1
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
van Els CACM, van Veelen PA, Heck AJR, Meiring HD. Remembering Ad de Jong. Mol Cell Proteomics 2023; 22:100568. [PMID: 37276839 DOI: 10.1016/j.mcpro.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Affiliation(s)
- Cécile A C M van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
4
|
Ternette N, Purcell AW. Immunopeptidomics Special Issue. Proteomics 2019; 18:e1800145. [PMID: 29949244 DOI: 10.1002/pmic.201800145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, OX3, 7FZ, UK
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
5
|
López D, Barriga A, Lorente E, Mir C. Immunoproteomic Lessons for Human Respiratory Syncytial Virus Vaccine Design. J Clin Med 2019; 8:E486. [PMID: 30974886 PMCID: PMC6518116 DOI: 10.3390/jcm8040486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
Accurate antiviral humoral and cellular immune responses require prior recognition of antigenic peptides presented by human leukocyte antigen (HLA) class I and II molecules on the surface of antigen-presenting cells. Both the helper and the cytotoxic immune responses are critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, which is a significant cause of morbidity and mortality in infected pediatric, immunocompromised and elderly populations. In this article we review the immunoproteomics studies which have defined the general antigen processing and presentation rules that determine both the immunoprevalence and the immunodominance of the cellular immune response to HRSV. Mass spectrometry and functional analyses have shown that the HLA class I and II cellular immune responses against HRSV are mainly focused on three viral proteins: fusion, matrix, and nucleoprotein. Thus, these studies have important implications for vaccine development against this virus, since a vaccine construct including these three relevant HRSV proteins could efficiently stimulate the major components of the adaptive immune system: humoral, helper, and cytotoxic effector immune responses.
Collapse
Affiliation(s)
- Daniel López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Alejandro Barriga
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Elena Lorente
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Carmen Mir
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
6
|
Woon AP, Purcell AW. The use of proteomics to understand antiviral immunity. Semin Cell Dev Biol 2018; 84:22-29. [PMID: 30449533 DOI: 10.1016/j.semcdb.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Abstract
Viruses are intracellular pathogens that cause a vast array of diseases, which are often severe and typified by high morbidity and mortality rates. Viral infections continue to be a global health burden and effective vaccines and therapeutics are constantly sought to prevent and treat these infections. The development of such treatments generally relies on understanding the mechanisms that underpin efficient host antiviral immune responses. This review summarises recent developments in our understanding of antiviral adaptive immunity and in particular, highlights the use of mass spectrometry to elucidate viral antigens and their processing and presentation to T cells and other immune effectors. These processed peptides serve as potential vaccine candidates or may facilitate clinical monitoring, diagnosis and immunotherapy of infectious diseases.
Collapse
Affiliation(s)
- Amanda P Woon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Lill JR, van Veelen PA, Tenzer S, Admon A, Caron E, Elias JE, Heck AJ, Marcilla M, Marino F, Müller M, Peters B, Purcell A, Sette A, Sturm T, Ternette N, Vizcaíno JA, Bassani‐Sternberg M. Minimal Information About an Immuno-Peptidomics Experiment (MIAIPE). Proteomics 2018; 18:e1800110. [PMID: 29791771 PMCID: PMC6033177 DOI: 10.1002/pmic.201800110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Minimal information about an immuno-peptidomics experiment (MIAIPE) is an initiative of the members of the Human Immuno-Peptidome Project (HIPP), an international program organized by the Human Proteome Organization (HUPO). The aim of the MIAIPE guidelines is to deliver technical guidelines representing the minimal information required to sufficiently support the evaluation and interpretation of immunopeptidomics experiments. The MIAIPE document has been designed to report essential information about sample preparation, mass spectrometric measurement, and associated mass spectrometry (MS)-related bioinformatics aspects that are unique to immunopeptidomics and may not be covered by the general proteomics MIAPE (minimal information about a proteomics experiment) guidelines.
Collapse
Affiliation(s)
- Jennie R. Lill
- Department of MicrochemistryProteomics and LipidomicsGenentech Inc.1 DNA WaySouth San FranciscoCA94080USA
| | - Peter A. van Veelen
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 22333ZA LeidenThe Netherlands
| | - Stefan Tenzer
- Institute for ImmunologyUniversity Medical Center of the Johannes Gutenberg University MainzLangenbeckstr. 155131MainzGermany
| | - Arie Admon
- Faculty of BiologyTechnion‐Israel Institute of TechnologyHaifa3200003Israel
| | - Etienne Caron
- Department of BiologyInstitute of Molecular Systems BiologyETH Zurich8093, ZurichSwitzerland
| | - Joshua E. Elias
- Department of Chemical and Systems BiologyStanford UniversityStanfordCA94305USA
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesScience4LifeUtrecht UniversityPadualaan 83584CH UtrechtThe Netherlands
- Netherlands Proteomics CentrePadualaan 83584CH UtrechtThe Netherlands
| | - Miguel Marcilla
- Proteomics UnitSpanish National Biotechnology CentreMadrid28049Spain
| | - Fabio Marino
- Ludwig Institute for Cancer ResearchUniversity of Lausanne1066EpalingesSwitzerland
- Department of OncologyUniversity of Lausanne1015LausanneSwitzerland
| | - Markus Müller
- Vital ITSwiss Institute of Bioinformatics1015LausanneSwitzerland
| | - Bjoern Peters
- La Jolla Institute for Allergy and ImmunologyDivision of Vaccine DiscoveryLa JollaCA92037USA
| | - Anthony Purcell
- Infection and Immunity ProgramDepartment of Biochemistry and Molecular BiologyMonash Biomedicine Discovery InstituteMonash UniversityClayton3800Australia
| | - Alessandro Sette
- La Jolla Institute for Allergy and ImmunologyDivision of Vaccine DiscoveryLa JollaCA92037USA
- University of CaliforniaLa JollaCA92093USA
| | - Theo Sturm
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesScience4LifeUtrecht UniversityPadualaan 83584CH UtrechtThe Netherlands
- Netherlands Proteomics CentrePadualaan 83584CH UtrechtThe Netherlands
| | - Nicola Ternette
- The Jenner InstituteTarget Discovery Institute Mass Spectrometry LaboratoryUniversity of OxfordOxfordOX3 7FZUK
| | - Juan Antonio Vizcaíno
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)Wellcome Trust Genome CampusHinxtonCambridgeCB10 1SDUK
| | - Michal Bassani‐Sternberg
- Ludwig Institute for Cancer ResearchUniversity of Lausanne1066EpalingesSwitzerland
- Department of OncologyUniversity of Lausanne1015LausanneSwitzerland
| |
Collapse
|
8
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, van Riet E, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Vaccine antigens modulate the innate response of monocytes to Al(OH)3. PLoS One 2018; 13:e0197885. [PMID: 29813132 PMCID: PMC5973561 DOI: 10.1371/journal.pone.0197885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
9
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J Proteomics 2018; 175:144-155. [PMID: 29317357 DOI: 10.1016/j.jprot.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022]
Abstract
Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNβ signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F A Kersten
- Intravacc, Bilthoven, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
10
|
Schumacher FR, Delamarre L, Jhunjhunwala S, Modrusan Z, Phung QT, Elias JE, Lill JR. Building proteomic tool boxes to monitor MHC class I and class II peptides. Proteomics 2017; 17. [PMID: 27928884 DOI: 10.1002/pmic.201600061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/22/2023]
Abstract
Major histocompatibility complex Class I (MHCI) and Class II (MHCII) presented peptides powerfully modulate T cell immunity and play a vital role in generating effective anti-tumor and anti-viral immune responses in mammals. Characterizing these MHCI or MHCII presented peptides can help generate therapeutic treatments, afford information on T cell mediated biomarkers, provide insight into disease progression, and reduce adverse anti-drug side effects from engineered biotherapeutics. Here, we explore the tools and techniques commonly employed to discover both MHCI- and MHCII-presented peptides. We describe complementary strategies that enhance the characterization of these peptides and the informatics tools employed for both predicting and characterizing MHCI- and MHCII-presented epitopes. The evolution of methodologies for isolating MHC-presented peptides is discussed, as are the mass spectrometric workflows that can be employed for their characterization. We provide a perspective on where this field is headed, and how these tools may be applicable to the discovery and monitoring of epitopes in a variety of scenarios.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA, USA
| | - Suchit Jhunjhunwala
- Department of Bioinformatics & Computational Biology, Genentech Inc., San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., San Francisco, CA, USA
| | - Qui T Phung
- Department of Proteomics and Biological Resources, Genentech Inc., San Francisco, CA, USA
| | - Joshua E Elias
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, San Francisco, CA, USA
| | - Jennie R Lill
- Department of Proteomics & Biological Resources, Genentech Inc., San Francisco, CA, USA
| |
Collapse
|
11
|
Bastos PAD, da Costa JP, Vitorino R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J Proteomics 2016; 152:254-275. [PMID: 27888141 DOI: 10.1016/j.jprot.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health. Herein, we address this issue by carrying out the largest and most comprehensive global pooling and comparison of PTM peptides and proteins from bacterial species performed to date. Data was collected from 91 studies relating to PTM bacterial peptides or proteins identified by mass spectrometry-based methods. The present analysis revealed that there was a considerable overlap between PTMs across species, especially between acetylation and other PTMs, particularly succinylation. Phylogenetically closer species may present more overlapping phosphoproteomes, but environmental triggers also contribute to this proximity. PTMs among bacteria were found to be extremely versatile and diverse, meaning that the same protein may undergo a wide variety of different modifications across several species, but it could also suffer different modifications within the same species.
Collapse
Affiliation(s)
- Paulo André Dias Bastos
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Chemistry, University of Aveiro, Portugal
| | | | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Lorente E, Barriga A, Barnea E, Mir C, Gebe JA, Admon A, López D. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus. Mol Cell Proteomics 2016; 15:2141-51. [PMID: 27090790 DOI: 10.1074/mcp.m115.057356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/06/2022] Open
Abstract
Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design.
Collapse
Affiliation(s)
- Elena Lorente
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Carmen Mir
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - John A Gebe
- ¶Benaroya Research Institute, Seattle, WA 98101, USA
| | - Arie Admon
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daniel López
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain,
| |
Collapse
|
13
|
Mommen GPM, Marino F, Meiring HD, Poelen MCM, van Gaans-van den Brink JAM, Mohammed S, Heck AJR, van Els CACM. Sampling From the Proteome to the Human Leukocyte Antigen-DR (HLA-DR) Ligandome Proceeds Via High Specificity. Mol Cell Proteomics 2016; 15:1412-23. [PMID: 26764012 PMCID: PMC4824864 DOI: 10.1074/mcp.m115.055780] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Comprehensive analysis of the complex nature of the Human Leukocyte Antigen (HLA) class II ligandome is of utmost importance to understand the basis for CD4+ T cell mediated immunity and tolerance. Here, we implemented important improvements in the analysis of the repertoire of HLA-DR-presented peptides, using hybrid mass spectrometry-based peptide fragmentation techniques on a ligandome sample isolated from matured human monocyte-derived dendritic cells (DC). The reported data set constitutes nearly 14 thousand unique high-confident peptides, i.e. the largest single inventory of human DC derived HLA-DR ligands to date. From a technical viewpoint the most prominent finding is that no single peptide fragmentation technique could elucidate the majority of HLA-DR ligands, because of the wide range of physical chemical properties displayed by the HLA-DR ligandome. Our in-depth profiling allowed us to reveal a strikingly poor correlation between the source proteins identified in the HLA class II ligandome and the DC cellular proteome. Important selective sieving from the sampled proteome to the ligandome was evidenced by specificity in the sequences of the core regions both at their N- and C- termini, hence not only reflecting binding motifs but also dominant protease activity associated to the endolysosomal compartments. Moreover, we demonstrate that the HLA-DR ligandome reflects a surface representation of cell-compartments specific for biological events linked to the maturation of monocytes into antigen presenting cells. Our results present new perspectives into the complex nature of the HLA class II system and will aid future immunological studies in characterizing the full breadth of potential CD4+ T cell epitopes relevant in health and disease.
Collapse
Affiliation(s)
- Geert P M Mommen
- From the ‡Institute for Translational Vaccinology, P.O. Box 450, 3720 AL Bilthoven, the Netherlands; §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Fabio Marino
- §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; ¶Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo D Meiring
- From the ‡Institute for Translational Vaccinology, P.O. Box 450, 3720 AL Bilthoven, the Netherlands
| | - Martien C M Poelen
- ‖Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 AL Bilthoven, the Netherlands
| | | | - Shabaz Mohammed
- §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; ¶Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands; **Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX13TA, Oxford, United Kingdom; ‡‡Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, United Kingdom
| | - Albert J R Heck
- §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; ¶Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Cécile A C M van Els
- ‖Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 AL Bilthoven, the Netherlands;
| |
Collapse
|
14
|
Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection. Infect Immun 2015; 84:480-90. [PMID: 26597986 DOI: 10.1128/iai.01254-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.
Collapse
|
15
|
Marquez EA, Kane KP. Identities of P2 and P3 Residues of H-2Kb-Bound Peptides Determine Mouse Ly49C Recognition. PLoS One 2015; 10:e0131308. [PMID: 26147851 PMCID: PMC4493100 DOI: 10.1371/journal.pone.0131308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Ly49 receptors can be peptide selective in their recognition of MHC-I-peptide complexes, affording them a level of discrimination beyond detecting the presence or absence of specific MHC-I allele products. Despite this ability, little is understood regarding the properties that enable some peptides, when bound to MHC-I molecules, to support Ly49 recognition, but not others. Using RMA-S target cells expressing MHC-I molecules loaded with individual peptides and effector cells expressing the ectodomain of the inhibitory Ly49C receptor, we found that two adjacent amino acid residues, P2 and P3, both buried in the peptide binding groove of H-2Kb, determine mouse Ly49C specificity. If both are aliphatic residues, this is supportive. Whereas, small amino acids at P2 and aromatic amino acids at the P3 auxiliary anchor residue are detrimental to Ly49C recognition. These results resemble those with a rat Ly49 where the identity of a peptide anchor residue determines recognition, suggesting that dependence on specific peptide residues buried in the MHC-I peptide-binding groove may be fundamental to Ly49 peptide selectivity and recognition.
Collapse
Affiliation(s)
- Elsa A. Marquez
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin P. Kane
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Johnstone C, Lorente E, Barriga A, Barnea E, Infantes S, Lemonnier FA, David CS, Admon A, López D. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus. Mol Cell Proteomics 2015; 14:893-904. [PMID: 25635267 DOI: 10.1074/mcp.m114.045401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design.
Collapse
Affiliation(s)
- Carolina Johnstone
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Elena Lorente
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Susana Infantes
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - François A Lemonnier
- ¶Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, Paris Cedex 15, France
| | - Chella S David
- ‖Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Arie Admon
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daniel López
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain;
| |
Collapse
|
17
|
van Els CACM, Corbière V, Smits K, van Gaans-van den Brink JAM, Poelen MCM, Mascart F, Meiring HD, Locht C. Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome. Front Immunol 2014; 5:361. [PMID: 25157249 PMCID: PMC4127798 DOI: 10.3389/fimmu.2014.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here, we review Mtb protein PTMs and methods to assess their role in protective immunity against Mtb.
Collapse
Affiliation(s)
- Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Véronique Corbière
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | - Kaat Smits
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | | | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Francoise Mascart
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium ; Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | - Hugo D Meiring
- Institute for Translational Vaccinology , Bilthoven , Netherlands
| | - Camille Locht
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille , Lille , France ; INSERM U1019 , Lille , France ; CNRS UMR8204 , Lille , France ; Université Lille Nord de France , Lille , France
| |
Collapse
|
18
|
Testa JS, Philip R. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virol 2012; 7:1077-1088. [PMID: 23630544 DOI: 10.2217/fvl.12.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prophylactic and therapeutic vaccines against viral infections have advanced in recent years from attenuated live vaccines to subunit-based vaccines. An ideal prophylactic vaccine should mimic the natural immunity induced by an infection, in that it should generate long-lasting adaptive immunity. To complement subunit vaccines, which primarily target an antibody response, different methodologies are being investigated to develop vaccines capable of driving cellular immunity. T-cell epitope discovery is central to this concept. In this review, the significance of T-cell epitope-based vaccines for prophylactic and therapeutic applications is discussed. Additionally, methodologies for the discovery of T-cell epitopes, as well as recent developments in the clinical testing of these vaccines for various viral infections, are explained.
Collapse
Affiliation(s)
- James S Testa
- Immunotope, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | |
Collapse
|
19
|
Abstract
The function of natural killer (NK) cells is controlled by several activating and inhibitory receptors, including the family of killer-immunoglobulin-like receptors (KIRs). One distinctive feature of KIRs is the extensive number of various haplotypes generated by the gene content within the KIR gene locus as well as by highly polymorphic members of the KIR gene family, namely KIR3DL1/S1. Within the KIR3DL1/S1 gene locus, KIR3DS1 represents a conserved allelic variant and displays other unique features in comparison to the highly polymorphic KIR3DL1 allele. KIR3DS1 is present in all human populations and belongs to the KIR haplotype group B. KIR3DS1 encodes for an activating receptor featuring the characteristic short cytoplasmic tail and a positively charged residue within the transmembrane domain, which allows recruitment of the ITAM-bearing adaptor molecule DAP12. Although HLA class I molecules are thought to represent natural KIR ligands, and HLA-Bw4 molecules serve as ligands for KIR3DL1, the ligand for KIR3DS1 still needs to be identified. Despite the lack of formal evidence for an interaction of KIR3DS1 with HLA-Bw4-I80 or any other HLA class I subtype to date, a growing number of associations between the presence of KIR3DS1 and the outcome of viral infections have been described. Especially, the potential protective role of KIR3DS1 in combination with HLA-Bw4-I80 in the context of HIV-1 infection has been studied intensively. In addition, a number of recent studies have associated the presence or absence of KIR3DS1 with the occurrence and outcome of some malignancies, autoimmune diseases, and graft-versus-host disease (GVHD). In this review, we summarize the present knowledge regarding the characteristics of KIRD3S1 and discuss its role in various human diseases.
Collapse
Affiliation(s)
- Christian Körner
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University Charlestown, MA, USA
| | | |
Collapse
|
20
|
Fadda L, Körner C, Kumar S, van Teijlingen NH, Piechocka-Trocha A, Carrington M, Altfeld M. HLA-Cw*0102-restricted HIV-1 p24 epitope variants can modulate the binding of the inhibitory KIR2DL2 receptor and primary NK cell function. PLoS Pathog 2012; 8:e1002805. [PMID: 22807681 PMCID: PMC3395618 DOI: 10.1371/journal.ppat.1002805] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests an important role for Natural Killer (NK) cells in the control of HIV-1 infection. Recently, it was shown that NK cell-mediated immune pressure can result in the selection of HIV-1 escape mutations. A potential mechanism for this NK cell escape is the selection of HLA class I-presented HIV-1 epitopes that allow for the engagement of inhibitory killer cell immunoglobulin-like receptors (KIRs), notably KIR2DL2. We therefore investigated the consequences of sequence variations within HLA-Cw*0102-restricted epitopes on the interaction of HLA-Cw*0102 with KIR2DL2 using a large panel of overlapping HIV-1 p24 Gag peptides. 217 decameric peptides spanning the HIV-1 p24 Gag consensus sequence were screened for HLA-Cw*0102 stabilization by co-incubation with Cw*0102⁺/TAP-deficient T2 cells using a flow cytometry-based assay. KIR2DL2 binding was assessed using a KIR2DL2-IgG fusion construct. Function of KIR2DL2⁺ NK cells was flow cytometrically analyzed by measuring degranulation of primary NK cells after co-incubation with peptide-pulsed T2 cells. We identified 11 peptides stabilizing HLA-Cw*0102 on the surface of T2 cells. However, only one peptide (p24 Gag₂₀₉₋₂₁₈ AAEWDRLHPV) allowed for binding of KIR2DL2. Notably, functional analysis showed a significant inhibition of KIR2DL2⁺ NK cells in the presence of p24 Gag₂₀₉₋₂₁₈-pulsed T2 cells, while degranulation of KIR2DL2⁻ NK cells was not affected. Moreover, we demonstrated that sequence variations in position 7 of this epitope observed frequently in naturally occurring HIV-1 sequences can modulate binding to KIR2DL2. Our results show that the majority of HIV-1 p24 Gag peptides stabilizing HLA-Cw*0102 do not allow for binding of KIR2DL2, but identified one HLA-Cw*0102-presented peptide (p24 Gag₂₀₉₋₂₁₈) that was recognized by the inhibitory NK cell receptor KIR2DL2 leading to functional inhibition of KIR2DL2-expressing NK cells. Engagement of KIR2DL2 might protect virus-infected cells from NK cell-mediated lysis and selections of sequence polymorphisms that increase avidity to KIR2DL2 might provide a mechanism for HIV-1 to escape NK cell-mediated immune pressure.
Collapse
Affiliation(s)
- Lena Fadda
- Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America
| | - Swati Kumar
- Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America
| |
Collapse
|
21
|
Ma BJ, Kane KP. Recognition of class I MHC by a rat Ly49 NK cell receptor is dependent on the identity of the P2 anchor amino acid of bound peptide. THE JOURNAL OF IMMUNOLOGY 2011; 187:3267-76. [PMID: 21841133 DOI: 10.4049/jimmunol.1002809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Members of the rodent Ly49 receptor family control NK cell responsiveness and demonstrate allele specificity for MHC class I (MHC-I) ligands. For example, the rat Ly49i2 inhibitory NK cell receptor binds RT1-A1(c) but not other rat MHC class Ia or Ib molecules. RT1-A1(c) preferentially binds peptides with proline at the second, or P2, position, which defines it as an HLA-B7 supertype MHC-I molecule. Previously, our laboratory showed that mutations within the MHC-I supertype-defining B-pocket of RT1-A1(c) could lead to alterations in P2 anchor residues of the peptide repertoire bound by RT1-A1(c) and loss of recognition by Ly49i2. Although suggestive of peptide involvement, it was unclear whether the peptide P2 anchor residue or alteration of the RT1-A1(c) primary sequence influenced Ly49i2 recognition. Therefore, we directly investigated the role of the P2 anchor residue of RT1-A1(c)-bound peptides in Ly49i2 recognition. First, fluorescent multimers generated by refolding soluble recombinant RT1-A1(c) with individual synthetic peptides differing only at the P2 anchor residue were examined for binding to Ly49i2 NK cell transfectants. Second, cytotoxicity by Ly49i2-expressing NK cells toward RMA-S target cells expressing RT1-A1(c) bound with peptides that only differ at the P2 anchor residue was evaluated. Our results demonstrate that Ly49i2 recognizes RT1-A1(c) bound with peptides that have Pro or Val at P2, whereas little or no recognition is observed when RT1-A1(c) is complexed with peptide bearing Gln at P2. Thus, the identity of the P2 peptide anchor residue is an integral component of MHC-I recognition by Ly49i2.
Collapse
Affiliation(s)
- Brian J Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
22
|
Williamson NA, Reilly C, Tan CT, Ramarathinam SH, Jones A, Hunter CL, Rooney FR, Purcell AW. A novel strategy for the targeted analysis of protein and peptide metabolites. Proteomics 2011; 11:183-92. [PMID: 21204246 PMCID: PMC3403740 DOI: 10.1002/pmic.201000474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/12/2022]
Abstract
In many biological applications such as epitope discovery or drug metabolism studies, the detection of naturally processed exogenous proteins (e.g. vaccines or peptide therapeutics) and their metabolites is frequently complicated by the presence of a complex endogenous mixture of closely related or even identical compounds. We describe a method that incorporates stable isotope labelling of the protein of interest, allowing the selective screening of the intact molecule and all metabolites using a modified precursor ion scan. This method involves monitoring the low-molecular-weight fragment ions produced during MS/MS that distinguish isotopically labelled peptides from related endogenous compounds. All isotopically labelled peptides can be selected using this method. The technique makes no assumptions about the processed or post-translational state of the peptide, and hence can selectively screen out modified peptides that would otherwise be missed by single reaction monitoring approaches. This method does not replace single reaction monitoring or regular precursor scanning techniques; instead, it is a method that can be used when the assumptions required for the former two techniques cannot be predicted. The potential for this technique to be used in metabolism and pharmacokinetic experiments is discussed with specific examples looking at the metabolism of α-synuclein in serum and the brain.
Collapse
Affiliation(s)
- Nicholas A. Williamson
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Charles Reilly
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Chor-Teck Tan
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Sri-Harsha Ramarathinam
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010 Australia
| |
Collapse
|
23
|
Unusual viral ligand with alternative interactions is presented by HLA-Cw4 in human respiratory syncytial virus-infected cells. Immunol Cell Biol 2010; 89:558-65. [PMID: 20975736 DOI: 10.1038/icb.2010.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short viral antigens bound to human major histocompatibility complex (HLA) class I molecules are presented on infected cells. Vaccine development frequently relies on synthetic peptides to identify optimal HLA class I ligands. However, when natural peptides are analyzed, more complex mixtures are found. By immunoproteomics analysis, we identify in this study a physiologically processed HLA ligand derived from the human respiratory syncytial virus matrix protein that is very different from what was expected from studies with synthetic peptides. This natural HLA-Cw4 class I ligand uses alternative interactions to the anchor motifs previously described for its presenting HLA-Cw4 class I molecule. Finally, this octameric peptide shares its C-terminal core with the H-2D(b) nonamer ligand previously identified in the mouse model. These data have implications for the identification of antiviral cytotoxic T lymphocyte responses and for vaccine development.
Collapse
|
24
|
Hoppes R, Ekkebus R, Schumacher TN, Ovaa H. Technologies for MHC class I immunoproteomics. J Proteomics 2010; 73:1945-53. [DOI: 10.1016/j.jprot.2010.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/06/2010] [Accepted: 05/16/2010] [Indexed: 11/29/2022]
|
25
|
Fadda L, Borhis G, Ahmed P, Cheent K, Pageon SV, Cazaly A, Stathopoulos S, Middleton D, Mulder A, Claas FHJ, Elliott T, Davis DM, Purbhoo MA, Khakoo SI. Peptide antagonism as a mechanism for NK cell activation. Proc Natl Acad Sci U S A 2010; 107:10160-5. [PMID: 20439706 PMCID: PMC2890497 DOI: 10.1073/pnas.0913745107] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inhibition of natural killer (NK) cells is mediated by MHC class I receptors including the killer cell Ig-like receptor (KIR). We demonstrate that HLA-C binding peptides can function as altered peptide ligands for KIR and antagonize the inhibition mediated by KIR2DL2/KIR2DL3. Antagonistic peptides promote clustering of KIR at the interface of effector and target cells, but do not result in inhibition of NK cells. Our data show that, as for T cells, small changes in the peptide content of MHC class I can regulate NK cell activity.
Collapse
Affiliation(s)
| | | | | | | | - Sophie V. Pageon
- Cell and Molecular Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Angelica Cazaly
- Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom
| | | | - Derek Middleton
- Royal Liverpool University Hospital and School of Infection and Immunity, University of Liverpool, Liverpool L7 8XP, United Kingdom; and
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Frans H. J. Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Tim Elliott
- Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom
| | - Daniel M. Davis
- Cell and Molecular Medicine, Imperial College London, London W2 1PG, United Kingdom
| | | | | |
Collapse
|
26
|
Infantes S, Lorente E, Barnea E, Beer I, Cragnolini JJ, García R, Lasala F, Jiménez M, Admon A, López D. Multiple, non-conserved, internal viral ligands naturally presented by HLA-B27 in human respiratory syncytial virus-infected cells. Mol Cell Proteomics 2010; 9:1533-9. [PMID: 20081153 DOI: 10.1074/mcp.m900508-mcp200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL)-mediated death of virus-infected cells requires prior recognition of short viral peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on the surface of infected cells. The CTL response is critical for the clearance of human respiratory syncytial virus (HRSV) infection. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HRSV-infected cells, we identified nine naturally processed HLA-B27 ligands. The isolated peptides are derived from six internal, not envelope, proteins of the infective virus. The sequences of most of these ligands are not conserved between different HRSV strains, suggesting a mechanism to explain recurrent infection with virus of different HRSV antigenic subgroups. In addition, these nine ligands represent a significant fraction of the proteome of this virus, which is monitored by the same HLA class I allele. These data have implications for vaccine development as well as for analysis of the CTL response.
Collapse
Affiliation(s)
- Susana Infantes
- Unidad de Protemica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnson KL, Ovsyannikova IG, Mason CJ, Bergen HR, Poland GA. Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine 2009; 28:38-47. [PMID: 19822231 PMCID: PMC2787804 DOI: 10.1016/j.vaccine.2009.09.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 09/26/2009] [Accepted: 09/30/2009] [Indexed: 01/28/2023]
Abstract
An important approach for developing a safer smallpox vaccine is to identify naturally processed immunogenic vaccinia-derived peptides rather than live whole vaccinia virus. We used two-dimensional liquid chromatography coupled to mass spectrometry to identify 116 vaccinia peptides, encoded by 61 open reading frames, from a B-cell line (homozygous for HLA class I A*0201, B*1501, and C*03) after infection with vaccinia virus (Dryvax). Importantly, 68 of these peptides are conserved in variola, providing insight into the peptides that induce protection against smallpox. Twenty-one of these 68 conserved peptides were 11 amino acids long or longer, outside of the range of most predictive algorithms. Thus, direct identification of naturally processed and presented HLA peptides gives important information not provided by current computational methods for identifying potential vaccinia epitopes.
Collapse
Affiliation(s)
- Kenneth L Johnson
- Mayo Proteomics Research Center, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | | | | |
Collapse
|
28
|
Generation of in silico predicted coxsackievirus B3-derived MHC class I epitopes by proteasomes. Amino Acids 2009; 39:243-55. [PMID: 19997756 DOI: 10.1007/s00726-009-0434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/19/2009] [Indexed: 12/19/2022]
Abstract
Proteasomes are known to be the main suppliers of MHC class I (MHC-I) ligands. In an attempt to identify coxsackievirus B3 (CVB3)-MHC-I epitopes, a combined approach of in silico MHC-I/transporters associated with antigen processing (TAP)-binding and proteasomal cleavage prediction was applied. Accordingly, 13 potential epitopes originating from the structural and non-structural protein region of CVB3 were selected for further in vitro processing analysis by proteasomes. Mass spectrometry demonstrated the generation of seven of the 13 predicted MHC-I ligands or respective ligand precursors by proteasomes. Detailed processing analysis of three adjacent MHC-I ligands with partially overlapping sequences, i.e. VP2(273-281), VP2(284-292) and VP2(285-293), revealed the preferential generation predominantly of the VP2(285-293) epitope by immunoproteasomes due to altered cleavage site preferences. The VP2(285-293) peptide was identified to be a high affinity binder, rendering VP2(285-293) a likely candidate for CD8 T cell immunity in CVB3 infection. In conclusion, the concerted usage of different in silico prediction methods and in vitro epitope processing/presentation studies was supportive in the identification of CVB3 MHC-I epitopes.
Collapse
|
29
|
Meyer VS, Kastenmuller W, Gasteiger G, Franz-Wachtel M, Lamkemeyer T, Rammensee HG, Stevanovic S, Sigurdardottir D, Drexler I. Long-term immunity against actual poxviral HLA ligands as identified by differential stable isotope labeling. THE JOURNAL OF IMMUNOLOGY 2009; 181:6371-83. [PMID: 18941228 DOI: 10.4049/jimmunol.181.9.6371] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral peptides are presented by HLA class I on infected cells to activate CD8(+) T cells. Several immunogenic peptides have been identified indirectly by epitope prediction and screening of T cell responses to poxviral vectors, including modified vaccinia virus Ankara (MVA) currently being tested as recombinant or smallpox vaccines. However, for the development of optimal vaccination and immunomonitoring strategies, it is essential to characterize the actual viral HLA ligand repertoire of infected cells. We used an innovative approach to identify naturally processed MVA HLA ligands by differential HPLC-coupled mass spectrometry. We describe 12 viral peptides presented by HLA-A*0201 and 3 by HLA-B*0702. All HLA-A*0201 ligands participated in the memory response of MVA-immune donors, and several were immunogenic in Dryvax vaccinees. Eight epitopes were novel. Viral HLA ligand presentation and viral protein abundance did not correlate. All ligands were expressed early during the viral life cycle, and a pool of three of these mediated stronger protection against a lethal challenge in mice as compared with late epitopes. This highlights the reliability of the comparative mass spectrometry-based technique to identify relevant viral CD8(+) T cell epitopes for optimizing the monitoring of protective immune responses and the development of effective peptide-based vaccines.
Collapse
Affiliation(s)
- Verena S Meyer
- Department of Immunology, Institute for Cell Biology, University of Tubingen, Tubingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shui W, Gilmore S, Sheu L, Liu J, Keasling JD, Bertozzi CR. Quantitative proteomic profiling of host-pathogen interactions: the macrophage response to Mycobacterium tuberculosis lipids. J Proteome Res 2009; 8:282-9. [PMID: 19053526 PMCID: PMC2655317 DOI: 10.1021/pr800422e] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen possessing a complex mixture of cell wall lipids that are thought to modulate the activities of host macrophages. In this study, we employed two state-of-the-art quantitative proteomic approaches, metabolic labeling SILAC and chemical isobaric tagging iTRAQ, to study changes in macrophage protein expression in response to exposure to M. tuberculosis lipids. From a total of 1286 proteins identified, 463 were discovered by both isotope-labeling strategies at a high consistency, and the rest of proteins were detected by only one of the two approaches. Upon exposure to mycobacterial cell wall lipids, 166 macrophage proteins showed differential expression. These included proteins involved in the immune response, oxidation and reduction, and vesicle transport, as well as other cellular processes. The response of the macrophage proteome to M. tuberculosis lipids reflects the cell's innate defense mechanisms as well as lipid-induced processes that may benefit the pathogen.
Collapse
Affiliation(s)
- Wenqing Shui
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sarah Gilmore
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Leslie Sheu
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jun Liu
- Biological Products Division, Bayer HealthCare LLC, Berkeley, California 94701, USA
| | - Jay D. Keasling
- Departments of Chemical Engineering and Bioengineering, University of California, Berkeley, California 94720, USA
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Boog CJP. Principles of vaccination and possible development strategies for rational design. Immunol Lett 2008; 122:104-7. [PMID: 19100778 DOI: 10.1016/j.imlet.2008.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Historically, apart from hygiene, vaccination can be considered as one of the most successful accomplishments of public health in the 20th century. It has lead to some of the greater public health triumphs ever, including the eradication of naturally occurring smallpox and in the control of diseases such as polio. In addition there has been a significant reduction in disease burden imposed by measles, mumps, hepatitis, influenza, diphtheria, haemophilus influenza B and many other infections.
Collapse
Affiliation(s)
- Claire J P Boog
- The Netherlands Vaccine Institute (NVI), Unit Research and Development, Bilthoven, The Netherlands.
| |
Collapse
|
32
|
Heidema J, Lukens MV, van Maren WWC, van Dijk MEA, Otten HG, van Vught AJ, van der Werff DBM, van Gestel SJP, Semple MG, Smyth RL, Kimpen JLL, van Bleek GM. CD8+ T cell responses in bronchoalveolar lavage fluid and peripheral blood mononuclear cells of infants with severe primary respiratory syncytial virus infections. THE JOURNAL OF IMMUNOLOGY 2008; 179:8410-7. [PMID: 18056387 DOI: 10.4049/jimmunol.179.12.8410] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A protective role for CD8+ T cells during viral infections is generally accepted, but little is known about how CD8+ T cell responses develop during primary infections in infants, their efficacy, and how memory is established after viral clearance. We studied CD8+ T cell responses in bronchoalveolar lavage (BAL) samples and blood of infants with a severe primary respiratory syncytial virus (RSV) infection. RSV-specific CD8+ T cells with an activated effector cell phenotype: CD27+CD28+CD45RO+CCR7-CD38+HLA-DR+Granzyme B+CD127- could be identified in BAL and blood. A high proportion of these CD8+ T cells proliferated and functionally responded upon in vitro stimulation with RSV Ag. Thus, despite the very young age of the patients, a robust systemic virus-specific CD8+ T cell response was elicited against a localized respiratory infection. RSV-specific T cell numbers as well as the total number of activated effector type CD8+ T cells peaked in blood around day 9-12 after the onset of primary symptoms, i.e., at the time of recovery. The lack of a correlation between RSV-specific T cell numbers and parameters of disease severity make a prominent role in immune pathology unlikely, in contrast the T cells might be involved in the recovery process.
Collapse
Affiliation(s)
- Jojanneke Heidema
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. ACTA ACUST UNITED AC 2008; 205:595-610. [PMID: 18299400 PMCID: PMC2275383 DOI: 10.1084/jem.20071985] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Under steady-state conditions, major histocompatibility complex (MHC) I molecules are associated with self-peptides that are collectively referred to as the MHC class I peptide (MIP) repertoire. Very little is known about the genesis and molecular composition of the MIP repertoire. We developed a novel high-throughput mass spectrometry approach that yields an accurate definition of the nature and relative abundance of unlabeled peptides presented by MHC I molecules. We identified 189 and 196 MHC I-associated peptides from normal and neoplastic mouse thymocytes, respectively. By integrating our peptidomic data with global profiling of the transcriptome, we reached two conclusions. The MIP repertoire of primary mouse thymocytes is biased toward peptides derived from highly abundant transcripts and is enriched in peptides derived from cyclins/cyclin-dependent kinases and helicases. Furthermore, we found that approximately 25% of MHC I-associated peptides were differentially expressed on normal versus neoplastic thymocytes. Approximately half of those peptides are derived from molecules directly implicated in neoplastic transformation (e.g., components of the PI3K-AKT-mTOR pathway). In most cases, overexpression of MHC I peptides on cancer cells entailed posttranscriptional mechanisms. Our results show that high-throughput analysis and sequencing of MHC I-associated peptides yields unique insights into the genesis of the MIP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Marie-Hélène Fortier
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
34
|
Ovsyannikova IG, Johnson KL, Bergen HR, Poland GA. Mass spectrometry and peptide-based vaccine development. Clin Pharmacol Ther 2007; 82:644-52. [PMID: 17971823 DOI: 10.1038/sj.clpt.6100389] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of new vaccines against pathogens is an important part of infectious disease control. In the last decade, a variety of proteins giving rise to naturally processed pathogen-derived antigenic peptides, representing B-cell and T-cell epitopes, have been characterized. Numerous candidate vaccines consisting of synthetic peptides are being designed and evaluated, with encouraging results. In this context, the application of mass spectrometry based on the isolation and identification of pathogen-derived peptides from the human leukocyte antigen (HLA) molecules is a major focus of peptide-based vaccine development. Dramatic improvements have been made in mass spectrometer performance for peptide sequencing in terms of increased sensitivity, the ability to rapidly obtain data-directed tandem mass spectra, and the accuracy of mass measurement. This review focuses on the efforts to identify T-cell epitopes for viral and microbial pathogens for directed vaccine development.
Collapse
Affiliation(s)
- I G Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The effectiveness of T-cell-mediated immunotherapy of cancer depends on both an optimal immunostimulatory context of the therapy and the proper selection with respect to quality and quantity of the targeted tumor-associated antigens (TAA), and, more precisely, the T-cell epitopes contained in these tumor proteins. Our progressing insight in human leukocyte antigen (HLA) class I and class II antigen processing and presentation mechanisms has improved the prediction by reverse immunology of novel cytotoxic T lymphocyte and T-helper cell epitopes within known antigens. Computer algorithms that in silico predict HLA class I and class II binding, proteasome cleavage patterns and transporter associated with antigen processing translocation are now available to expedite epitope identification. The advent of genomics allows a high-throughput screening for tumor-specific transcripts and mutations, with that identifying novel shared and unique TAA. The increasing power of mass spectrometry and proteomics will lead to the direct identification from the tumor cell surface of numerous novel tumor-specific HLA class I and class II presented ligands. Together, the expanded repertoire of tumor-specific T-cell epitopes will enable more precise immunomonitoring and the development of effective epitope-defined adoptive T-cell transfer and multi-epitope-based vaccination strategies targeting epitopes derived from a wider diversity of TAA presented in a broader array of HLA molecules.
Collapse
Affiliation(s)
- J H Kessler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
36
|
Meiring HD, Soethout EC, de Jong APJM, van Els CACM. Targeted identification of infection-related HLA class I-presented epitopes by stable isotope tagging of epitopes (SITE). CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 16:16.3.1-16.3.20. [PMID: 18432987 DOI: 10.1002/0471142735.im1603s77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of peptides presented in human leukocyte antigen (HLA) class I molecules after viral infection is of strategic importance for immunology and vaccine development. A powerful strategy aimed at the rapid, unambiguous identification of naturally processed HLA class I-associated peptides, which are induced by viral infection, is presented here. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues for the human leukocyte antigen allele of interest. Subsequently, these cells are mixed with an equal number of noninfected cells, which are cultured in normal medium. Finally, peptides are acid-eluted from immunoprecipitated HLA molecules and subjected to two-dimensional nanoscale liquid chromatography-mass spectrometry analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules.
Collapse
Affiliation(s)
- H D Meiring
- Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - E C Soethout
- Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | | | | |
Collapse
|
37
|
Soethout EC, Meiring HD, de Jong APJM, van Els CACM. Identifying the epitope-specific T cell response to virus infections. Vaccine 2007; 25:3200-3. [PMID: 17276553 DOI: 10.1016/j.vaccine.2007.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Virus infection induces an adaptive immune response by T cells that is specific for defined viral epitopes. The epitope-specific analysis of T cells has become an important tool for investigating the anti viral response following infection or vaccination. In this review, the inherent differences in the procedures to identify the epitopes are discussed. Specifically, the screening of lymphocytes for epitope specific responses and the usage of mass spectrometry for sequencing of viral epitopes are evaluated.
Collapse
Affiliation(s)
- Ernst C Soethout
- Vaccine Research, Unit Research and Development, Netherlands Vaccine Institute, Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Marcilla M, Cragnolini JJ, López de Castro JA. Proteasome-independent HLA-B27 ligands arise mainly from small basic proteins. Mol Cell Proteomics 2007; 6:923-38. [PMID: 17308301 DOI: 10.1074/mcp.m600302-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the constitutive peptide ligands of HLA-B27, a molecule strongly associated with spondyloarthritis, are proteasome-independent. Stable isotope tagging, mass spectrometry, and epoxomicin-mediated inhibition were used to determine their percentage, structural features, and parental proteins. Of 104 molecular species examined, 29.8% were proteasome-independent, paralleling the level of HLA-B27 re-expression in the presence of epoxomicin after acid stripping. Proteasome-dependent and -independent ligands differed little in peptide motifs, flanking sequences, and cellular localization of the parental proteins. In contrast, whereas the former set arose from proteins whose size and isoelectric point distribution largely reflected those in the human proteome, proteasome-independent ligands, other than a few matching signal sequences, were almost totally derived from small (about 6-16.5 kDa) and basic proteins, which account for only 6.6% of the human proteome. Thus, a non-proteasomal proteolytic pathway with strong preference for small proteins is responsible for a significant fraction of the HLA-B27-bound peptide repertoire.
Collapse
Affiliation(s)
- Miguel Marcilla
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
| | | | | |
Collapse
|
39
|
Engelhard VH. The contributions of mass spectrometry to understanding of immune recognition by T lymphocytes. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 259:32-39. [PMID: 18167512 PMCID: PMC1920184 DOI: 10.1016/j.ijms.2006.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the last 15 years, the ability of mass spectrometry to analyze complex peptide mixtures and identify individual species has provided unprecedented insights into the repertoire of peptide antigens displayed by MHC molecules and recognized by T lymphocytes. These include: understanding the peptide binding specificity of MHC molecules; understanding of roles of different intracellular components of the antigen processing pathways in determining the peptide display; and identification of a large number of individual peptide antigens associated with infectious diseases, cancer, and transplant rejection that have provided the basis for new immunologically based therapies. This review will summarize the impact that the application of mass spectrometry has had on these advances, with particular attention to the contributions of Professor Donald Hunt and members of his laboratory, and point out the opportunities for future work.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Immunology Center and Department of Microbiology, University of Virginia School of Medicine, PO Box 801386, Charlottesville, VA USA 22908
| |
Collapse
|
40
|
Abstract
Researchers in many biological areas now routinely characterize proteins by mass spectrometry. Among the many formats for quantitative proteomics, stable-isotope labelling by amino acids in cell culture (SILAC) has emerged as a simple and powerful one. SILAC removes false positives in protein-interaction studies, reveals large-scale kinetics of proteomes and - as a quantitative phosphoproteomics technology - directly uncovers important points in the signalling pathways that control cellular decisions.
Collapse
Affiliation(s)
- Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|