1
|
Cheng X, Kang L, Liu J, Wang Q, Zhang Z, Zhang L, Xie Y, Chang L, Zeng D, Tian L, Zhang L, Xu P, Li Y. Proteomics and phosphoproteomics revealed dysregulated kinases and potential therapy for liver fibrosis. Mol Cell Proteomics 2025:100991. [PMID: 40368138 DOI: 10.1016/j.mcpro.2025.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis is the initial stage of most liver diseases, and it is also a pathological process involving the liver in the late stages of many metabolic diseases. Therefore, it is important to systematically understand the pathological mechanism of liver fibrosis and seek therapeutic approaches for intervention and treatment of liver fibrosis. Disordered proteins and their post-translational modifications, such as phosphorylation, play vital roles in the occurrence and development of liver fibrosis. However, the regulatory mechanisms that govern this process remain poorly understood. In this study, we analyzed and quantified the liver proteome and phosphoproteome of CCl4-induced early liver fibrosis model in mice. Proteomic analysis revealed that the pathways involved in extracellular matrix (ECM) recombination, collagen formation, metabolism and other related disorders, and protein phosphorylation modification pathways were also significantly enriched. In addition, western blotting and phosphoproteomics demonstrated that phosphorylation levels were elevated in the context of liver fibrosis. A total of 13,152 phosphosites were identified, with 952 sites increased while only 156 ones decreased. Furthermore, the upregulated phosphorylation sites, which exhibited no change at the proteome level mainly shared a common [xxxSPxxx] motif. Consequently, the kinases-substrates analysis ascertained the overactive kinases of these up-regulated substrates, which ultimately led to the identification of 13 significantly altered kinases within this dataset. These kinases were mainly catalogued into the STE, CMGC, and CAMK kinase families. Among them, STK4, GSK3α and CDK11B were subsequently validated though cellular and animal experiments, and the results demonstrated that their inhibitors could effectively reduce the activation of hepatic stellate cells and ECM production. These kinases may represent potential therapeutic targets for liver fibrosis, and their inhibitors may serve as promising anti- hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Xinyu Cheng
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Li Kang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Qingye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Li Zhang
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Yuping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China
| | - Daobing Zeng
- General Surgery Department, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Lingqiang Zhang
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China.
| | - Ping Xu
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China; College of Life Sciences, Hebei University, 071002 Baoding, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China.
| | - Yanchang Li
- Anhui Medical University School of Basic Medicine, Anhui, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, P. R. China; College of Life Sciences, Hebei University, 071002 Baoding, China.
| |
Collapse
|
2
|
Yan S, Vanbeselaere J, Ives C, Stenitzer D, Nuschy L, Wöls F, Paschinger K, Fadda E, Stadlmann J, Wilson IBH. Glycoproteomic and Single-Protein Glycomic Analyses Reveal Zwitterionic N-Glycans on Natural and Recombinant Proteins Derived From Insect Cells. Mol Cell Proteomics 2025; 24:100981. [PMID: 40334746 DOI: 10.1016/j.mcpro.2025.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Insect cells are a convenient cell factory to produce recombinant glycoproteins. Their glycosylation potential is believed to be simple, needing primarily addition of glycosyltransferases to humanize the recombinant products. In this study, the native glycoproteome of Spodoptera frugiperda Sf9 and Trichoplusia ni High Five cells, examined using an LC-MS/MS approach, revealed not only which proteins are N-glycosylated but also indicated that the N-glycomes contain novel glucuronylated and phosphorylcholine-modified glycans, in addition to typical oligomannosidic and fucosylated structures. These data were corroborated by a parallel MALDI-TOF MS/MS analysis of N-glycosidase-released oligosaccharides. Molecular modeling analysis of one endogenous Sf9 glycoprotein correlated the occurrence of complex and oligomannosidic N-glycans with the accessibility of the occupied N-glycosylation sites. Further, we showed that the N-glycans of influenza hemagglutinins and SARS-CoV-2 spike glycoprotein produced in Spodoptera cells possess a number of glycan structures modified with phosphorylcholine, but core difucosylation was minimal; in contrast, the Trichoplusia-produced hemagglutinin had only traces of the former type, while the latter was dominant. Detection of phosphorylcholine on these glycoproteins correlated with binding to human C-reactive protein. In conclusion, not just oligomannosidic or truncated paucimannosidic N-glycans, but structures with immunogenic features occur on both natural and recombinant glycoproteins derived from insect cell lines.
Collapse
Affiliation(s)
- Shi Yan
- Institut für Biochemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | | - Callum Ives
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - David Stenitzer
- Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Lena Nuschy
- Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Florian Wöls
- Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | | | - Elisa Fadda
- Department of Chemistry, Maynooth University, Maynooth, Ireland; School of Biological Sciences, University of Southampton, United Kingdom
| | | | - Iain B H Wilson
- Institut für Biochemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
3
|
Chalkley RJ, Baker PR. Improving the Depth and Reliability of Glycopeptide Identification Using Protein Prospector. Mol Cell Proteomics 2025; 24:100903. [PMID: 39788319 PMCID: PMC11851224 DOI: 10.1016/j.mcpro.2025.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/27/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Glycosylation is the most common and diverse modification of proteins. It can affect protein function and stability and is associated with many diseases. While proteomic methods to study most post-translational modifications are now quite mature, glycopeptide analysis is still a challenge, particularly from the aspect of data analysis. Several software packages have been developed in the last few years that aim to support omic-level N-linked glycopeptide analysis. This study presents developments of Protein Prospector for the analysis of N-glycopeptide data. Results are compared to other software, showing that Protein Prospector reports many more glycoforms of glycopeptides than competing software. The advantages and disadvantages of considering glycan adducts are also evaluated, showing how considering them can correct previously wrong assignments.
Collapse
Affiliation(s)
- Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA.
| | - Peter R Baker
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| |
Collapse
|
4
|
Hou C, Li W, Li Y, Ma J. O-GlcNAc informatics: advances and trends. Anal Bioanal Chem 2025; 417:895-905. [PMID: 39294469 DOI: 10.1007/s00216-024-05531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
As a post-translational modification, protein glycosylation is critical in health and disease. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), as an intracellular monosaccharide modification on proteins, was discovered 40 years ago. Thanks to technological advances, the physiological and pathological significance of O-GlcNAcylation has been gradually revealed and widely appreciated, especially in recent years. O-GlcNAc informatics has been quickly evolving. Clearly, O-GlcNAc informatics tools have not only facilitated O-GlcNAc functional studies, but also provided us a unique perspective on protein O-GlcNAcylation. In this article, we review O-GlcNAc-focused software tools and servers that have been developed for O-GlcNAc research over the past four decades. Specifically, we will (1) survey bioinformatics tools that have facilitated O-GlcNAc proteomics data analysis, (2) introduce databases/servers for O-GlcNAc proteins/sites that have been experimentally identified by individual research labs, (3) describe software tools that have been developed to predict O-GlcNAc sites, and (4) introduce platforms cataloging proteins that interact with the O-GlcNAc cycling enzymes (i.e., O-GlcNAc transferase and O-GlcNAcase). We hope these resources will provide useful information to both experienced researchers and new incomers to the O-GlcNAc field. We anticipate that this review provides a framework to stimulate the future development of more sophisticated informatic tools for O-GlcNAc research.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Weiyu Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
5
|
Castañé H, Jiménez-Franco A, Hernández-Aguilera A, Martínez-Navidad C, Cambra-Cortés V, Onoiu AI, Jiménez-Aguilar JM, París M, Hernández M, Parada D, Guilarte C, Zorzano A, Hernández-Alvarez MI, Camps J, Joven J. Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis. EBioMedicine 2025; 111:105532. [PMID: 39731853 PMCID: PMC11743550 DOI: 10.1016/j.ebiom.2024.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH. METHODS We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples. FINDINGS Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH. INTERPRETATION Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses. FUNDING The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | | | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta París
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - Mercè Hernández
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - David Parada
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Carmen Guilarte
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Alvarez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
6
|
Fang Z, Dong M, Qin H, Ye M. GP-Plotter: Flexible Spectral Visualization for Proteomics Data with Emphasis on Glycoproteomics Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae069. [PMID: 39378133 DOI: 10.1093/gpbjnl/qzae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Identification evaluation and result dissemination are essential components in mass spectrometry-based proteomics analysis. The visualization of fragment ions in mass spectrum provides strong evidence for peptide identification and modification localization. Here, we present an easy-to-use tool, named GP-Plotter, for ion annotation of tandem mass spectra and corresponding image output. Identification result files of common searching tools in the community and user-customized files are supported as input of GP-Plotter. Multiple display modes and parameter customization can be achieved in GP-Plotter to present annotated spectra of interest. Different image formats, especially vector graphic formats, are available for image generation which is favorable for data publication. Notably, GP-Plotter is also well-suited for the visualization and evaluation of glycopeptide spectrum assignments with comprehensive annotation of glycan fragment ions. With a user-friendly graphical interface, GP-Plotter is expected to be a universal visualization tool for the community. GP-Plotter has been implemented in the latest version of Glyco-Decipher (v1.0.4) and the standalone GP-Plotter software is also freely available at https://github.com/DICP-1809.
Collapse
Affiliation(s)
- Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingming Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kitoka K, Lends A, Kucinskas G, Bula AL, Krasauskas L, Smirnovas V, Zilkova M, Kovacech B, Skrabana R, Hritz J, Jaudzems K. dGAE(297-391) Tau Fragment Promotes Formation of Chronic Traumatic Encephalopathy-Like Tau Filaments. Angew Chem Int Ed Engl 2024; 63:e202407821. [PMID: 39183704 PMCID: PMC11586700 DOI: 10.1002/anie.202407821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 08/27/2024]
Abstract
The microtubule-associated protein tau forms disease-specific filamentous aggregates in several different neurodegenerative diseases. In order to understand how tau undergoes misfolding into a specific filament type and to control this process for drug development purposes, it is crucial to study in vitro tau aggregation methods and investigate the structures of the obtained filaments at the atomic level. Here, we used the tau fragment dGAE, which aggregates spontaneously, to seed the formation of full-length tau filaments. The structures of dGAE and full-length tau filaments were investigated by magic-angle spinning (MAS) solid-state NMR, showing that dGAE allows propagation of a chronic traumatic encephalopathy (CTE)-like fold to the full-length tau. The obtained filaments efficiently seeded tau aggregation in HEK293T cells. This work demonstrates that in vitro preparation of disease-specific types of full-length tau filaments is feasible.
Collapse
Affiliation(s)
- Kristine Kitoka
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
| | - Alons Lends
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
| | - Gytis Kucinskas
- CEITEC MUMasaryk UniversityKamenice 753/5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Anna Lina Bula
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
| | - Lukas Krasauskas
- Institute of BiotechnologyLife Sciences CenterVilnius UniversitySauletekio 7Vilnius LT10257Lithuania
| | - Vytautas Smirnovas
- Institute of BiotechnologyLife Sciences CenterVilnius UniversitySauletekio 7Vilnius LT10257Lithuania
| | - Monika Zilkova
- Institute of NeuroimmunologySlovak Academy of Sciences Dubravskacesta 9, 845 10BratislavaSlovakia
| | - Branislav Kovacech
- Institute of NeuroimmunologySlovak Academy of Sciences Dubravskacesta 9, 845 10BratislavaSlovakia
| | - Rostislav Skrabana
- Institute of NeuroimmunologySlovak Academy of Sciences Dubravskacesta 9, 845 10BratislavaSlovakia
| | - Jozef Hritz
- CEITEC MUMasaryk UniversityKamenice 753/5625 00BrnoCzech Republic
- Department of ChemistryFaculty of ScienceMasaryk UniversityKamenice 5, 625 00BrnoCzech Republic
| | - Kristaps Jaudzems
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
- Department of Organic ChemistryFaculty of ChemistryUniversity of LatviaJelgavas 1Riga LV1004Latvia
| |
Collapse
|
8
|
Cheng X, Wang Y, Liu J, Wu Y, Zhang Z, Liu H, Tian L, Zhang L, Chang L, Xu P, Zhang L, Li Y. Super Enhanced Purification of Denatured-Refolded Ubiquitinated Proteins by ThUBD Revealed Ubiquitinome Dysfunction in Liver Fibrosis. Mol Cell Proteomics 2024; 23:100852. [PMID: 39362602 PMCID: PMC11584597 DOI: 10.1016/j.mcpro.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Ubiquitination is crucial for maintaining protein homeostasis and plays a vital role in diverse biological processes. Ubiquitinome profiling and quantification are of great scientific significance. Artificial ubiquitin-binding domains (UBDs) have been widely employed to capture ubiquitinated proteins. The success of this enrichment relies on recognizing native spatial structures of ubiquitin and ubiquitin chains by UBDs under native conditions. However, the use of native lysis conditions presents significant challenges, including insufficient protein extraction, heightened activity of deubiquitinating enzymes and proteasomes in removing the ubiquitin signal, and purification of a substantial number of contaminant proteins, all of which undermine the robustness and reproducibility of ubiquitinomics. In this study, we introduced a novel approach that combines denatured-refolded ubiquitinated sample preparation (DRUSP) with a tandem hybrid UBD for ubiquitinomic analysis. The samples were effectively extracted using strongly denatured buffers and subsequently refolded using filters. DRUSP yielded a significantly stronger ubiquitin signal, nearly three times greater than that of the Control method. Then, eight types of ubiquitin chains were quickly and accurately restored; therefore, they were recognized and enriched by tandem hybrid UBD with high efficiency and no biases. Compared with the Control method, DRUSP showed extremely high efficiency in enriching ubiquitinated proteins, improving overall ubiquitin signal enrichment by approximately 10-fold. Moreover, when combined with ubiquitin chain-specific UBDs, DRUSP had also been proven to be a versatile approach. This new method significantly enhanced the stability and reproducibility of ubiquitinomics research. Finally, DRUSP was successfully applied to deep ubiquitinome profiling of early mouse liver fibrosis with increased accuracy, revealing novel insights for liver fibrosis research.
Collapse
Affiliation(s)
- Xinyu Cheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China
| | - Yonghong Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Jinfang Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Ying Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Zhenpeng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Hui Liu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Li Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, PR China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China
| | - Yanchang Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China.
| |
Collapse
|
9
|
Persyn F, Smagghe W, Eeckhout D, Mertens T, Smorscek T, De Winne N, Persiau G, Van De Slijke E, Crepin N, Gadeyne A, Van Leene J, De Jaeger G. A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling. Mol Cell Proteomics 2024; 23:100842. [PMID: 39307424 PMCID: PMC11526089 DOI: 10.1016/j.mcpro.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Nitrogen (N) is of utmost importance for plant growth and development. Multiple studies have shown that N signaling is tightly coupled with carbon (C) levels, but the interplay between C/N metabolism and growth remains largely an enigma. Nonetheless, the protein kinases Sucrose Non-fermenting 1 (SNF1)-Related Kinase 1 (SnRK1) and Target Of Rapamycin (TOR), two ancient central metabolic regulators, are emerging as key integrators that link C/N status with growth. Despite their pivotal importance, the exact mechanisms behind the sensing of N status and its integration with C availability to drive metabolic decisions are largely unknown. Especially for SnRK1, it is not clear how this kinase responds to altered N levels. Therefore, we first monitored N-dependent SnRK1 kinase activity with an in vivo Separation of Phase-based Activity Reporter of Kinase (SPARK) sensor, revealing a contrasting N-dependency in Arabidopsis thaliana (Arabidopsis) shoot and root tissues. Next, using affinity purification (AP) and proximity labeling (PL) coupled to mass spectrometry (MS) experiments, we constructed a comprehensive SnRK1 and TOR interactome in Arabidopsis cell cultures during N-starved and N-repleted growth conditions. To broaden our understanding of the N-specificity of the TOR/SnRK1 signaling events, the resulting network was compared to corresponding C-related networks, identifying a large number of novel, N-specific interactors. Moreover, through integration of N-dependent transcriptome and phosphoproteome data, we were able to pinpoint additional N-dependent network components, highlighting for instance SnRK1 regulatory proteins that might function at the crosstalk of C/N signaling. Finally, confirmation of known and identification of novel SnRK1 interactors, such as Inositol-Requiring 1 (IRE1A) and the RAB GTPase RAB18, indicate that SnRK1, present at the ER, is involved in N signaling and autophagy induction.
Collapse
Affiliation(s)
- Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Smorscek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
10
|
Cavarischia-Rega C, Sharma K, Fitzgerald JC, Macek B. Proteome Dynamics in iPSC-Derived Human Dopaminergic Neurons. Mol Cell Proteomics 2024; 23:100838. [PMID: 39251023 PMCID: PMC11474371 DOI: 10.1016/j.mcpro.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, and heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain-specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9409 proteins and use dynamic SILAC to measure the half-life of more than 4300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 h). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for the future applications of quantitative proteomics in iPSC-derived human neurons.
Collapse
Affiliation(s)
- Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Karan Sharma
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Rugen N, Senkler M, Braun HP. Deep proteomics reveals incorporation of unedited proteins into mitochondrial protein complexes in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:1180-1199. [PMID: 38060994 PMCID: PMC11142381 DOI: 10.1093/plphys/kiad655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 06/02/2024]
Abstract
The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a "deep mitochondrial proteome" of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba.live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on "proteomaps" with directly linked protein data. The portal is available at www.proteomeexplorer.de.
Collapse
Affiliation(s)
- Nils Rugen
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Michael Senkler
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
12
|
Shaw TI, Wagner J, Tian L, Wickman E, Poudel S, Wang J, Paul R, Koo SC, Lu M, Sheppard H, Fan Y, O'Neill FH, Lau CC, Zhou X, Zhang J, Gottschalk S. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. Nat Commun 2024; 15:3732. [PMID: 38702309 PMCID: PMC11068777 DOI: 10.1038/s41467-024-47649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Francis H O'Neill
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ching C Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Connecticut Children's Medical Center, Hartford, CT, 06106, USA
- University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
13
|
Lapcik P, Stacey RG, Potesil D, Kulhanek P, Foster LJ, Bouchal P. Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer. Mol Cell Proteomics 2024; 23:100744. [PMID: 38417630 PMCID: PMC10988130 DOI: 10.1016/j.mcpro.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Potesil
- Proteomics Core Facility, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petr Kulhanek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
14
|
Shrestha R, Karunadasa S, Grismer TS, Reyes AV, Xu SL. SECRET AGENT O-GlcNAcylates Hundreds of Proteins Involved in Diverse Cellular Processes in Arabidopsis. Mol Cell Proteomics 2024; 23:100732. [PMID: 38336175 PMCID: PMC10979276 DOI: 10.1016/j.mcpro.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA.
| |
Collapse
|
15
|
Reyes AV, Shrestha R, Grismer TS, Byun D, Xu SL. Impact of alternative splicing on Arabidopsis proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582853. [PMID: 38496481 PMCID: PMC10942332 DOI: 10.1101/2024.02.29.582853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Alternative splicing is an important regulatory process in eukaryotes. In plants, the major form of alternative splicing is intron retention. Despite its importance, the global impact of AS on the Arabidopsis proteome has not been investigated. In this study, we address this gap by performing a comprehensive integrated analysis of how changes in AS can affect the Arabidopsis proteome using mutants that disrupt ACINUS and PININ, two evolutionarily conserved alternative splicing factors. We used tandem mass tagging (TMT) with real-time search MS3 (RTS-SPS-MS3) coupled with extensive sample fractionations to achieve very high coverage and accurate protein quantification. We then integrated our proteomic data with transcriptomic data to assess how transcript changes and increased intron retention (IIR) affect the proteome. For differentially expressed transcripts, we have observed a weak to moderate correlation between transcript changes and protein changes. Our studies revealed that some IIRs have no effect on either transcript or protein levels, while some IIRs can significantly affect protein levels. Surprisingly, we found that IIRs have a much smaller effect on increasing protein diversity. Notably, the increased intron retention events detected in the double mutant are also detected in the WT under various biotic or abiotic stresses. We further investigated the characteristics of the retained introns. Our extensive proteomic data help to guide the phenotypic analysis and reveal that collective protein changes contribute to the observed phenotypes of the increased anthocyanin, pale green, reduced growth, and short root observed in the acinus pnn double mutant. Overall, our study provides insight into the intricate regulatory mechanism of intron retention and its impact on protein abundance in plants.
Collapse
Affiliation(s)
- Andres V Reyes
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Danbi Byun
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
16
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
17
|
Grismer TS, Karundasa SS, Shrestha R, Byun D, Ni W, Reyes AV, Xu SL. Workflow enhancement of TurboID-mediated proximity labeling for SPY signaling network mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580820. [PMID: 38405906 PMCID: PMC10888891 DOI: 10.1101/2024.02.17.580820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
TurboID-based proximity labeling coupled to mass spectrometry (PL-MS) has emerged as a powerful tool for mapping protein-protein interactions in both plant and animal systems. Despite advances in sensitivity, PL-MS studies can still suffer from false negatives, especially when dealing with low abundance bait proteins and their transient interactors. Protein-level enrichment for biotinylated proteins is well developed and popular, but direct detection of biotinylated proteins by peptide-level enrichment and the difference in results between direct and indirect detection remain underexplored. To address this gap, we compared and improved enrichment and data analysis methods using TurboID fused to SPY, a low-abundance O-fucose transferase, using an AAL-enriched SPY target library for cross-referencing. Our results showed that MyOne and M280 streptavidin beads significantly outperformed antibody beads for peptide-level enrichment, with M280 performing best. In addition, while a biotin concentration ≤ 50 μM is recommended for protein-level enrichment in plants, higher biotin concentrations can be used for peptide-level enrichment, allowing us to improve detection and data quality. FragPipe's MSFragger protein identification and quantification software outperformed Maxquant and Protein Prospector for SPY interactome enrichment due to its superior detection of biotinylated peptides. Our improved washing protocols for protein-level enrichment mitigated bead collapse issues, improving data quality, and reducing experimental time. We found that the two enrichment methods provided complementary results and identified a total of 160 SPY-TurboID-enriched interactors, including 60 previously identified in the AAL-enriched SPY target list and 100 additional novel interactors. SILIA quantitative proteomics comparing WT and spy-4 mutants showed that SPY affects the protein levels of some of the identified interactors, such as nucleoporin proteins. We expect that our improvement will extend beyond TurboID to benefit other PL systems and hold promise for broader applications in biological research.
Collapse
Affiliation(s)
- TaraBryn S Grismer
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu S Karundasa
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Danbi Byun
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Weimin Ni
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
18
|
Chakraborty S, Ahler E, Simon JJ, Fang L, Potter ZE, Sitko KA, Stephany JJ, Guttman M, Fowler DM, Maly DJ. Profiling of drug resistance in Src kinase at scale uncovers a regulatory network coupling autoinhibition and catalytic domain dynamics. Cell Chem Biol 2024; 31:207-220.e11. [PMID: 37683649 PMCID: PMC10902203 DOI: 10.1016/j.chembiol.2023.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Kinase inhibitors are effective cancer therapies, but resistance often limits clinical efficacy. Despite the cataloging of numerous resistance mutations, our understanding of kinase inhibitor resistance is still incomplete. Here, we comprehensively profiled the resistance of ∼3,500 Src tyrosine kinase mutants to four different ATP-competitive inhibitors. We found that ATP-competitive inhibitor resistance mutations are distributed throughout Src's catalytic domain. In addition to inhibitor contact residues, residues that participate in regulating Src's phosphotransferase activity were prone to the development of resistance. Unexpectedly, we found that a resistance-prone cluster of residues located on the top face of the N-terminal lobe of Src's catalytic domain contributes to autoinhibition by reducing catalytic domain dynamics, and mutations in this cluster led to resistance by lowering inhibitor affinity and promoting kinase hyperactivation. Together, our studies demonstrate how drug resistance profiling can be used to define potential resistance pathways and uncover new mechanisms of kinase regulation.
Collapse
Affiliation(s)
- Sujata Chakraborty
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ethan Ahler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Jessica J Simon
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Linglan Fang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Zachary E Potter
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Katherine A Sitko
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason J Stephany
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Takahashi Y, Shiota M, Fujita A, Yamada I, Aoki-Kinoshita KF. GlyComb: A novel glycoconjugate data repository that bridges glycomics and proteomics. J Biol Chem 2024; 300:105624. [PMID: 38176651 PMCID: PMC10850976 DOI: 10.1016/j.jbc.2023.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The glycosylation of proteins and lipids is known to be closely related to the mechanisms of various diseases such as influenza, cancer, and muscular dystrophy. Therefore, it has become clear that the analysis of post-translational modifications of proteins, including glycosylation, is important to accurately understand the functions of each protein molecule and the interactions among them. In order to conduct large-scale analyses more efficiently, it is essential to promote the accumulation, sharing, and reuse of experimental and analytical data in accordance with the FAIR (Findability, Accessibility, Interoperability, and Re-usability) data principles. However, a FAIR data repository for storing and sharing glycoconjugate information, including glycopeptides and glycoproteins, in a standardized format did not exist. Therefore, we have developed GlyComb (https://glycomb.glycosmos.org) as a new standardized data repository for glycoconjugate data. Currently, GlyComb can assign a unique identifier to a set of glycosylation information associated with a specific peptide sequence or UniProt ID. By standardizing glycoconjugate data via GlyComb identifiers and coordinating with existing web resources such as GlyTouCan and GlycoPOST, a comprehensive system for data submission and data sharing among researchers can be established. Here we introduce how GlyComb is able to integrate the variety of glycoconjugate data already registered in existing data repositories to obtain a better understanding of the available glycopeptides and glycoproteins, and their glycosylation patterns. We also explain how this system can serve as a foundation for a better understanding of glycan function.
Collapse
Affiliation(s)
- Yushi Takahashi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Masaaki Shiota
- Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Akihiro Fujita
- Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Issaku Yamada
- Laboratory of Glycoinformatics, The Noguchi Institute, Tokyo, Japan
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan; Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, Tokyo, Japan.
| |
Collapse
|
20
|
Shaw TI, Wagner J, Tian L, Wickman E, Poudel S, Wang J, Paul R, Koo SC, Lu M, Sheppard H, Fan Y, O’Neil F, Lau CC, Zhou X, Zhang J, Gottschalk S. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. RESEARCH SQUARE 2024:rs.3.rs-3821632. [PMID: 38260279 PMCID: PMC10802740 DOI: 10.21203/rs.3.rs-3821632/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunotherapy with CAR T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons (CSE) present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify CSE targets, we analyzed 1,532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We found 2,933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n=148) or the alternatively spliced (AS) isoform (n=9) level. Expression of selected AS targets, including the EDB domain of FN1 (EDB), and gene targets, such as COL11A1, were validated in pediatric PDX tumors. We generated CAR T cells specific to EDB or COL11A1 and demonstrated that COL11A1-CAR T-cells have potent antitumor activity. The full target list, explorable via an interactive web portal (https://cseminer.stjude.org/), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francis O’Neil
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Ching C. Lau
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
21
|
da Silva-Januário ME, da Costa CS, Tavares LA, Oliveira AK, Januário YC, de Carvalho AN, Cassiano MHA, Rodrigues RL, Miller ME, Palameta S, Arns CW, Arruda E, Paes Leme AF, daSilva LLP. HIV-1 Nef Changes the Proteome of T Cells Extracellular Vesicles Depleting IFITMs and Other Antiviral Factors. Mol Cell Proteomics 2023; 22:100676. [PMID: 37940003 PMCID: PMC10746527 DOI: 10.1016/j.mcpro.2023.100676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023] Open
Abstract
Extracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV. Several proteins with well-described roles in infection or not previously associated with HIV pathogenesis were specifically modulated by Nef in EVs. Among the downregulated proteins are the interferon-induced transmembrane 1, 2, and 3 (IFITM1-3) proteins, broad-spectrum antiviral factors known to be cell-to-cell transferable by EVs. We demonstrate that Nef depletes IFITM1-3 from EVs by excluding these proteins from the plasma membrane and lipid rafts, which are sites of EVs biogenesis in T cells. Our data establish Nef as a modulator of EVs' global protein content and as an HIV factor that antagonizes IFITMs.
Collapse
Affiliation(s)
- Mara E da Silva-Januário
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina S da Costa
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas A Tavares
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana K Oliveira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Yunan C Januário
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andreia N de Carvalho
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Murilo H A Cassiano
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger L Rodrigues
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michael E Miller
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Soledad Palameta
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Clarice W Arns
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eurico Arruda
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Luis L P daSilva
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Onken MD, Erdmann-Gilmore P, Zhang Q, Thapa K, King E, Kaltenbronn KM, Noda SE, Makepeace CM, Goldfarb D, Babur Ö, Townsend RR, Blumer KJ. Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics 2023; 22:100649. [PMID: 37730182 PMCID: PMC10616553 DOI: 10.1016/j.mcpro.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri, USA.
| | | | - Qiang Zhang
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kisan Thapa
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Emily King
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sarah E Noda
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Carol M Makepeace
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - R Reid Townsend
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
23
|
Carnielli CM, Melo de Lima Morais T, Malta de Sá Patroni F, Prado Ribeiro AC, Brandão TB, Sobroza E, Matos LL, Kowalski LP, Paes Leme AF, Kawahara R, Thaysen-Andersen M. Comprehensive glycoprofiling of oral tumours associates N-glycosylation with lymph node metastasis and patient survival. Mol Cell Proteomics 2023:100586. [PMID: 37268159 PMCID: PMC10336694 DOI: 10.1016/j.mcpro.2023.100586] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
While altered protein glycosylation is regarded a trait of oral squamous cell carcinoma (OSCC), the heterogeneous and dynamic glycoproteome of tumour tissues from OSCC patients remain unmapped. To this end, we here employ an integrated multi-omics approach comprising unbiased and quantitative glycomics and glycoproteomics applied to a cohort of resected primary tumour tissues from OSCC patients with (n = 19) and without (n = 12) lymph node metastasis. While all tumour tissues displayed relatively uniform N-glycome profiles suggesting overall stable global N-glycosylation during disease progression, altered expression of six sialylated N-glycans was found to correlate with lymph node metastasis. Notably, glycoproteomics and advanced statistical analyses uncovered altered site-specific N-glycosylation revealing previously unknown associations with several clinicopathological features. Importantly, the glycomics and glycoproteomics data unveiled that comparatively high abundance of two core-fucosylated and sialylated N-glycans (Glycan 40a and Glycan 46a) and one N-glycopeptide from fibronectin were associated with low patient survival, while a relatively low abundance of N-glycopeptides from both afamin and CD59 were also associated with poor survival. This study provides novel insight into the complex OSCC tissue N-glycoproteome forming an important resource to further explore the underpinning disease mechanisms and uncover new prognostic glyco-markers for OSCC.
Collapse
Affiliation(s)
- Carolina Moretto Carnielli
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, 13083-970 SP, Brazil
| | | | | | - Ana Carolina Prado Ribeiro
- Serviço de Odontologia Oncológica, Instituto do Câncer do Estado de São Paulo, ICESP-FMUSP, São Paulo, 01246-000 SP, Brazil; Universidade Brasil, Fernandópolis, 15600-000 SP, Brazil
| | - Thaís Bianca Brandão
- Serviço de Odontologia Oncológica, Instituto do Câncer do Estado de São Paulo, ICESP-FMUSP, São Paulo, 01246-000 SP, Brazil
| | - Evandro Sobroza
- Serviço de Odontologia Oncológica, Instituto do Câncer do Estado de São Paulo, ICESP-FMUSP, São Paulo, 01246-000 SP, Brazil
| | - Leandro Luongo Matos
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer do Estado de São Paulo, ICESP-FMUSP, São Paulo, 01246-000 SP, Brazil
| | - Luiz Paulo Kowalski
- Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, A.C. Camargo Cancer Center, São Paulo, SP, 01509-900, Brazil; Departamento de Cirurgia de Cabeça e Pescoço, Faculdade de Medicina, Universidade de São Paulo - USP, São Paulo, SP, 01246-903, Brazil
| | - Adriana Franco Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, 13083-970 SP, Brazil.
| | - Rebeca Kawahara
- School of Natural Sciences, Macquarie University, Sydney, NSW-2109, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan.
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, NSW-2109, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
24
|
Dugan MP, Ferguson LB, Hertz NT, Chalkley RJ, Burlingame AL, Shokat KM, Parker PJ, Messing RO. Chemical Genetic Identification of PKC Epsilon Substrates in Mouse Brain. Mol Cell Proteomics 2023; 22:100522. [PMID: 36863607 PMCID: PMC10105488 DOI: 10.1016/j.mcpro.2023.100522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.
Collapse
Affiliation(s)
- Michael P Dugan
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Laura B Ferguson
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA
| | - Peter J Parker
- The Francis Crick Institute, London, United Kingdom; School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
25
|
Kim SK, Dickinson MS, Finer-Moore J, Guan Z, Kaake RM, Echeverria I, Chen J, Pulido EH, Sali A, Krogan NJ, Rosenberg OS, Stroud RM. Structure and dynamics of the essential endogenous mycobacterial polyketide synthase Pks13. Nat Struct Mol Biol 2023; 30:296-308. [PMID: 36782050 PMCID: PMC10312659 DOI: 10.1038/s41594-022-00918-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 12/21/2022] [Indexed: 02/15/2023]
Abstract
The mycolic acid layer of the Mycobacterium tuberculosis cell wall is essential for viability and virulence, and the enzymes responsible for its synthesis are targets for antimycobacterial drug development. Polyketide synthase 13 (Pks13) is a module encoding several enzymatic and transport functions that carries out the condensation of two different long-chain fatty acids to produce mycolic acids. We determined structures by cryogenic-electron microscopy of dimeric multi-enzyme Pks13 purified from mycobacteria under normal growth conditions, captured with native substrates. Structures define the ketosynthase (KS), linker and acyl transferase (AT) domains at 1.8 Å resolution and two alternative locations of the N-terminal acyl carrier protein. These structures suggest intermediate states on the pathway for substrate delivery to the KS domain. Other domains, visible at lower resolution, are flexible relative to the KS-AT core. The chemical structures of three bound endogenous long-chain fatty acid substrates were determined by electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Janet Finer-Moore
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Robyn M Kaake
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Jen Chen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ernst H Pulido
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Oren S Rosenberg
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA.
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Kim SI, Hwangbo S, Dan K, Kim HS, Chung HH, Kim JW, Park NH, Song YS, Han D, Lee M. Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma. Mol Cell Proteomics 2023; 22:100502. [PMID: 36669591 PMCID: PMC9972571 DOI: 10.1016/j.mcpro.2023.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry-based proteomics methods. We conducted label-free liquid chromatography-tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073-2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Suhyun Hwangbo
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Akter F, Bonini S, Ponnaiyan S, Kögler-Mohrbacher B, Bleibaum F, Damme M, Renard BY, Winter D. Multi-Cell Line Analysis of Lysosomal Proteomes Reveals Unique Features and Novel Lysosomal Proteins. Mol Cell Proteomics 2023; 22:100509. [PMID: 36791992 PMCID: PMC10025164 DOI: 10.1016/j.mcpro.2023.100509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.
Collapse
Affiliation(s)
- Fatema Akter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany; Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sara Bonini
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Markus Damme
- Institute for Biochemistry, University of Kiel, Kiel, Germany
| | | | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
28
|
Lee H, Ryu HS, Park HC, Yu JI, Yoo GS, Choi C, Nam H, Lee JJB, Do IG, Han D, Ha SY. Dual Oxidase 2 (DUOX2) as a Proteomic Biomarker for Predicting Treatment Response to Chemoradiation Therapy for Locally Advanced Rectal Cancer: Using High-Throughput Proteomic Analysis and Machine Learning Algorithm. Int J Mol Sci 2022; 23:12923. [PMID: 36361712 PMCID: PMC9656829 DOI: 10.3390/ijms232112923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 04/24/2025] Open
Abstract
High-throughput mass-spectrometry-based quantitative proteomic analysis was performed using formalin-fixed, paraffin-embedded (FFPE) biopsy samples obtained before treatment from 13 patients with locally advanced rectal cancer (LARC), who were treated with concurrent chemoradiation therapy (CCRT) followed by surgery. Patients were divided into complete responder (CR) and non-complete responder (nCR) groups. Immunohistochemical (IHC) staining of 79 independent FFPE tissue samples was performed to validate the predictive ability of proteomic biomarker candidates. A total of 3637 proteins were identified, and the expression of 498 proteins was confirmed at significantly different levels (differentially expressed proteins-DEPs) between two groups. In Gene Ontology enrichment analyses, DEPs enriched in biological processes in the CR group included proteins linked to cytoskeletal organization, immune response processes, and vesicle-associated protein transport processes, whereas DEPs in the nCR group were associated with biosynthesis, transcription, and translation processes. Dual oxidase 2 (DUOX2) was selected as the most predictive biomarker in machine learning algorithm analysis. Further IHC validation ultimately confirmed DUOX2 as a potential biomarker for predicting the response of nCR to CCRT. In conclusion, this study suggests that the treatment response to RT may be affected by the pre-treatment tumor microenvironment. DUOX2 is a potential biomarker for the early prediction of nCR after CCRT.
Collapse
Affiliation(s)
- Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Heerim Nam
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Jason Joon Bock Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
29
|
Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells. Mol Cell Proteomics 2022; 21:100278. [PMID: 35934186 PMCID: PMC9562429 DOI: 10.1016/j.mcpro.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/18/2023] Open
Abstract
Most of the recombinant biotherapeutics employed today to combat severe illnesses, for example, various types of cancer or autoimmune diseases, are produced by Chinese hamster ovary (CHO) cells. To meet the growing demand of these pharmaceuticals, CHO cells are under constant development in order to enhance their stability and productivity. The last decades saw a shift from empirical cell line optimization toward rational cell engineering using a growing number of large omics datasets to alter cell physiology on various levels. Especially proteomics workflows reached new levels in proteome coverage and data quality because of advances in high-resolution mass spectrometry instrumentation. One type of workflow concentrates on spatial proteomics by usage of subcellular fractionation of organelles with subsequent shotgun mass spectrometry proteomics and machine learning algorithms to determine the subcellular localization of large portions of the cellular proteome at a certain time point. Here, we present the first subcellular spatial proteome of a CHO-K1 cell line producing high titers of recombinant antibody in comparison to the spatial proteome of an antibody-producing plasma cell-derived myeloma cell line. Both cell lines show colocalization of immunoglobulin G chains with chaperones and proteins associated in protein glycosylation within the endoplasmic reticulum compartment. However, we report differences in the localization of proteins associated to vesicle-mediated transport, transcription, and translation, which may affect antibody production in both cell lines. Furthermore, pairing subcellular localization data with protein expression data revealed elevated protein masses for organelles in the secretory pathway in plasma cell-derived MPC-11 (Merwin plasma cell tumor-11) cells. Our study highlights the potential of subcellular spatial proteomics combined with protein expression as potent workflow to identify characteristics of highly efficient recombinant protein-expressing cell lines. Data are available via ProteomeXchange with identifier PXD029115.
Collapse
|
30
|
Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. Characterization of a highly diverged mitochondrial ATP synthase F o subunit in Trypanosoma brucei. J Biol Chem 2022; 298:101829. [PMID: 35293314 PMCID: PMC9034290 DOI: 10.1016/j.jbc.2022.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Yang Y, Zhang H, Guo Z, Zou S, Long F, Wu J, Li P, Zhao GP, Zhao W. Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways. Mol Cell Proteomics 2021; 20:100148. [PMID: 34530157 PMCID: PMC8498004 DOI: 10.1016/j.mcpro.2021.100148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023] Open
Abstract
Lysine acylations are reversible and ubiquitous post-translational modifications that play critical roles in regulating multiple cellular processes. In the current study, highly abundant and dynamic acetylation, besides succinylation, was uncovered in a soil bacterium, Streptomyces coelicolor. By affinity enrichment using anti–acetyl-lysine antibody and the following LC−MS/MS analysis, a total of 1298 acetylation sites among 601 proteins were identified. Bioinformatics analyses suggested that these acetylated proteins have diverse subcellular localization and were enriched in a wide range of biological functions. Specifically, a majority of the acetylated proteins were also succinylated in the tricarboxylic acid cycle and protein translation pathways, and the bimodification occurred at the same sites in some proteins. The acetylation and succinylation sites were quantified by knocking out either the deacetylase ScCobB1 or the desuccinylase ScCobB2, demonstrating a possible competitive relationship between the two acylations. Moreover, in vitro experiments using synthetically modified peptides confirmed the regulatory crosstalk between the two sirtuins, which may be involved in the collaborative regulation of cell physiology. Collectively, these results provided global insights into the S. coelicolor acylomes and laid a foundation for characterizing the regulatory roles of the crosstalk between lysine acetylation and succinylation in the future. A highly abundant and dynamic acetylation is discovered in Streptomyces coelicolor. Quantitative acetylome and succinylome analyses in Streptomyces coelicolor. The bimodification proteins are enriched in multiple metabolic pathways.
Collapse
Affiliation(s)
- Yujiao Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Siwei Zou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Long
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
32
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
33
|
Mohan S, Sampognaro PJ, Argouarch AR, Maynard JC, Welch M, Patwardhan A, Courtney EC, Zhang J, Mason A, Li KH, Huang EJ, Seeley WW, Miller BL, Burlingame A, Jacobson MP, Kao AW. Processing of progranulin into granulins involves multiple lysosomal proteases and is affected in frontotemporal lobar degeneration. Mol Neurodegener 2021; 16:51. [PMID: 34344440 PMCID: PMC8330050 DOI: 10.1186/s13024-021-00472-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases to process PGRN at a range of pH setpoints. Results In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in distinctive, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn showed increased PGRN processing to granulin F and increased AEP activity in degenerating brain regions but not in regions unaffected by disease. Conclusions This study demonstrates that multiple lysosomal proteases may work in concert to liberate multi-granulin fragments and granulins. It also implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage and granulin production may represent therapeutic strategies for FTLD-Pgrn and other progranulin-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00472-1.
Collapse
Affiliation(s)
- Swetha Mohan
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Paul J Sampognaro
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Andrea R Argouarch
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143, USA
| | - Mackenzie Welch
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Anand Patwardhan
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Emma C Courtney
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Jiasheng Zhang
- Department of Pathology, University of California, San Francisco, California, 94143, USA
| | - Amanda Mason
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, California, 94143, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143, USA
| | - Mathew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143, USA
| | - Aimee W Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, California, 94143, USA.
| |
Collapse
|
34
|
The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators. Cells 2021; 10:cells10071665. [PMID: 34359847 PMCID: PMC8303113 DOI: 10.3390/cells10071665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.
Collapse
|
35
|
Busso-Lopes AF, Carnielli CM, Winck FV, Patroni FMDS, Oliveira AK, Granato DC, E Costa RAP, Domingues RR, Pauletti BA, Riaño-Pachón DM, Aricetti J, Caldana C, Graner E, Coletta RD, Dryden K, Fox JW, Paes Leme AF. A Reductionist Approach Using Primary and Metastatic Cell-Derived Extracellular Vesicles Reveals Hub Proteins Associated with Oral Cancer Prognosis. Mol Cell Proteomics 2021; 20:100118. [PMID: 34186243 PMCID: PMC8350068 DOI: 10.1016/j.mcpro.2021.100118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has high mortality rates that are largely associated with lymph node metastasis. However, the molecular mechanisms that drive OSCC metastasis are unknown. Extracellular vesicles (EVs) are membrane-bound particles that play a role in intercellular communication and impact cancer development and progression. Thus, profiling EVs would be of great significance to decipher their role in OSCC metastasis. For that purpose, we used a reductionist approach to map the proteomic, miRNA, metabolomic, and lipidomic profiles of EVs derived from human primary tumor (SCC-9) cells and matched lymph node metastatic (LN1) cells. Distinct omics profiles were associated with the metastatic phenotype, including 670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids differentially abundant between LN1 cell– and SCC-9 cell–derived EVs. A multi-omics integration identified 11 ‘hub proteins’ significantly decreased at the metastatic site compared with primary tumor–derived EVs. We confirmed the validity of these findings with analysis of data from multiple public databases and found that low abundance of seven ‘hub proteins’ in EVs from metastatic lymph nodes (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS) is correlated with reduced survival and tumor aggressiveness in patients with cancer. In summary, this multi-omics approach identified proteins transported by EVs that are associated with metastasis and which may potentially serve as prognostic markers in OSCC. Proteomic, miRNA, metabolomic, and lipidomic profiles were mapped in oral cancer EVs. The molecular profile of EVs was associated with the lymph node metastatic phenotype. A multi-omics integrative analysis revealed 11 highly connected ‘hub proteins.’ ‘Hub proteins’ from EVs are candidates as prognostic markers in oral cancer.
Collapse
Affiliation(s)
- Ariane Fidelis Busso-Lopes
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Flavia Vischi Winck
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Malta de Sá Patroni
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Rute Alves Pereira E Costa
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Romênia Ramos Domingues
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Aricetti
- Laboratório Nacional de Biorrenováveis - LNBR, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Edgard Graner
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Ricardo Della Coletta
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Kelly Dryden
- Molecular Electron Microscopy Core, University of Virginia, Charlottesville, Virginia, USA
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
36
|
Packed red blood cells inhibit T-cell activation via ROS-dependent signaling pathways. J Biol Chem 2021; 296:100487. [PMID: 33676898 PMCID: PMC8042437 DOI: 10.1016/j.jbc.2021.100487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023] Open
Abstract
Numerous observations indicate that red blood cells (RBCs) affect T-cell activation and proliferation. We have studied effects of packed RBCs (PRBCs) on T-cell receptor (TCR) signaling and the molecular mechanisms whereby (P)RBCs modulate T-cell activation. In line with previous reports, PRBCs attenuated the expression of T-cell activation markers CD25 and CD69 upon costimulation via CD3/CD28. In addition, T-cell proliferation and cytokine expression were markedly reduced when T-cells were stimulated in the presence of PRBCs. Inhibitory activity of PRBCs required direct cell–cell contact and intact PRBCs. The production of activation-induced cellular reactive oxygen species, which act as second messengers in T-cells, was completely abrogated to levels of unstimulated T-cells in the presence of PRBCs. Phosphorylation of the TCR-related zeta chain and thus proximal TCR signal transduction was unaffected by PRBCs, ruling out mechanisms based on secreted factors and steric interaction restrictions. In large part, downstream signaling events requiring reactive oxygen species for full functionality were affected, as confirmed by an untargeted MS-based phosphoproteomics approach. PRBCs inhibited T-cell activation more efficiently than treatment with 1 mM of the antioxidant N-acetyl cysteine. Taken together, our data imply that inflammation-related radical reactions are modulated by PRBCs. These immunomodulating effects may be responsible for clinical observations associated with transfusion of PRBCs.
Collapse
|
37
|
Rosenberger FA, Atanassov I, Moore D, Calvo-Garrido J, Moedas MF, Wedell A, Freyer C, Wredenberg A. Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits. Mol Cell Proteomics 2021; 20:100065. [PMID: 33640490 PMCID: PMC8050774 DOI: 10.1016/j.mcpro.2021.100065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labeling methods. Here, we advanced a chemically defined food source into direct stable-isotope labeling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[13C6] after six labeling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7196 proteins and 8451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phosphosites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuate the fruit fly as an appealing model in proteomic and posttranslational modification studies, and it enlarges potential metabolic applications based on heavy amino acid diets.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - David Moore
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marco F Moedas
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Maynard JC, Chalkley RJ. Methods for Enrichment and Assignment of N-Acetylglucosamine Modification Sites. Mol Cell Proteomics 2021; 20:100031. [PMID: 32938750 PMCID: PMC8724609 DOI: 10.1074/mcp.r120.002206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAcylation, the addition of a single N-acetylglucosamine residue to serine and threonine residues of cytoplasmic, nuclear, or mitochondrial proteins, is a widespread regulatory posttranslational modification. It is involved in the response to nutritional status and stress, and its dysregulation is associated with diseases ranging from Alzheimer's to diabetes. Although the modification was first detected over 35 years ago, research into the function of O-GlcNAcylation has accelerated dramatically in the last 10 years owing to the development of new enrichment and mass spectrometry techniques that facilitate its analysis. This article summarizes methods for O-GlcNAc enrichment, key mass spectrometry instrumentation advancements, particularly those that allow modification site localization, and software tools that allow analysis of data from O-GlcNAc-modified peptides.
Collapse
Affiliation(s)
- Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Ma J, Li Y, Hou C, Wu C. O-GlcNAcAtlas: A database of experimentally identified O-GlcNAc sites and proteins. Glycobiology 2021; 31:719-723. [PMID: 33442735 DOI: 10.1093/glycob/cwab003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on the serine/threonine residues of proteins. As a unique intracellular monosaccharide modification, protein O-GlcNAcylation plays important roles in almost all biochemical processes examined. Aberrant O-GlcNAcylation underlies the etiologies of a number of chronic diseases. With the tremendous improvement of techniques, thousands of proteins along with their O-GlcNAc sites have been reported. However, until now, there are few databases dedicated to accommodate the rapid accumulation of such information. Thus, O-GlcNAcAtlas is created to integrate all experimentally identified O-GlcNAc sites and proteins. O-GlcNAcAtlas consists of two datasets (Dataset-I and Dataset-II, for unambiguously identified sites and ambiguously identified sites, respectively), representing a total number of 4571 O-GlcNAc modified proteins from all species studied from 1984 to 31 Dec 2019. For each protein, comprehensive information (including species, sample type, gene symbol, modified peptides and/or modification sites, site mapping methods and literature references) is provided. To solve the heterogeneity among the data collected from different sources, the sequence identity of these reported O-GlcNAc peptides are mapped to the UniProtKB protein entries. To our knowledge, O-GlcNAcAtlas is a highly comprehensive and rigorously curated database encapsulating all O-GlcNAc sites and proteins identified in the past 35 years. We expect that O-GlcNAcAtlas will be a useful resource to facilitate O-GlcNAc studies and computational analyses of protein O-GlcNAcylation. The public version of the web interface to the O-GlcNAcAtlas can be found at http://oglcnac.org/.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chunyan Hou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
40
|
Tadele DS, Robertson J, Crispin R, Herrera MC, Chlubnová M, Piechaczyk L, Ayuda-Durán P, Singh SK, Gedde-Dahl T, Fløisand Y, Skavland J, Wesche J, Gjertsen BT, Enserink JM. A cell competition-based small molecule screen identifies a novel compound that induces dual c-Myc depletion and p53 activation. J Biol Chem 2021; 296:100179. [PMID: 33303632 PMCID: PMC7948465 DOI: 10.1074/jbc.ra120.015285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/08/2022] Open
Abstract
Breakpoint Cluster Region-Abelson kinase (BCR-Abl) is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells (LSCs), the cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. New strategies to target cancers driven by BCR-Abl are therefore urgently needed. We performed a small molecule screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells and identified several compounds that selectively impair the fitness of BCR-Abl-transformed cells. Interestingly, systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. DJ34-mediated c-Myc depletion occurred in a wide range of tumor cell types, including lymphoma, lung, glioblastoma, breast cancer, and several forms of leukemia, with primary LSCs being particularly sensitive to DJ34. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest, and cell differentiation. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against LSCs.
Collapse
Affiliation(s)
- Dagim Shiferaw Tadele
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Joseph Robertson
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Richard Crispin
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Maria C Herrera
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Markéta Chlubnová
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Laure Piechaczyk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Sachin Kumar Singh
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Yngvar Fløisand
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Jørn Skavland
- Precision Oncology Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Bjørn-Tore Gjertsen
- Precision Oncology Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.
| |
Collapse
|
41
|
Neves LX, Granato DC, Busso-Lopes AF, Carnielli CM, Patroni FMDS, De Rossi T, Oliveira AK, Ribeiro ACP, Brandão TB, Rodrigues AN, Lacerda PA, Uno M, Cervigne NK, Santos-Silva AR, Kowalski LP, Lopes MA, Paes Leme AF. Peptidomics-Driven Strategy Reveals Peptides and Predicted Proteases Associated With Oral Cancer Prognosis. Mol Cell Proteomics 2020; 20:100004. [PMID: 33578082 PMCID: PMC7950089 DOI: 10.1074/mcp.ra120.002227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Protease activity has been associated with pathological processes that can lead to cancer development and progression. However, understanding the pathological unbalance in proteolysis is challenging because changes can occur simultaneously at protease, their inhibitor, and substrate levels. Here, we present a pipeline that combines peptidomics, proteomics, and peptidase predictions for studying proteolytic events in the saliva of 79 patients and their association with oral squamous cell carcinoma (OSCC) prognosis. Our findings revealed differences in the saliva peptidome of patients with (pN+) or without (pN0) lymph-node metastasis and delivered a panel of ten endogenous peptides correlated with poor prognostic factors plus five molecules able to classify pN0 and pN+ patients (area under the receiver operating characteristic curve > 0.85). In addition, endopeptidases and exopeptidases putatively implicated in the processing of differential peptides were investigated using cancer tissue gene expression data from public repositories, reinforcing their association with poorer survival rates and prognosis in oral cancer. The dynamics of the OSCC-related proteolysis were further explored via the proteomic profiling of saliva. This revealed that peptidase/endopeptidase inhibitors exhibited reduced levels in the saliva of pN+ patients, as confirmed by selected reaction monitoring-mass spectrometry, while minor changes were detected in the level of saliva proteases. Taken together, our results indicated that proteolytic activity is accentuated in the saliva of patients with OSCC and lymph-node metastasis and, at least in part, is modulated by reduced levels of salivary peptidase inhibitors. Therefore, this integrated pipeline provided better comprehension and discovery of molecular features with implications in the oral cancer metastasis prognosis.
Collapse
Affiliation(s)
- Leandro Xavier Neves
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Daniela C Granato
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Ariane Fidelis Busso-Lopes
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Carolina M Carnielli
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Fábio M de Sá Patroni
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
| | - Tatiane De Rossi
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Ana Karina Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | | | | | - André Nimtz Rodrigues
- Department of Head and Neck Surgery, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Pammela Araujo Lacerda
- Department of Internal Medicine, Molecular Biology and Cell Culture Laboratory, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology, São Paulo Cancer Institute, São Paulo, Brazil
| | - Nilva K Cervigne
- Department of Internal Medicine, Molecular Biology and Cell Culture Laboratory, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Adriana F Paes Leme
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil.
| |
Collapse
|
42
|
Franco JY, Thapa SP, Pang Z, Gurung FB, Liebrand TWH, Stevens DM, Ancona V, Wang N, Coaker G. Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Mol Cell Proteomics 2020; 19:1936-1952. [PMID: 32883801 PMCID: PMC7710146 DOI: 10.1074/mcp.ra120.002075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.
Collapse
Affiliation(s)
- Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California, USA.
| |
Collapse
|
43
|
Combined the SMAC mimetic and BCL2 inhibitor sensitizes neoadjuvant chemotherapy by targeting necrosome complexes in tyrosine aminoacyl-tRNA synthase-positive breast cancer. Breast Cancer Res 2020; 22:130. [PMID: 33239070 PMCID: PMC7687715 DOI: 10.1186/s13058-020-01367-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Chemotherapy is the standard treatment for breast cancer; however, the response to chemotherapy is disappointingly low. Here, we investigated the alternative therapeutic efficacy of novel combination treatment with necroptosis-inducing small molecules to overcome chemotherapeutic resistance in tyrosine aminoacyl-tRNA synthetase (YARS)-positive breast cancer. Methods Pre-chemotherapeutic needle biopsy of 143 invasive ductal carcinomas undergoing the same chemotherapeutic regimen was subjected to proteomic analysis. Four different machine learning algorithms were employed to determine signature protein combinations. Immunoreactive markers were selected using three common candidate proteins from the machine-learning algorithms and verified by immunohistochemistry using 123 cases of independent needle biopsy FFPE samples. The regulation of chemotherapeutic response and necroptotic cell death was assessed using lentiviral YARS overexpression and depletion 3D spheroid formation assay, viability assays, LDH release assay, flow cytometry analysis, and transmission electron microscopy. The ROS-induced metabolic dysregulation and phosphorylation of necrosome complex by YARS were assessed using oxygen consumption rate analysis, flow cytometry analysis, and 3D cell viability assay. The therapeutic roles of SMAC mimetics (LCL161) and a pan-BCL2 inhibitor (ABT-263) were determined by 3D cell viability assay and flow cytometry analysis. Additional biologic process and protein-protein interaction pathway analysis were performed using Gene Ontology annotation and Cytoscape databases. Results YARS was selected as a potential biomarker by proteomics-based machine-learning algorithms and was exclusively associated with good response to chemotherapy by subsequent immunohistochemical validation. In 3D spheroid models of breast cancer cell lines, YARS overexpression significantly improved chemotherapy response via phosphorylation of the necrosome complex. YARS-induced necroptosis sequentially mediated mitochondrial dysfunction through the overproduction of ROS in breast cancer cell lines. Combination treatment with necroptosis-inducing small molecules, including a SMAC mimetic (LCL161) and a pan-BCL2 inhibitor (ABT-263), showed therapeutic efficacy in YARS-overexpressing breast cancer cells. Conclusions Our results indicate that, before chemotherapy, an initial screening of YARS protein expression should be performed, and YARS-positive breast cancer patients might consider the combined treatment with LCL161 and ABT-263; this could be a novel stepwise clinical approach to apply new targeted therapy in breast cancer patients in the future.
Collapse
|
44
|
Karayel Ö, Tonelli F, Virreira Winter S, Geyer PE, Fan Y, Sammler EM, Alessi DR, Steger M, Mann M. Accurate MS-based Rab10 Phosphorylation Stoichiometry Determination as Readout for LRRK2 Activity in Parkinson's Disease. Mol Cell Proteomics 2020; 19:1546-1560. [PMID: 32601174 PMCID: PMC8143643 DOI: 10.1074/mcp.ra120.002055] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mutations in the Leucine-rich repeat kinase 2 (LRRK2) are the predominant genetic cause of Parkinson's disease (PD). They increase its activity, resulting in augmented Rab10-Thr73 phosphorylation and conversely, LRRK2 inhibition decreases pRab10 levels. Currently, there is no assay to quantify pRab10 levels for drug target engagement or patient stratification. To meet this challenge, we developed an high accuracy and sensitivity targeted mass spectrometry (MS)-based assay for determining Rab10-Thr73 phosphorylation stoichiometry in human samples. It uses synthetic stable isotope-labeled (SIL) analogues for both phosphorylated and nonphosphorylated tryptic peptides surrounding Rab10-Thr73 to directly derive the percentage of Rab10 phosphorylation from attomole amounts of the endogenous phosphopeptide. The SIL and the endogenous phosphopeptides are separately admitted into an Orbitrap analyzer with the appropriate injection times. We test the reproducibility of our assay by determining Rab10-Thr73 phosphorylation stoichiometry in neutrophils of LRRK2 mutation carriers before and after LRRK2 inhibition. Compared with healthy controls, the PD predisposing mutation carriers LRRK2 G2019S and VPS35 D620N display 1.9-fold and 3.7-fold increased pRab10 levels, respectively. Our generic MS-based assay further establishes the relevance of pRab10 as a prognostic PD marker and is a powerful tool for determining LRRK2 inhibitor efficacy and for stratifying PD patients for LRRK2 inhibitor treatment.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Sebastian Virreira Winter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Phillip E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ying Fan
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Esther M Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom; Department of Neurology, School of Medicine, Ninewells Hospital, Ninewells Drive, Dundee, United Kingdom
| | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Martin Steger
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
45
|
Age-related loss of neural stem cell O-GlcNAc promotes a glial fate switch through STAT3 activation. Proc Natl Acad Sci U S A 2020; 117:22214-22224. [PMID: 32848054 PMCID: PMC7486730 DOI: 10.1073/pnas.2007439117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Depletion of the neural stem cell (NSC) pool is a major driver of age-related regenerative decline in the hippocampus. While increased quiescence is a major contributor to this decline, NSCs can also undergo terminal differentiation into astrocytes, thus restricting the stem cell pool. The mechanisms underlying this fate switch and their relation to age-related regenerative decline have not yet been fully elucidated. In this study, we report an age-related decline in NSC O-GlcNAcylation, coincident with reduced neurogenesis and increased gliogenesis. We identify loss of O-GlcNAcylation at STAT3 T717 in the hippocampus with age, and demonstrate that O-GlcNAcylation of this site is a critical determinant of NSC fate. Our work expands our understanding of how posttranslational modifications influence the aging brain. Increased neural stem cell (NSC) quiescence is a major determinant of age-related regenerative decline in the adult hippocampus. However, a coextensive model has been proposed in which division-coupled conversion of NSCs into differentiated astrocytes restrict the stem cell pool with age. Here we report that age-related loss of the posttranslational modification, O-linked β-N-acetylglucosamine (O-GlcNAc), in NSCs promotes a glial fate switch. We detect an age-dependent decrease in NSC O-GlcNAc levels coincident with decreased neurogenesis and increased gliogenesis in the mature hippocampus. Mimicking an age-related loss of NSC O-GlcNAcylation in young mice reduces neurogenesis, increases astrocyte differentiation, and impairs associated cognitive function. Using RNA-sequencing of primary NSCs following decreased O-GlcNAcylation, we detected changes in the STAT3 signaling pathway indicative of glial differentiation. Moreover, using O-GlcNAc–specific mass spectrometry analysis of the aging hippocampus, together with an in vitro site-directed mutagenesis approach, we identify loss of STAT3 O-GlcNAc at Threonine 717 as a driver of astrocyte differentiation. Our data identify the posttranslational modification, O-GlcNAc, as a key molecular regulator of regenerative decline underlying an age-related NSC fate switch.
Collapse
|
46
|
Potter ZE, Lau HT, Chakraborty S, Fang L, Guttman M, Ong SE, Fowler DM, Maly DJ. Parallel Chemoselective Profiling for Mapping Protein Structure. Cell Chem Biol 2020; 27:1084-1096.e4. [PMID: 32649906 PMCID: PMC7484201 DOI: 10.1016/j.chembiol.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
Solution-based structural techniques complement high-resolution structural data by providing insight into the oft-missed links between protein structure and dynamics. Here, we present Parallel Chemoselective Profiling, a solution-based structural method for characterizing protein structure and dynamics. Our method utilizes deep mutational scanning saturation mutagenesis data to install amino acid residues with specific chemistries at defined positions on the solvent-exposed surface of a protein. Differences in the extent of labeling of installed mutant residues are quantified using targeted mass spectrometry, reporting on each residue's local environment and structural dynamics. Using our method, we studied how conformation-selective, ATP-competitive inhibitors affect the local and global structure and dynamics of full-length Src kinase. Our results highlight how parallel chemoselective profiling can be used to study a dynamic multi-domain protein, and suggest that our method will be a useful addition to the relatively small toolkit of existing protein footprinting techniques.
Collapse
Affiliation(s)
- Zachary E Potter
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sujata Chakraborty
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Linglan Fang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
47
|
Maynard JC, Fujihira H, Dolgonos GE, Suzuki T, Burlingame AL. Cytosolic N-GlcNAc proteins are formed by the action of endo-β-N-acetylglucosaminidase. Biochem Biophys Res Commun 2020; 530:719-724. [PMID: 32782141 DOI: 10.1016/j.bbrc.2020.06.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
Abstract
NGLY1 is a widely conserved eukaryotic cytosolic deglycosylating enzyme involved in the endoplasmic reticulum-associated degradation (ERAD) process, which eliminates misfolded proteins through retrograde translocation and proteasomal degradation. A human genetic disorder called NGLY1-deficiency has been reported, indicating the functional importance of NGLY1 in humans. Evidence suggests that Ngly1-KO is embryonic lethal in mice, while additional deletion of the Engase gene, encoding another cytosolic deglycosylating enzyme (endo-β-N-acetylglucosaminidase; ENGase), partially rescued lethality. Upon compromised Ngly1 activity, ENGase-mediated deglycosylation of misfolded glycoproteins may cause excess formation of N-GlcNAc proteins in the cytosol, leading to detrimental effects in the mice. Whether endogenous N-GlcNAc proteins are really formed in Ngly1-KO cells/animals or not remains unclarified. Here, comprehensive identification of O- and N-GlcNAc proteins was carried out using purified cytosol from wild type, Ngly1-KO, Engase-KO, and Ngly1/Engase double KO mouse embryonic fibroblasts. It was revealed that while there is no dramatic change in the level of O-GlcNAc proteins among cells examined, there was a vast increase of N-GlcNAc proteins in Ngly1-KO cells upon proteasome inhibition. Importantly, few N-GlcNAc proteins were observed in Engase-KO or Ngly1/Engase double-KO cells, clearly indicating that the cytosolic ENGase is responsible for the formation of N-GlcNAc proteins. The excess formation of N-GlcNAc proteins may at least in part account for the pathogenesis of NGLY1-deficiency.
Collapse
Affiliation(s)
- Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Haruhiko Fujihira
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Gabby E Dolgonos
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan; Suzuki Project, T-CiRA Discovery, Kanagawa, Japan.
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
48
|
Ming L, Zou Y, Zhao Y, Zhang L, He N, Chen Z, Li SSC, Li L. MMS2plot: An R Package for Visualizing Multiple MS/MS Spectra for Groups of Modified and Non-Modified Peptides. Proteomics 2020; 20:e2000061. [PMID: 32643287 DOI: 10.1002/pmic.202000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/06/2020] [Indexed: 11/11/2022]
Abstract
A large number of post-translational modifications (PTMs) in proteins are buried in the unassigned mass spectrometric (MS) spectra in shot-gun proteomics datasets. Because the modified peptide fragments are low in abundance relative to the corresponding non-modified versions, it is critical to develop tools that allow facile evaluation of assignment of PTMs based on the MS/MS spectra. Such tools will preferably have the ability to allow comparison of fragment ion spectra and retention time between the modified and unmodified peptide pairs or group. Herein, MMS2plot, an R package for visualizing peptide-spectrum matches (PSMs) for multiple peptides, is described. MMS2plot features a batch mode and generates the output images in vector graphics file format that facilitate evaluation and publication of the PSM assignment. MMS2plot is expected to play an important role in PTM discovery from large-scale proteomics datasets generated by liquid chromatography-MS/MS. The MMS2plot package is freely available at https://github.com/lileir/MMS2plot under the GPL-3 license.
Collapse
Affiliation(s)
- Liya Ming
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Zou
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yiming Zhao
- Data Science and Software Engineering, Qingdao University, Qingdao, 266021, China
| | - Luna Zhang
- Data Science and Software Engineering, Qingdao University, Qingdao, 266021, China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Zhen Chen
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Lei Li
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
- Data Science and Software Engineering, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
49
|
Chelius C, Huso W, Reese S, Doan A, Lincoln S, Lawson K, Tran B, Purohit R, Glaros T, Srivastava R, Harris SD, Marten MR. Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans. Mol Cell Proteomics 2020; 19:1310-1329. [PMID: 32430394 PMCID: PMC8014999 DOI: 10.1074/mcp.ra119.001769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a β-glucan synthase inhibitor (micafungin) was added to a growing A. nidulans shake-flask culture. From this flask, transcriptomic and phosphoproteomic data were acquired over 10 and 120 min, respectively. To differentiate statistically-significant dynamic behavior from noise, a multivariate adaptive regression splines (MARS) model was applied to both data sets. Over 1800 genes were dynamically expressed and over 700 phosphorylation sites had changing phosphorylation levels upon micafungin exposure. Twelve kinases had altered phosphorylation and phenotypic profiling of all non-essential kinase deletion mutants revealed putative connections between PrkA, Hk-8-4, and Stk19 and the CWIS pathway. Our collective data implicate actin regulation, endocytosis, and septum formation as critical cellular processes responding to activation of the CWIS pathway, and connections between CWIS and calcium, HOG, and SIN signaling pathways.
Collapse
Affiliation(s)
- Cynthia Chelius
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Walker Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Samantha Reese
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexander Doan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen Lincoln
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Kelsi Lawson
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Bao Tran
- BioScience Mass Spectrometry Facility, The U.S. Army CCDC Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Maryland, USA
| | - Raj Purohit
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Trevor Glaros
- BioSciences Division, B11 Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Steven D Harris
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
50
|
Theodros D, Murter BM, Sidhom JW, Nirschl TR, Clark DJ, Chen L, Tam AJ, Blosser RL, Schwen ZR, Johnson MH, Pierorazio PM, Zhang H, Ganguly S, Pardoll DM, Zarif JC. High-dimensional Cytometry (ExCYT) and Mass Spectrometry of Myeloid Infiltrate in Clinically Localized Clear Cell Renal Cell Carcinoma Identifies Novel Potential Myeloid Targets for Immunotherapy. Mol Cell Proteomics 2020; 19:1850-1859. [PMID: 32737216 PMCID: PMC7664124 DOI: 10.1074/mcp.ra120.002049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Although the focus of the role of cancer immunotherapy has been in advanced disease states, we sought to investigate changes to the immune infiltrate of early, clinically localized clear cell Renal Cell Carcinoma (ccRCC). Using orthogonal approaches including Mass Spectrometry on immune cell infiltrates, we report numerous alterations that provide new insight into the biology of treatment-naïve ccRCC and identification of novel targets that may prove to be clinically impactful. Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC.
Collapse
Affiliation(s)
- Debebe Theodros
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin M Murter
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John-William Sidhom
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas R Nirschl
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - LiJun Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Richard L Blosser
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Zeyad R Schwen
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael H Johnson
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Phillip M Pierorazio
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sudipto Ganguly
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Drew M Pardoll
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Jelani C Zarif
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|