cancer cells by the novel small molecule LDC3/Dynarrestin. PLoS One 2019; 14:e0216642. [PMID: 31075141 PMCID: PMC6510450 DOI: 10.1371/journal.pone.0216642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
LDC3/Dynarrestin, an aminothiazole derivative, is a recently developed small molecule, which binds protein tyrosine phosphatase interacting protein 51 (PTPIP51). PTPIP51 interacts with various proteins regulating different signaling pathways leading to proliferation and migration. Her2 positive breast cancer cells (SKBR3) express high levels of PTPIP51. Therefore, we investigated the effects of LDC3/Dynarrestin on PTPIP51 and its interactome with 12 different proteins of various signal pathways including the interaction with dynein in SKBR3 cells. The localization and semi-quantification of PTPIP51 protein and the Tyr176 phosphorylated PTPIP51 protein were evaluated. Protein-protein-interactions were assessed by Duolink proximity ligation assays. Interactions and the activation of signal transduction hubs were examined with immunoblots. LDC3/Dynarrestin led to an increased PTPIP51 tyrosine 176 phosphorylation status while the overall amount of PTPIP51 remained unaffected. These findings are paralleled by an enhanced interaction of PTPIP51 with its crucial kinase c-Src and a reduced interaction with the counteracting phosphatase PTP1B. Furthermore, the treatment results in a significantly augmented interaction of PTPIP51/14-3-3β and PTPIP51/Raf1, the link to the MAPK pathway. Under the influence of LDC3/Dynarrestin, the activity of the MAPK pathway rose in a concentration-dependent manner as indicated by RTK assays and immunoblots. The novel small molecule stabilizes the RelA/IκB/PTPIP51 interactome and can abolish the effects caused by TNFα stimulation. Moreover, LDC3/Dynarrestin completely blocked the Akt signaling, which is essential for tumor growth. The data were compared to the recently described interactome of PTPIP51 in LDC3/Dynarrestin treated non-cancerous keratinocyte cells (HaCaT). Differences were identified exclusively for the mitochondrial-associated ER-membranes (MAM) interactions and phospho-regulation related interactome of PTPIP51.LDC3/Dynarrestin gives the opportunity/possibility to influence the MAPK signaling, NFkB signaling and probably calcium homeostasis in breast cancer cells by affecting the PTPIP51 interactome.
Collapse
|
12
|
Serebryannyy LA, Misteli T. HiPLA: High-throughput imaging proximity ligation assay. Methods 2018; 157:80-87. [PMID: 30419336 DOI: 10.1016/j.ymeth.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 01/16/2023] Open
Abstract
Protein-protein interactions are essential for cellular structure and function. To delineate how the intricate assembly of protein interactions contribute to cellular processes in health and disease, new methodologies that are both highly sensitive and can be applied at large scale are needed. Here, we develop HiPLA (high-throughput imaging proximity ligation assay), a method that employs the well-established antibody-based proximity ligation assay in a high-throughput imaging screening format as a novel means to systematically visualize protein interactomes. Using HiPLA with a library of antibodies targeting nuclear proteins, we probe the interaction of 60 proteins and associated post-translational modifications (PTMs) with the nuclear lamina in a model of the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). We identify a subset of proteins that differentially interact with the nuclear lamina in HGPS. Using HiPLA in combination with quantitative indirect immunofluorescence, we find that the majority of differential interactions are accompanied by corresponding changes in expression of the interacting protein. Taken together, HiPLA offers a novel approach to probe cellular protein-protein interaction at a large scale and reveals mechanistic insights into the assembly of protein complexes.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer 2018; 17:149. [PMID: 30322398 PMCID: PMC6190543 DOI: 10.1186/s12943-018-0901-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Background Lung cancer is the leading cause of cancer related deaths and its incidence is highly correlated with cigarette smoking. Nicotine, the addictive component of tobacco smoke, cannot initiate tumors, but can promote proliferation, migration, and invasion of cells in vitro and promote tumor growth and metastasis in vivo. This nicotine-mediated tumor promotion is facilitated through the activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit. More recently, nicotine has been implicated in promoting self-renewal of stem-like side-population cells from lung cancers. This subpopulation of cancer stem-like cells has been implicated in tumor initiation, generation of the heterogeneous tumor population, metastasis, dormancy, and drug resistance. Here we describe the molecular events driving nicotine and e-cigarette extract mediated stimulation of self-renewal of stem-like cells from non-small cell lung cancer. Methods Experiments were conducted using A549 and H1650 non-small cell lung cancer cell lines and human mesenchymal stem cells according to protocols described in this paper. 2 μM nicotine or e-cigarette extracts was used in all relevant experiments. Biochemical analysis using western blotting, transient transfections, RT-PCR and cell biological analysis using double immunofluorescence and confocal microscopy, as well as proximity ligation assays were conducted. Results Here we demonstrate that nicotine can induce the expression of embryonic stem cell factor Sox2, which is indispensable for self-renewal and maintenance of stem cell properties in non-small cell lung adenocarcinoma (NSCLC) cells. We further demonstrate that this occurs through a nAChR-Yap1-E2F1 signaling axis downstream of Src and Yes kinases. Our data suggests Oct4 may also play a role in this process. Over the past few years, electronic cigarettes (e-cigarettes) have been promoted as healthier alternatives to traditional cigarette smoking as they do not contain tobacco; however, they do still contain nicotine. Hence we have investigated whether e-cigarette extracts can enhance tumor promoting properties similar to nicotine; we find that they can induce expression of Sox2 as well as mesenchymal markers and enhance migration and stemness of NSCLC cells. Conclusions Our findings shed light on novel molecular mechanisms underlying the pathophysiology of smoking-related lung cancer in the context of cancer stem cell populations, and reveal new pathways involved that could potentially be exploited therapeutically. Electronic supplementary material The online version of this article (10.1186/s12943-018-0901-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney M Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Durairaj Mohan Kumar
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
Dietel E, Brobeil A, Tag C, Gattenloehner S, Wimmer M. Effectiveness of EGFR/HER2-targeted drugs is influenced by the downstream interaction shifts of PTPIP51 in HER2-amplified breast cancer cells. Oncogenesis 2018; 7:64. [PMID: 30139932 PMCID: PMC6107558 DOI: 10.1038/s41389-018-0075-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common female cancerous disease and the second most cause of cancer death in women. About 20–30% of these tumors exhibit an amplification of the HER2/ErbB2 receptor, which is coupled to a more aggressive and invasive growth of the cancer cells. Recently developed tyrosine kinase inhibitors and therapeutic antibodies targeting the HER2 receptor improved the overall survival time compared with sole radio- and chemotherapy. Upcoming resistances against the HER2-targeted therapy make a better understanding of the receptor associated downstream pathways an absolute need. In earlier studies, we showed the involvement of Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) in the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway is one of the most frequently overactivated pathways in HER2-amplified breast cancer cells. This study is aimed to elucidate the effects of four different TKIs on the interactome of PTPIP51, namely with the receptors EGFR and HER2, 14-3-3/Raf1 (MAPK pathway), its regulating enzymes, and the mitochondria-associated interaction partners in HER2 breast cancer cell lines (SK-BR3 and BT474) by using the Duolink proximity ligation assay, immunoblotting and knockdown of PTPIP51. Inhibition of both EGFR and HER2/ErbB2R shifted PTPIP51 into the MAPK pathway, but left the mitochondria-associated interactome of PTPIP51 unattended. Exclusively inhibiting HER2/ErbB2 by Mubritinib did not affect the interaction of PTPIP51 with the MAPK signaling. Selective inhibition of HER2 induced great alterations of mitochondria-associated interactions of PTPIP51, which ultimately led to the most-effective reduction of cell viability of SK-BR3 cells of all tested TKIs. The results clearly reveal the importance of knowing the exact mechanisms of the inhibitors affecting receptor tyrosine kinases in order to develop more efficient anti-HER2-targeted therapies.
Collapse
Affiliation(s)
- Eric Dietel
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, 35392, Germany.
| | - Alexander Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, 35392, Germany.,Institute of Pathology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Claudia Tag
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, 35392, Germany
| | | | - Monika Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, 35392, Germany
| |
Collapse
|
15
|
Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII) β-Dependent Phosphorylation of GABA B1 Triggers Lysosomal Degradation of GABA B Receptors via Mind Bomb-2 (MIB2)-Mediated Lys-63-Linked Ubiquitination. Mol Neurobiol 2018; 56:1293-1309. [PMID: 29881949 PMCID: PMC6401210 DOI: 10.1007/s12035-018-1142-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
The G protein-coupled GABAB receptors, constituted from GABAB1 and GABAB2 subunits, are important regulators of neuronal excitability by mediating long-lasting inhibition. One factor that determines receptor availability and thereby the strength of inhibition is regulated protein degradation. GABAB receptors are constitutively internalized from the plasma membrane and are either recycled to the cell surface or degraded in lysosomes. Lys-63-linked ubiquitination mediated by the E3 ligase Mind bomb-2 (MIB2) is the signal that sorts GABAB receptors to lysosomes. However, it is unknown how Lys-63-linked ubiquitination and thereby lysosomal degradation of the receptors is regulated. Here, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes MIB2-mediated Lys-63-linked ubiquitination of GABAB receptors. We found that inhibition of CaMKII in cultured rat cortical neurons increased cell surface GABAB receptors, whereas overexpression of CaMKIIβ, but not CaMKIIα, decreased receptor levels. This effect was conveyed by Lys-63-linked ubiquitination of GABAB1 at multiple sites mediated by the E3 ligase MIB2. Inactivation of the CaMKII phosphorylation site on GABAB1(Ser-867) strongly reduced Lys-63-linked ubiquitination of GABAB receptors and increased their cell surface expression, whereas the phosphomimetic mutant GABAB1(S867D) exhibited strongly increased Lys-63-linked ubiquitination and reduced cell surface expression. Finally, triggering lysosomal degradation of GABAB receptors by sustained activation of glutamate receptors, a condition occurring in brain ischemia, was accompanied with a massive increase of GABAB1(Ser-867) phosphorylation-dependent Lys-63-linked ubiquitination of GABAB receptors. These findings indicate that CaMKIIβ-dependent Lys-63-linked ubiquitination of GABAB1 at multiple sites controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological condition.
Collapse
|
16
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
17
|
Laporte AN, Ji JX, Ma L, Nielsen TO, Brodin BA. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget 2018; 7:34384-94. [PMID: 27120803 PMCID: PMC5085163 DOI: 10.18632/oncotarget.8882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/02/2016] [Indexed: 02/06/2023] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.
Collapse
Affiliation(s)
- Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jennifer X Ji
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Limin Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Bertha A Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Ebai T, Souza de Oliveira FM, Löf L, Wik L, Schweiger C, Larsson A, Keilholtz U, Haybaeck J, Landegren U, Kamali-Moghaddam M. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification. Clin Chem 2017; 63:1497-1505. [DOI: 10.1373/clinchem.2017.271833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
Abstract
BACKGROUND
Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals.
METHODS
Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader.
RESULTS
We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA.
CONCLUSIONS
PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories.
Collapse
Affiliation(s)
- Tonge Ebai
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Liza Löf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lotta Wik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Schweiger
- Charité Comprehensive Cancer Center, University of Berlin, Berlin, Germany
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Anders Larsson
- Department of Medical Sciences, Biochemical Structure and Function, Uppsala University, Uppsala, Sweden
| | - Ulrich Keilholtz
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Johannes Haybaeck
- Charité Comprehensive Cancer Center, University of Berlin, Berlin, Germany
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Close Encounters - Probing Proximal Proteins in Live or Fixed Cells. Trends Biochem Sci 2017; 42:504-515. [PMID: 28566215 DOI: 10.1016/j.tibs.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
The well-oiled machinery of the cellular proteome operates via variable expression, modifications, and interactions of proteins, relaying genomic and transcriptomic information to coordinate cellular functions. In recent years, a number of techniques have emerged that serve to identify sets of proteins acting in close proximity in the course of orchestrating cellular activities. These proximity-dependent assays, including BiFC, BioID, APEX, FRET, and isPLA, have opened up new avenues to examine protein interactions in live or fixed cells. We review herein the current status of proximity-dependent in situ techniques. We compare the advantages and limitations of the methods, underlining recent progress and the growing importance of these techniques in basic research, and we discuss their potential as tools for drug development and diagnostics.
Collapse
|
20
|
Zemoura K, Trümpler C, Benke D. Lys-63-linked Ubiquitination of γ-Aminobutyric Acid (GABA), Type B1, at Multiple Sites by the E3 Ligase Mind Bomb-2 Targets GABAB Receptors to Lysosomal Degradation. J Biol Chem 2016; 291:21682-21693. [PMID: 27573246 PMCID: PMC5076837 DOI: 10.1074/jbc.m116.750968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
GABAB receptors are heterodimeric G protein-coupled receptors, which control neuronal excitability by mediating prolonged inhibition. The magnitude of GABAB receptor-mediated inhibition essentially depends on the amount of receptors in the plasma membrane. However, the factors regulating cell surface expression of GABAB receptors are poorly characterized. Cell surface GABAB receptors are constitutively internalized and either recycled to the plasma membrane or degraded in lysosomes. The signal that sorts GABAB receptors to lysosomes is currently unknown. Here we show that Mind bomb-2 (MIB2)-mediated Lys-63-linked ubiquitination of the GABAB1 subunit at multiple sites is the lysosomal sorting signal for GABAB receptors. We found that inhibition of lysosomal activity in cultured rat cortical neurons increased the fraction of Lys-63-linked ubiquitinated GABAB receptors and enhanced the expression of total as well as cell surface GABAB receptors. Mutational inactivation of four putative ubiquitination sites in the GABAB1 subunit significantly diminished Lys-63-linked ubiquitination of GABAB receptors and prevented their lysosomal degradation. We identified MIB2 as the E3 ligase triggering Lys-63-linked ubiquitination and lysosomal degradation of GABAB receptors. Finally, we show that sustained activation of glutamate receptors, a condition occurring in brain ischemia that down-regulates GABAB receptors, considerably increased the expression of MIB2 and Lys-63-linked ubiquitination of GABAB receptors. Interfering with Lys-63-linked ubiquitination by overexpressing ubiquitin mutants or GABAB1 mutants deficient in Lys-63-linked ubiquitination prevented glutamate-induced down-regulation of the receptors. These findings indicate that Lys-63-linked ubiquitination of GABAB1 at multiple sites by MIB2 controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological conditions.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich
| | - Claudia Trümpler
- From the Institute of Pharmacology and Toxicology, University of Zurich
| | - Dietmar Benke
- From the Institute of Pharmacology and Toxicology, University of Zurich,
- the Neuroscience Center Zurich, University of Zurich and ETH Zurich, and
- the Drug Discovery Network Zurich (DDNZ), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
21
|
Acuña MA, Yévenes GE, Ralvenius WT, Benke D, Di Lio A, Lara CO, Muñoz B, Burgos CF, Moraga-Cid G, Corringer PJ, Zeilhofer HU. Phosphorylation state-dependent modulation of spinal glycine receptors alleviates inflammatory pain. J Clin Invest 2016; 126:2547-60. [PMID: 27270175 DOI: 10.1172/jci83817] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αβGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αβ heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-β subunit interface and suggests that in α3βGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation.
Collapse
|
22
|
Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. Current Approaches Toward Quantitative Mapping of the Interactome. Front Genet 2016; 7:74. [PMID: 27200083 PMCID: PMC4854875 DOI: 10.3389/fgene.2016.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes. Disease is often caused by perturbation of PPIs, as recently indicated by studies of missense mutations. To understand the associations of proteins and to unravel the global picture of PPIs in the cell, different experimental detection techniques for PPIs have been established. Genetic and biochemical methods such as the yeast two-hybrid system or affinity purification-based approaches are well suited to high-throughput, proteome-wide screening and are mainly used to obtain qualitative results. However, they have been criticized for not reflecting the cellular situation or the dynamic nature of PPIs. In this review, we provide an overview of various genetic methods that go beyond qualitative detection and allow quantitative measuring of PPIs in mammalian cells, such as dual luminescence-based co-immunoprecipitation, Förster resonance energy transfer or luminescence-based mammalian interactome mapping with bait control. We discuss the strengths and weaknesses of different techniques and their potential applications in biomedical research.
Collapse
Affiliation(s)
| | - Philipp Trepte
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| | | | | | - Erich E Wanker
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| |
Collapse
|
23
|
Spengler M, Adler M, Niemeyer CM. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst 2016. [PMID: 26196036 DOI: 10.1039/c5an00822k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinant DNA technology and corresponding innovations in molecular biology, chemistry and medicine have led to novel therapeutic biomacromolecules as lead candidates in the pharmaceutical drug development pipelines. While monoclonal antibodies and other proteins provide therapeutic potential beyond the possibilities of small molecule drugs, the concomitant demand for supportive bioanalytical sample testing creates multiple novel challenges. For example, intact macromolecules can usually not be quantified by mass-spectrometry without enzymatic digestion and isotopically labeled internal standards are costly and/or difficult to prepare. Classical ELISA-type immunoassays, on the other hand, often lack the sensitivity required to obtain pharmacokinetics of low dosed drugs or pharmacodynamics of suitable biomarkers. Here we summarize emerging state-of-the-art ligand-binding assay technologies for pharmaceutical sample testing, which reveal enhanced analytical sensitivity over classical ELISA formats. We focus on immuno-PCR, which combines antibody specificity with the extremely sensitive detection of a tethered DNA marker by quantitative PCR, and alternative nucleic acid-based technologies as well as methods based on electrochemiluminescence or single-molecule counting. Using case studies, we discuss advantages and drawbacks of these methods for preclinical and clinical sample testing.
Collapse
Affiliation(s)
- Mark Spengler
- Chimera Biotec GmbH, Emil-Figge-Str. 76 A, D-44227 Dortmund, Germany.
| | | | | |
Collapse
|
24
|
Karamouzis MV, Dalagiorgou G, Georgopoulou U, Nonni A, Kontos M, Papavassiliou AG. HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-5597. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Dalagiorgou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis Kontos
- Department of Propaedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 'Laikon' General Hospital, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
25
|
Comelli M, Domenis R, Buso A, Mavelli I. F1FO ATP Synthase Is Expressed at the Surface of Embryonic Rat Heart-Derived H9c2 Cells and Is Affected by Cardiac-Like Differentiation. J Cell Biochem 2016; 117:470-82. [PMID: 26223201 DOI: 10.1002/jcb.25295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023]
Abstract
Taking advantage from the peculiar features of the embryonic rat heart-derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac-like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase-β) and of the peripheral stalk, responsible for the correct F1-FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase-β, ATP synthase-b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto-F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto-F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo-F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1-FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin-insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub-assemblies together evoking more regulation by IF1.
Collapse
Affiliation(s)
- Marina Comelli
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
- INBB Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'oro, Rome, 00136, Italy
| | - Rossana Domenis
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
| | - Alessia Buso
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
| | - Irene Mavelli
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
- INBB Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'oro, Rome, 00136, Italy
| |
Collapse
|
26
|
Abstract
Spatiotemporal aspects of protein-tyrosine phosphatase (PTP) activity and interaction partners for many PTPs are elusive. We describe here an elegant and relatively simple method, in situ proximity ligation assay (in situ PLA), which can be used to address these issues. The possibility to detect endogenous unmodified proteins in situ and to visualize individual interactions with spatial resolution is the major advantage of this technique. We provide protocols suitable to monitor association of the transmembrane PTPs PTPRJ/DEP-1/CD148 and PTPRB/VE-PTP with their substrates, the receptor tyrosine kinases FMS-like tyrosine kinase 3 (FLT3/CD135), and Tie2 and vascular endothelial growth factor receptor 2 (VEGFR2), respectively. Detailed description of method development and reagents as well as highlighting of critical factors will enable the reader to apply the method successfully to other PTP-protein interactions.
Collapse
|
27
|
Protein-specific imaging of posttranslational modifications. Curr Opin Chem Biol 2015; 28:156-63. [DOI: 10.1016/j.cbpa.2015.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022]
|
28
|
Micoud J, Chauvet S, Scheckenbach KEL, Alfaidy N, Chanson M, Benharouga M. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2420-31. [PMID: 26083625 DOI: 10.1016/j.bbamcr.2015.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.
Collapse
Affiliation(s)
- Julien Micoud
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France
| | - Sylvain Chauvet
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France
| | | | - Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1036 Grenoble, France
| | - Marc Chanson
- Laboratory of Clinical Investigation III, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France.
| |
Collapse
|
29
|
Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simões M, Dimberg A, Nilsson M, Wählby C, Söderberg O. Next-Generation Pathology—Surveillance of Tumor Microecology. J Mol Biol 2015; 427:2013-22. [DOI: 10.1016/j.jmb.2015.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
30
|
Greenwood C, Ruff D, Kirvell S, Johnson G, Dhillon HS, Bustin SA. Proximity assays for sensitive quantification of proteins. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:10-6. [PMID: 27077033 PMCID: PMC4822221 DOI: 10.1016/j.bdq.2015.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression.
Collapse
Affiliation(s)
- Christina Greenwood
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - David Ruff
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Sara Kirvell
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Gemma Johnson
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Harvinder S Dhillon
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Stephen A Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
31
|
Poletto M, Malfatti MC, Dorjsuren D, Scognamiglio PL, Marasco D, Vascotto C, Jadhav A, Maloney DJ, Wilson DM, Simeonov A, Tell G. Inhibitors of the apurinic/apyrimidinic endonuclease 1 (APE1)/nucleophosmin (NPM1) interaction that display anti-tumor properties. Mol Carcinog 2015; 55:688-704. [PMID: 25865359 DOI: 10.1002/mc.22313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/10/2015] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The apurinic/apyrimidinic endonuclease 1 (APE1) is a protein central to the base excision DNA repair pathway and operates in the modulation of gene expression through redox-dependent and independent mechanisms. Aberrant expression and localization of APE1 in tumors are recurrent hallmarks of aggressiveness and resistance to therapy. We identified and characterized the molecular association between APE1 and nucleophosmin (NPM1), a multifunctional protein involved in the preservation of genome stability and rRNA maturation. This protein-protein interaction modulates subcellular localization and endonuclease activity of APE1. Moreover, we reported a correlation between APE1 and NPM1 expression levels in ovarian cancer, with NPM1 overexpression being a marker of poor prognosis. These observations suggest that tumors that display an augmented APE1/NPM1 association may exhibit increased aggressiveness and resistance. Therefore, targeting the APE1/NPM1 interaction might represent an innovative strategy for the development of anticancer drugs, as tumor cells relying on higher levels of APE1 and NPM1 for proliferation and survival may be more sensitive than untransformed cells. We set up a chemiluminescence-based high-throughput screening assay in order to find small molecules able to interfere with the APE1/NPM1 interaction. This screening led to the identification of a set of bioactive compounds that impair the APE1/NPM1 association in living cells. Interestingly, some of these molecules display anti-proliferative activity and sensitize cells to therapeutically relevant genotoxins. Given the prognostic significance of APE1 and NPM1, these compounds might prove effective in the treatment of tumors that show abundant levels of both proteins, such as ovarian or hepatic carcinomas.
Collapse
Affiliation(s)
- Mattia Poletto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Matilde C Malfatti
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pasqualina L Scognamiglio
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
32
|
Morishita K, Ozasa F, Eguchi K, Yoshioka Y, Yoshida H, Hiai H, Yamaguchi M. Drosophila DOCK family protein sponge regulates the JNK pathway during thorax development. Cell Struct Funct 2014; 39:113-24. [PMID: 25311449 DOI: 10.1247/csf.14008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The dedicator of cytokinesis (DOCK) family proteins that are conserved in a wide variety of species are known as DOCK1-DOCK11 in mammals. The Sponge (Spg) is a Drosophila counterpart to the mammalian DOCK3. Specific knockdown of spg by pannir-GAL4 or apterous-GAL4 driver in wing discs induced split thorax phenotype in adults. Reduction of the Drosophila c-Jun N-terminal kinase (JNK), basket (bsk) gene dose enhanced the spg knockdown-induced phenotype. Conversely, overexpression of bsk suppressed the split thorax phenotype. Monitoring JNK activity in the wing imaginal discs by immunostaining with anti-phosphorylated JNK (anti-pJNK) antibody together with examination of lacZ expression in a puckered-lacZ enhancer trap line revealed the strong reduction of the JNK activity in the spg knockdown clones. This was further confirmed by Western immunoblot analysis of extracts from wing discs of spg knockdown fly with anti-pJNK antibody. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rac1 in the wing discs. Taken together, these results indicate Spg positively regulates JNK pathway that is required for thorax development and the regulation is mediated by interaction with Rac1.
Collapse
|
33
|
Multiplex single-molecule interaction profiling of DNA-barcoded proteins. Nature 2014; 515:554-7. [PMID: 25252978 DOI: 10.1038/nature13761] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/08/2014] [Indexed: 01/26/2023]
Abstract
In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.
Collapse
|
34
|
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. ACTA ACUST UNITED AC 2014; 19:640-50. [PMID: 24710339 PMCID: PMC4230961 DOI: 10.1177/1087057114528537] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been seen as particularly promising. In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features measured from each sample and disregarded the distribution of those features among each cell population. We discuss several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable phenotypic information. We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell populations will enable HCS to finally reach its potential.
Collapse
Affiliation(s)
- Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Auguste Genovesio
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA École Normale Supérieure, 45, Rue d'Ulm, 75005 Paris
| |
Collapse
|
35
|
Maier PJ, Zemoura K, Acuña MA, Yévenes GE, Zeilhofer HU, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). J Biol Chem 2014; 289:12896-907. [PMID: 24668805 DOI: 10.1074/jbc.m114.550517] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca(2+) release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia.
Collapse
Affiliation(s)
- Patrick J Maier
- From the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Zemoura K, Benke D. Proteasomal degradation of γ-aminobutyric acidB receptors is mediated by the interaction of the GABAB2 C terminus with the proteasomal ATPase Rtp6 and regulated by neuronal activity. J Biol Chem 2014; 289:7738-46. [PMID: 24482233 DOI: 10.1074/jbc.m113.541987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys(48)-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and
| | | |
Collapse
|
37
|
Nong RY, Gu J, Darmanis S, Kamali-Moghaddam M, Landegren U. DNA-assisted protein detection technologies. Expert Rev Proteomics 2014; 9:21-32. [DOI: 10.1586/epr.11.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Stoevesandt O, Taussig MJ. Affinity proteomics: the role of specific binding reagents in human proteome analysis. Expert Rev Proteomics 2014; 9:401-14. [DOI: 10.1586/epr.12.34] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Kilgore JA, Dolman NJ, Davidson MW. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part III: reagents for actin, tubulin, cellular membranes, and whole cell and cytoplasm. ACTA ACUST UNITED AC 2014; 67:12.32.1-12.32.17. [PMID: 24510770 DOI: 10.1002/0471142956.cy1232s67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Non-antibody commercial fluorescent reagents for imaging of cytoskeletal structures have been limited primarily to tubulin and actin, with the main factor in choice based mainly on whether cells are live or fixed and permeabilized. A wider range of options exist for cell membrane dyes, and the choice of reagent primarily depends on the preferred localization in the cell (i.e., all membranes or only the plasma membrane) and usage (i.e., whether the protocol involves fixation and permeabilization). For whole-cell or cytoplasmic imaging, the choice of reagent is determined mostly by the length of time that the cells need to be visualized (hours or days) and by fixation status. Presented here is a discussion on choosing commercially available reagents for these cellular structures, with an emphasis on use for microscopic imaging, with a featured reagent for each structure, a recommended protocol, troubleshooting guide, and example image.
Collapse
Affiliation(s)
- Jason A Kilgore
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, Oregon
| | - Nick J Dolman
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, Oregon
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
40
|
Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. In situ Protein Detection for Companion Diagnostics. Front Oncol 2013; 3:271. [PMID: 24199171 PMCID: PMC3814083 DOI: 10.3389/fonc.2013.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/17/2013] [Indexed: 01/29/2023] Open
Abstract
The emergence of targeted therapies for cancer has created a need for the development of companion diagnostic tests. Assays developed in recent years are aimed at determining both the effectiveness and safety of specific drugs for a defined group of patients, thus, enabling the more efficient design of clinical trials and also supporting physicians when making treatment-related decisions. Immunohistochemistry (IHC) is a widely accepted method for protein expression analyses in human tissues. Immunohistochemical assays, used to localize and quantitate relative protein expression levels within a morphological context, are frequently used as companion diagnostics during clinical trials and also following drug approval. Herein, we describe established immunochemistry-based methods and their application in routine diagnostics. We also explore the possibility of using IHC to detect specific protein mutations in addition to DNA-based tests. Finally, we review alternative protein binders and proximity ligation assays and discuss their potential to facilitate the development of novel, targeted therapies against cancer.
Collapse
Affiliation(s)
- Gabriela Gremel
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
41
|
Zemoura K, Schenkel M, Acuña MA, Yévenes GE, Zeilhofer HU, Benke D. Endoplasmic reticulum-associated degradation controls cell surface expression of γ-aminobutyric acid, type B receptors. J Biol Chem 2013; 288:34897-905. [PMID: 24114844 DOI: 10.1074/jbc.m113.514745] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys(48)-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Zhang H, Li F, Dever B, Wang C, Li XF, Le XC. DNA-Assemblierung mittels Affinitätsbindung für die ultraempfindliche Proteindetektion. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Zhang H, Li F, Dever B, Wang C, Li XF, Le XC. Assembling DNA through affinity binding to achieve ultrasensitive protein detection. Angew Chem Int Ed Engl 2013; 52:10698-705. [PMID: 24038633 DOI: 10.1002/anie.201210022] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/17/2013] [Indexed: 11/06/2022]
Abstract
Recent advances in DNA assembly and affinity binding have enabled exciting developments of nanosensors and ultrasensitive assays for specific proteins. These sensors and assays share three main attractive features: 1) the detection of proteins can be accomplished by the detection of amplifiable DNA, thereby dramatically enhancing the sensitivity; 2) assembly of DNA is triggered by affinity binding of two or more probes to a single target molecule, thereby resulting in increased specificity; and 3) the assay is conducted in solution with no need for separation, thus making the assay attractive for potential point-of-care applications. We illustrate here the principle of assembling DNA through affinity binding, and we highlight novel applications to the detection of proteins.
Collapse
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G3 (Canada) http://www.ualberta.ca/∼xcle
| | | | | | | | | | | |
Collapse
|
44
|
Eguchi K, Yoshioka Y, Yoshida H, Morishita K, Miyata S, Hiai H, Yamaguchi M. The Drosophila DOCK family protein sponge is involved in differentiation of R7 photoreceptor cells. Exp Cell Res 2013; 319:2179-95. [DOI: 10.1016/j.yexcr.2013.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 01/17/2023]
|
45
|
Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO, Palkovits M, Agnati LF, Fuxe K. G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 2013; 521:281-94. [PMID: 23351745 DOI: 10.1016/b978-0-12-391862-8.00015-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in cellular processes and signaling and have been shown to form heteromers with diverge biochemical and/or pharmacological activities that are different from those of the corresponding monomers or homomers. However, despite extensive experimental results supporting the formation of GPCR heteromers in heterologous systems, the existence of such receptor heterocomplexes in the brain remains largely unknown, mostly because of the lack of appropriate methodology. Herein, we describe the in situ proximity ligation assay procedure underlining its high selectivity and sensitivity to image GPCR heteromers with confocal microscopy in brain sections. We describe here how the assay is performed and discuss advantages and disadvantages of this method compared with other available techniques.
Collapse
|
46
|
Role of Individual MARK Isoforms in Phosphorylation of Tau at Ser262 in Alzheimer’s Disease. Neuromolecular Med 2013; 15:458-69. [DOI: 10.1007/s12017-013-8232-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/24/2013] [Indexed: 12/28/2022]
|
47
|
Rantala JK, Kwon S, Korkola J, Gray JW. Expanding the Diversity of Imaging-Based RNAi Screen Applications Using Cell Spot Microarrays. ACTA ACUST UNITED AC 2013; 2:97-114. [PMID: 27605183 PMCID: PMC5003478 DOI: 10.3390/microarrays2020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/02/2013] [Accepted: 04/07/2013] [Indexed: 12/13/2022]
Abstract
Over the past decade, great strides have been made in identifying gene aberrations and deregulated pathways that are associated with specific disease states. These association studies guide experimental studies aimed at identifying the aberrant genes and networks that cause the disease states. This requires functional manipulation of these genes and networks in laboratory models of normal and diseased cells. One approach is to assess molecular and biological responses to high-throughput RNA interference (RNAi)-induced gene knockdown. These responses can be revealed by immunofluorescent staining for a molecular or cellular process of interest and quantified using fluorescence image analysis. These applications are typically performed in multiwell format, but are limited by high reagent costs and long plate processing times. These limitations can be mitigated by analyzing cells grown in cell spot microarray (CSMA) format. CSMAs are produced by growing cells on small (~200 μm diameter) spots with each spot carrying an siRNA with transfection reagent. The spacing between spots is only a few hundred micrometers, thus thousands of cell spots can be arranged on a single cell culture surface. These high-density cell cultures can be immunofluorescently stained with minimal reagent consumption and analyzed quickly using automated fluorescence microscopy platforms. This review covers basic aspects of imaging-based CSMA technology, describes a wide range of immunofluorescence assays that have already been implemented successfully for CSMA screening and suggests future directions for advanced RNAi screening experiments.
Collapse
Affiliation(s)
- Juha K Rantala
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sunjong Kwon
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - James Korkola
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Joe W Gray
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
48
|
Leuchowius KJ, Clausson CM, Grannas K, Erbilgin Y, Botling J, Zieba A, Landegren U, Söderberg O. Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol Cell Proteomics 2013; 12:1563-71. [PMID: 23436906 DOI: 10.1074/mcp.o112.023374] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular functions are regulated and executed by complex protein interaction networks. Accordingly, it is essential to understand the interplay between proteins in determining the activity status of signaling cascades. New methods are therefore required to provide information on different protein interaction events at the single cell level in heterogeneous cell populations such as in tissue sections. Here, we describe a multiplex proximity ligation assay for simultaneous visualization of multiple protein complexes in situ. The assay is an enhancement of the original proximity ligation assay, and it is based on using proximity probes labeled with unique tag sequences that can be used to read out which probes, from a pool of probes, have bound a certain protein complex. Using this approach, it is possible to gain information on the constituents of different protein complexes, the subcellular location of the complexes, and how the balance between different complex constituents can change between normal and malignant cells, for example. As a proof of concept, we used the assay to simultaneously visualize multiple protein complexes involving EGFR, HER2, and HER3 homo- and heterodimers on a single-cell level in breast cancer tissue sections. The ability to study several protein complex formations concurrently at single cell resolution could be of great potential for a systems understanding, paving the way for improved disease diagnostics and possibilities for drug development.
Collapse
Affiliation(s)
- Karl-Johan Leuchowius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol 2013; 377:111-26. [PMID: 23921974 DOI: 10.1007/82_2013_334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein-protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.
Collapse
|
50
|
Zhang H, Li F, Dever B, Li XF, Le XC. DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev 2012; 113:2812-41. [PMID: 23231477 DOI: 10.1021/cr300340p] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | |
Collapse
|