1
|
Bury AG, Vincent AE, Turnbull DM, Actis P, Hudson G. Mitochondrial isolation: when size matters. Wellcome Open Res 2021; 5:226. [PMID: 33718619 PMCID: PMC7931255 DOI: 10.12688/wellcomeopenres.16300.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
Collapse
Affiliation(s)
- Alexander G Bury
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy E Vincent
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Paolo Actis
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
2
|
Bury AG, Vincent AE, Turnbull DM, Actis P, Hudson G. Mitochondrial isolation: when size matters. Wellcome Open Res 2020; 5:226. [PMID: 33718619 PMCID: PMC7931255 DOI: 10.12688/wellcomeopenres.16300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/31/2024] Open
Abstract
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
Collapse
Affiliation(s)
- Alexander G. Bury
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy E. Vincent
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Doug M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Paolo Actis
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
3
|
Escobar-Henriques M, Anton V. Mitochondrial Surveillance by Cdc48/p97: MAD vs. Membrane Fusion. Int J Mol Sci 2020; 21:E6841. [PMID: 32961852 PMCID: PMC7555132 DOI: 10.3390/ijms21186841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Cdc48/p97 is a ring-shaped, ATP-driven hexameric motor, essential for cellular viability. It specifically unfolds and extracts ubiquitylated proteins from membranes or protein complexes, mostly targeting them for proteolytic degradation by the proteasome. Cdc48/p97 is involved in a multitude of cellular processes, reaching from cell cycle regulation to signal transduction, also participating in growth or death decisions. The role of Cdc48/p97 in endoplasmic reticulum-associated degradation (ERAD), where it extracts proteins targeted for degradation from the ER membrane, has been extensively described. Here, we present the roles of Cdc48/p97 in mitochondrial regulation. We discuss mitochondrial quality control surveillance by Cdc48/p97 in mitochondrial-associated degradation (MAD), highlighting the potential pathologic significance thereof. Furthermore, we present the current knowledge of how Cdc48/p97 regulates mitofusin activity in outer membrane fusion and how this may impact on neurodegeneration.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany;
| | | |
Collapse
|
4
|
Islinger M, Wildgruber R, Völkl A. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles. Electrophoresis 2018; 39:2288-2299. [DOI: 10.1002/elps.201800187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim; University of Heidelberg; Heidelberg Germany
| | | | - Alfred Völkl
- Department of Medical Cell Biology; Institute of Anatomy; University of Heidelberg; Heidelberg Germany
| |
Collapse
|
5
|
He YC, Kong FZ, Fan LY, Wu JY, Liu XP, Li J, Sun Y, Zhang Q, Yang Y, Wu XJ, Xiao H, Cao CX. Preparation of intact mitochondria using free-flow isoelectric focusing with post-pH gradient sample injection for morphological, functional and proteomics studies. Anal Chim Acta 2017; 982:200-208. [DOI: 10.1016/j.aca.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022]
|
6
|
Investigation of corneal autoantibodies in horses with immune mediated keratitis (IMMK). Vet Immunol Immunopathol 2017; 187:48-54. [DOI: 10.1016/j.vetimm.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
|
7
|
Braun RJ, Westermann B. With the Help of MOM: Mitochondrial Contributions to Cellular Quality Control. Trends Cell Biol 2017; 27:441-452. [PMID: 28291566 DOI: 10.1016/j.tcb.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Mitochondria are essential organelles because they have key roles in cellular energy metabolism and many other metabolic pathways. Several quality control systems have evolved to ensure that dysfunctional mitochondria are either repaired or eliminated. The activities of these pathways are crucial for cellular health because they maintain functional mitochondria. In addition, the cytosolic ubiquitin-proteasome system (UPS) and the mitochondria-associated degradation pathway (MAD) share some of their core components, are functionally tightly interconnected, and mutually modulate their activities. Thus, the mitochondrial outer membrane (MOM) actively supports quality control systems in extramitochondrial compartments. Furthermore, mitochondrial quality surveillance systems also act on cytosolic or endoplasmic reticulum (ER) substrates and modulate immune responses. Therefore, mitochondria contribute to cellular quality control and homeostasis on several levels.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.
| | - Benedikt Westermann
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.
| |
Collapse
|
8
|
Novo P, Dell'Aica M, Jender M, Höving S, Zahedi RP, Janasek D. Integration of polycarbonate membranes in microfluidic free-flow electrophoresis. Analyst 2017; 142:4228-4239. [DOI: 10.1039/c7an01514c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A general difficulty in the miniaturization of free-flow electrophoresis relates to the need to separate electrodes and separation bed compartments.
Collapse
Affiliation(s)
- Pedro Novo
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V
- 44227 Dortmund
- Germany
| | - Margherita Dell'Aica
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V
- 44227 Dortmund
- Germany
| | - Matthias Jender
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V
- 44227 Dortmund
- Germany
| | - Stefan Höving
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V
- 44227 Dortmund
- Germany
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V
- 44227 Dortmund
- Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V
- 44227 Dortmund
- Germany
| |
Collapse
|
9
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Braun RJ. Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins. Front Mol Neurosci 2015; 8:8. [PMID: 25814926 PMCID: PMC4357299 DOI: 10.3389/fnmol.2015.00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023] Open
Abstract
Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
11
|
Yan J, Yang CZ, Zhang Q, Liu XP, Kong FZ, Cao CX, Jin XQ. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler†. J Sep Sci 2014; 37:3555-63. [DOI: 10.1002/jssc.201400770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 09/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Yan
- Key State Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai China
- Institute of Refrigeration and Cryogenics; School of Mechanical Engineering; Shanghai Jiao Tong University; Shanghai China
| | - Cheng-Zhang Yang
- Key State Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Qiang Zhang
- Key State Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Xiao-Ping Liu
- Key State Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Fan-Zhi Kong
- Key State Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Cheng-Xi Cao
- Key State Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Xin-Qiao Jin
- Institute of Refrigeration and Cryogenics; School of Mechanical Engineering; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
12
|
Schmitt S, Schulz S, Schropp EM, Eberhagen C, Simmons A, Beisker W, Aichler M, Zischka H. Why to compare absolute numbers of mitochondria. Mitochondrion 2014; 19 Pt A:113-23. [PMID: 24969531 DOI: 10.1016/j.mito.2014.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023]
Abstract
Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.
Collapse
Affiliation(s)
- Sabine Schmitt
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Sabine Schulz
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Eva-Maria Schropp
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Alisha Simmons
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Wolfgang Beisker
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology-Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
| |
Collapse
|
13
|
Yang CZ, Yan J, Zhang Q, Guo CG, Kong FZ, Cao CX, Fan LY, Jin XQ. Negative-pressure-induced collector for a self-balance free-flow electrophoresis device. J Sep Sci 2014; 37:1359-63. [PMID: 24648284 DOI: 10.1002/jssc.201400007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/10/2022]
Abstract
Uneven flow in free-flow electrophoresis (FFE) with a gravity-induced fraction collector caused by air bubbles in outlets and/or imbalance of the surface tension of collecting tubes would result in a poor separation. To solve these issues, this work describes a novel collector for FFE. The collector is composed of a self-balance unit, multisoft pipe flow controller, fraction collector, and vacuum pump. A negative pressure induced continuous air flow rapidly flowed through the self-balance unit, taking the background electrolyte and samples into the fraction collector. The developed collector has the following advantages: (i) supplying a stable and harmonious hydrodynamic environment in the separation chamber for FFE separation, (ii) effectively preventing background electrolyte and sample flow-back at the outlet of the chamber and improving the resolution, (iii) increasing the preparative scale of the separation, and (iv) simplifying the operation. In addition, the cost of the FFE device was reduced without using a multichannel peristaltic pump for sample collection. Finally, comparative FFE experiments on dyes, proteins, and cells were carried out. It is evident that the new developed collector could overcome the problems inherent in the previous gravity-induced self-balance collector.
Collapse
Affiliation(s)
- Cheng-Zhang Yang
- Laboratory of Analytical Biochemistry and Bioseparation, Key State Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yan J, Guo CG, Liu XP, Kong FZ, Shen QY, Yang CZ, Li J, Cao CX, Jin XQ. A simple and highly stable free-flow electrophoresis device with thermoelectric cooling system. J Chromatogr A 2013; 1321:119-26. [DOI: 10.1016/j.chroma.2013.10.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/01/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022]
|
15
|
Wildgruber R, Weber G, Wise P, Grimm D, Bauer J. Free-flow electrophoresis in proteome sample preparation. Proteomics 2013; 14:629-36. [PMID: 24123730 DOI: 10.1002/pmic.201300253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 02/01/2023]
Abstract
An aim of proteome research is to identify the entire complement of proteins expressed in defined cell types of humans, animals, plants, and microorganisms. The approach requires searching for low abundant or even rarely expressed proteins in many cell types, as well as the determination of the protein expression levels in subcellular compartments and organelles. In recent years, rather powerful MS technologies have been developed. At this stage of MS device development, it is of highest interest to purify intact cell types or isolate subcellular compartments, where the proteins of interest are originating from, which determine the final composition of a peptide mixture. Free-flow electrophoresis proved to be useful to prepare meaningful peptide mixtures because of its improved capabilities in particle electrophoresis and the enhanced resolution in protein separation. Sample preparation by free-flow electrophoresis mediated particle separation was preferentially performed for purification of either organelles and their subspecies or major protein complexes. Especially, the introduction of isotachophoresis and interval zone electrophoresis improved the purity of the gained analytes of interest. In addition, free-flow IEF proved to be helpful, when proteins of low solubility, obtained, e.g. from cell membranes, were investigated.
Collapse
|
16
|
Yin XY, Dong JY, Wang HY, Li S, Fan LY, Cao CX. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye. Electrophoresis 2013; 34:2185-92. [DOI: 10.1002/elps.201300104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/07/2013] [Accepted: 04/17/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao-Yang Yin
- Laboratory of Bio-Separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; P. R. China
| | | | - Hou-Yu Wang
- Laboratory of Bio-Separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; P. R. China
| | - Si Li
- Laboratory of Bio-Separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; P. R. China
| | - Liu-Yin Fan
- Laboratory of Bio-Separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; P. R. China
| | - Cheng-Xi Cao
- Laboratory of Bio-Separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; P. R. China
| |
Collapse
|
17
|
Schulz S, Schmitt S, Wimmer R, Aichler M, Eisenhofer S, Lichtmannegger J, Eberhagen C, Artmann R, Tookos F, Walch A, Krappmann D, Brenner C, Rust C, Zischka H. Progressive stages of mitochondrial destruction caused by cell toxic bile salts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2121-33. [PMID: 23685124 DOI: 10.1016/j.bbamem.2013.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/26/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022]
Abstract
The cell-toxic bile salt glycochenodeoxycholic acid (GCDCA) and taurochenodeoxycholic acid (TCDCA) are responsible for hepatocyte demise in cholestatic liver diseases, while tauroursodeoxycholic acid (TUDCA) is regarded hepatoprotective. We demonstrate the direct mitochondrio-toxicity of bile salts which deplete the mitochondrial membrane potential and induce the mitochondrial permeability transition (MPT). The bile salt mediated mechanistic mode of destruction significantly differs from that of calcium, the prototype MPT inducer. Cell-toxic bile salts initially bind to the mitochondrial outer membrane. Subsequently, the structure of the inner boundary membrane disintegrates. And it is only thereafter that the MPT is induced. This progressive destruction occurs in a dose- and time-dependent way. We demonstrate that GCDCA and TCDCA, but not TUDCA, preferentially permeabilize liposomes containing the mitochondrial membrane protein ANT, a process resembling the MPT induction in whole mitochondria. This suggests that ANT is one decisive target for toxic bile salts. To our knowledge this is the first report unraveling the consecutive steps leading to mitochondrial destruction by cell-toxic bile salts.
Collapse
Affiliation(s)
- Sabine Schulz
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
19
|
He D, Yang P. Proteomics of rice seed germination. FRONTIERS IN PLANT SCIENCE 2013; 4:246. [PMID: 23847647 PMCID: PMC3705172 DOI: 10.3389/fpls.2013.00246] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 06/19/2013] [Indexed: 05/18/2023]
Abstract
Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles, and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS) technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.
Collapse
Affiliation(s)
| | - Pingfang Yang
- *Correspondence: Pingfang Yang, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuchang Moshan, Wuhan, 430074, P. R. China e-mail:
| |
Collapse
|
20
|
Assessing heterogeneity of peroxisomes: isolation of two subpopulations from rat liver. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 909:83-96. [PMID: 22903710 DOI: 10.1007/978-1-61779-959-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Peroxisomes exhibit a heterogeneous morphological appearance in rat liver tissue. In this respect, the isolation and subsequent biochemical characterization of peroxisome species from different subcellular prefractions should help to solve the question of whether peroxisomes indeed diverge into functionally specialized subgroups in one tissue. As a means to address this question, we provide a detailed separation protocol for the isolation of peroxisomes from both the light (LM-Po) and the heavy (HM-Po) mitochondrial prefraction for their subsequent comparative analysis. Both isolation strategies rely on centrifugation in individually adapted Optiprep gradients. In case of the heavy mitochondrial fraction, free flow electrophoresis is appended as an additional separation step to yield peroxisomes of sufficient purity. In view of their morphology, peroxisomes isolated from both fractions are surrounded by a continuous single membrane and contain a gray-opaque inner matrix. However, beyond this overall similar appearance, HM-Po exhibit a smaller average diameter, float at lower density, and show a more negative average membrane charge when compared to LM-Po.
Collapse
|
21
|
Satori CP, Kostal V, Arriaga EA. Review on recent advances in the analysis of isolated organelles. Anal Chim Acta 2012; 753:8-18. [PMID: 23107131 PMCID: PMC3484375 DOI: 10.1016/j.aca.2012.09.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.
Collapse
Affiliation(s)
- Chad P Satori
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
22
|
Geng JZ, Shao J, Yang JH, Pang B, Cao CX, Fan LY. Reassemblable quasi-chip free-flow electrophoresis with simple heating dispersion for rapid micropreparation of trypsin in crude porcine pancreatin. Electrophoresis 2011; 32:3248-56. [DOI: 10.1002/elps.201100358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Dong YC, Shao J, Yin XY, Fan LY, Cao CX. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins. J Sep Sci 2011; 34:1683-91. [DOI: 10.1002/jssc.201100293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 01/22/2023]
|
24
|
Braun RJ, Sommer C, Carmona-Gutierrez D, Khoury CM, Ring J, Büttner S, Madeo F. Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem 2011; 286:19958-72. [PMID: 21471218 PMCID: PMC3103370 DOI: 10.1074/jbc.m110.194852] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 04/04/2011] [Indexed: 12/12/2022] Open
Abstract
Pathological neuronal inclusions of the 43-kDa TAR DNA-binding protein (TDP-43) are implicated in dementia and motor neuron disorders; however, the molecular mechanisms of the underlying cell loss remain poorly understood. Here we used a yeast model to elucidate cell death mechanisms upon expression of human TDP-43. TDP-43-expressing cells displayed markedly increased markers of oxidative stress, apoptosis, and necrosis. Cytotoxicity was dose- and age-dependent and was potentiated upon expression of disease-associated variants. TDP-43 was localized in perimitochondrial aggregate-like foci, which correlated with cytotoxicity. Although the deleterious effects of TDP-43 were significantly decreased in cells lacking functional mitochondria, cell death depended neither on the mitochondrial cell death proteins apoptosis-inducing factor, endonuclease G, and cytochrome c nor on the activity of cell death proteases like the yeast caspase 1. In contrast, impairment of the respiratory chain attenuated the lethality upon TDP-43 expression with a stringent correlation between cytotoxicity and the degree of respiratory capacity or mitochondrial DNA stability. Consistently, an increase in the respiratory capacity of yeast resulted in enhanced TDP-43-triggered cytotoxicity, oxidative stress, and cell death markers. These data demonstrate that mitochondria and oxidative stress are important to TDP-43-triggered cell death in yeast and may suggest a similar role in human TDP-43 pathologies.
Collapse
Affiliation(s)
- Ralf J. Braun
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
- Institute of Cell Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Cornelia Sommer
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Didac Carmona-Gutierrez
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Chamel M. Khoury
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Julia Ring
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Sabrina Büttner
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Frank Madeo
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| |
Collapse
|
25
|
Lee YH, Tan HT, Chung MCM. Subcellular fractionation methods and strategies for proteomics. Proteomics 2010; 10:3935-56. [DOI: 10.1002/pmic.201000289] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Islinger M, Eckerskorn C, Völkl A. Free-flow electrophoresis in the proteomic era: A technique in flux. Electrophoresis 2010; 31:1754-63. [DOI: 10.1002/elps.200900771] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Kostal V, Fonslow BR, Arriaga EA, Bowser MT. Fast determination of mitochondria electrophoretic mobility using micro free-flow electrophoresis. Anal Chem 2010; 81:9267-73. [PMID: 19908903 DOI: 10.1021/ac901508x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fast, continuous separation of mitochondria from rat myoblasts using micro free-flow electrophoresis (muFFE) with online laser-induced fluorescence detection (LIF) is reported. Mitochondrial electrophoretic profiles were acquired in less than 30 s. In comparison to macroscale FFE instruments, muFFE devices consumed approximately 100-fold less sample, used 10-fold less buffer, and required a 15-fold lower electric field. Mitochondrial electrophoretic mobility distributions measured using muFFE were compared to those measured with a capillary electrophoresis instrument with laser-induced fluorescence detection (CE-LIF). There was high similarity between the two distributions with CE-LIF distribution being offset by 1.8 x 10(-4) cm(2) V(-1) s(-1) with respect to the microFFE distribution. We hypothesize that this offset results from the differences in electric field strength used in the techniques. In comparison to CE-LIF, analysis of mitochondria using muFFE greatly decreased separation time and required less separation voltage, while maintaining low sample (125 nL) and buffer (250 microL) volumes. These features together with the potential for collecting separated organelle fractions for further characterization make microFFE a very attractive tool for the high-throughput analysis of organelle subpopulations as well as investigating the fundamentals of the electrophoretic mobility of biological particles.
Collapse
Affiliation(s)
- Vratislav Kostal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
28
|
Helbig AO, Heck AJR, Slijper M. Exploring the membrane proteome--challenges and analytical strategies. J Proteomics 2010; 73:868-78. [PMID: 20096812 DOI: 10.1016/j.jprot.2010.01.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 12/22/2022]
Abstract
The analysis of proteins in biological membranes forms a major challenge in proteomics. Despite continuous improvements and the development of more sensitive analytical methods, the analysis of membrane proteins has always been hampered by their hydrophobic properties and relatively low abundance. In this review, we describe recent successful strategies that have led to in-depth analyses of the membrane proteome. To facilitate membrane proteome analysis, it is essential that biochemical enrichment procedures are combined with special analytical workflows that are all optimized to cope with hydrophobic polypeptides. These include techniques for protein solubilization, and also well-matched developments in protein separation and protein digestion procedures. Finally, we discuss approaches to target membrane-protein complexes and lipid-protein interactions, as such approaches offer unique insights into function and architecture of cellular membranes.
Collapse
Affiliation(s)
- Andreas O Helbig
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
29
|
Tunica DG, Yin X, Sidibe A, Stegemann C, Nissum M, Zeng L, Brunet M, Mayr M. Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS. Proteomics 2009; 9:4991-6. [PMID: 19810032 DOI: 10.1002/pmic.200900065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human umbilical vein endothelial cells are the most widely used in vitro model for endothelial cells. Their secreted proteins, however, have not been comprehensively analysed so far. In this study, we accomplished to map the secretome of human umbilical vein endothelial cells by combining free-flow electrophoresis with nanoflow LC-MS/MS. This comprehensive analysis provides a basis for future comparative studies of protein secretion by endothelial cells in response to cardiovascular risk factors and is available on our website http://www.vascular-proteomics.com.
Collapse
Affiliation(s)
- David Guillen Tunica
- Pharmacology Laboratory (CDB), Hospital Clinic, IDIBAPS, Barcelona University, CIBERehd, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Braun RJ, Büttner S, Ring J, Kroemer G, Madeo F. Nervous yeast: modeling neurotoxic cell death. Trends Biochem Sci 2009; 35:135-44. [PMID: 19926288 DOI: 10.1016/j.tibs.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 01/23/2023]
Abstract
Neurodegeneration is characterized by the disease-specific loss of neuronal activity, culminating in the irreversible destruction of neurons. Neuronal cell death can proceed via distinct subroutines such as apoptosis and necrosis, but the underlying molecular mechanisms remain poorly understood. Saccharomyces cerevisiae is an established model for programmed cell death, characterized by distinct cell death pathways conserved from yeast to mammals. Recently, yeast models for several major classes of neurodegeneration, namely alpha-synucleinopathies, polyglutamine disorders, beta-amyloid diseases, tauopathies, and TDP-43 proteinopathies, have been established. Heterologous expression of the human proteins implicated in these disorders has unraveled important insights in their detrimental function, pointing to ways in which yeast might advance the mechanistic dissection of cell death pathways relevant for human neurodegeneration.
Collapse
Affiliation(s)
- Ralf J Braun
- Institute of Molecular Biosciences, Department of Microbiology, Karl-Franzens-University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
31
|
Islinger M, Li KW, Loos M, Liebler S, Angermüller S, Eckerskorn C, Weber G, Abdolzade A, Völkl A. Peroxisomes from the Heavy Mitochondrial Fraction: Isolation by Zonal Free Flow Electrophoresis and Quantitative Mass Spectrometrical Characterization. J Proteome Res 2009; 9:113-24. [DOI: 10.1021/pr9004663] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Ka Wan Li
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Maarten Loos
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Sven Liebler
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Sabine Angermüller
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Christoph Eckerskorn
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Gerhard Weber
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Afsaneh Abdolzade
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Alfred Völkl
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| |
Collapse
|
32
|
Kasicka V. From micro to macro: conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale. Electrophoresis 2009; 30 Suppl 1:S40-52. [PMID: 19517515 DOI: 10.1002/elps.200900156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This invited contribution in the special issue of Electrophoresis published in celebration of the 30th Anniversary of this journal reflects the impact of our milestone paper [Prusík, Z., Kasicka, V., Mudra, P., Stepánek, J., Smékal, O., Hlavácek, J., Electrophoresis 1990, 11, 932-936] in the area of conversion of microscale analytical and micropreparative CE separations of biomolecules and bioparticles into (macro)preparative free-flow electrophoresis (FFE) scale on the basis of a correlation between CE and FFE methods. In addition to the survey of advances in the relatively narrow field of CE-FFE correlation and CE-FFE conversion, a comprehensive review of the recent developments of micropreparative CE and (macro)preparative FFE techniques is also presented and applications of these techniques to micro- and (macro)preparative separations and purifications of biomolecules and bioparticles are demonstrated. The review covers the period since the year of publication of the above paper, i.e. ca. the last 20 years.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
33
|
Abstract
Mitochondria are essential organelles in cellular metabolism. These organelles are bounded by two membranes, the outer and inner membrane. Especially the inner membrane comprises a high content of proteins, for example, the protein complexes of the respiratory chain. High-resolution separation and analysis of such membrane proteins, for example, by two-dimensional gel electrophoresis (2-DE), is hampered by their hydrophobicity and tendency for aggregation. Here, we describe the separation of mitochondrial membrane proteins of Saccharomyces cerevisiae by 16-benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate polyacrylamide gel electrophoresis (16-BAC/SDS-PAGE). This method enables the separation of membrane proteins owing to the solubilizing power of the ionic detergents 16-BAC and SDS, respectively. Mitochondria were isolated from yeast cultures by differential centrifugation and were further purified by free flow electrophoresis (FFE) in zone-electrophoretic mode (ZE). Subsequently, membrane proteins from ZE-FFE-purified mitochondria were enriched by carbonate extraction and subjected to 16-BAC/SDS-PAGE. The resulting protein spot patterns were visualized by a highly sensitive fluorescence stain with ruthenium-II-bathophenantroline disulfonate chelate (RuBP), and by colloidal Coomassie staining. Proteins were identified by Maldi-Tof mass spectrometry and peptide mass fingerprinting.
Collapse
|
34
|
Yan W, Aebersold R, Raines EW. Evolution of organelle-associated protein profiling. J Proteomics 2009; 72:4-11. [PMID: 19110081 PMCID: PMC2680700 DOI: 10.1016/j.jprot.2008.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/17/2008] [Accepted: 11/22/2008] [Indexed: 12/22/2022]
Abstract
Identification of the protein constituents of cell organelles forms the basis for studies to define the roles of specific proteins in organelle structure and functions. Over the past decade, the use of mass spectrometry-based proteomics has dissected various organelles and allowed the association of many novel proteins with particular organelles. This review chronicles the evolution of organelle proteomics technology, and discusses how many limitations, such as organelle heterogeneity and purity, can be avoided with recently developed quantitative profiling approaches. Although many challenges remain, quantitative profiling of organelles holds the promise to begin to address the complex and dynamic shuttling of proteins among organelles that will be critical for application of this advanced technology to disease-based changes in organelle function.
Collapse
Affiliation(s)
- Wei Yan
- Institute for Systems Biology, Seattle, WA 98103, USA
- University of Washington, Department of Pathology, Seattle, WA 98104, USA
| | - Ruedi Aebersold
- Institute for Systems Biology, Seattle, WA 98103, USA
- Institute of Molecular Systems Biology, ETH Zurich and Faculty of Science, University of Zurich, 8093 Zurich, Switzerland
| | - Elaine W. Raines
- University of Washington, Department of Pathology, Seattle, WA 98104, USA
| |
Collapse
|
35
|
Jamai A, Salomé PA, Schilling SH, Weber APM, McClung CR. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. THE PLANT CELL 2009; 21:595-606. [PMID: 19223513 PMCID: PMC2660619 DOI: 10.1105/tpc.108.063289] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The dual affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase for O(2) and CO(2) results in the net loss of fixed carbon and energy in a process termed photorespiration. The photorespiratory cycle is complex and occurs in three organelles, chloroplasts, peroxisomes, and mitochondria, which necessitates multiple steps to transport metabolic intermediates. Genetic analysis has identified a number of mutants exhibiting photorespiratory chlorosis at ambient CO(2), including several with defects in mitochondrial serine hydroxymethyltransferase (SHMT) activity. One class of mutants deficient in SHMT1 activity affects SHM1, which encodes the mitochondrial SHMT required for photorespiration. In this work, we describe a second class of SHMT1-deficient mutants defective in a distinct gene, GLU1, which encodes Ferredoxin-dependent Glutamate Synthase (Fd-GOGAT). Fd-GOGAT is a chloroplastic enzyme responsible for the reassimilation of photorespiratory ammonia as well as for primary nitrogen assimilation. We show that Fd-GOGAT is dual targeted to the mitochondria and the chloroplasts. In the mitochondria, Fd-GOGAT interacts physically with SHMT1, and this interaction is necessary for photorespiratory SHMT activity. The requirement of protein-protein interactions and complex formation for photorespiratory SHMT activity demonstrates more complicated regulation of this crucial high flux pathway than anticipated.
Collapse
Affiliation(s)
- Aziz Jamai
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
36
|
Horká M, Horký J, Matoušková H, Šlais K. Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues. J Chromatogr A 2009; 1216:1019-24. [DOI: 10.1016/j.chroma.2008.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/16/2022]
|
37
|
Nissum M, Foucher AL. Analysis of human plasma proteins: a focus on sample collection and separation using free-flow electrophoresis. Expert Rev Proteomics 2008; 5:571-87. [PMID: 18761468 DOI: 10.1586/14789450.5.4.571] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to ease of accessibility, plasma has become the sample of choice for proteomics studies directed towards biomarker discovery intended for use in diagnostics, prognostics and even in theranostics. The result of these extensive efforts is a long list of potential biomarkers, very few of which have led to clinical utility. Why have so many potential biomarkers failed validation? Herein, we address certain issues encountered, which complicate biomarker discovery efforts originating from plasma. The advantages of stabilizing the sample at collection by the addition of protease inhibitors are discussed. The principles of free-flow electrophoresis (FFE) separation are provided together with examples applying to various studies. Finally, particular attention is given to plasma or serum analysis using multidimensional separation strategies into which the FFE is incorporated. The advantages of using FFE separation in these workflows are discussed.
Collapse
Affiliation(s)
- Mikkel Nissum
- BD Diagnostics, Am Klopferspitz 19a, D-82152 Martinsried, Germany.
| | | |
Collapse
|
38
|
Gauthier DJ, Lazure C. Complementary methods to assist subcellular fractionation in organellar proteomics. Expert Rev Proteomics 2008; 5:603-17. [PMID: 18761470 DOI: 10.1586/14789450.5.4.603] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organellar proteomics aims to describe the full complement of proteins of subcellular structures and organelles. When compared with whole-cell or whole-tissue proteomes, the more focused results from subcellular proteomic studies have yielded relatively simpler datasets from which biologically relevant information can be more easily extracted. In every proteomic study, the quality and purity of the biological sample to be investigated is of the utmost importance for a successful analysis. In organellar proteomics, one of the most crucial steps in sample preparation is the initial subcellular fractionation procedure by which the enriched preparation of the sought-after organelle is obtained. In nearly all available organellar proteomic studies, the method of choice relies on one or several rounds of density-based gradient centrifugation. Although this method has been recognized for decades as yielding relatively pure preparations of organelles, recent technological advances in protein separation and identification can now reveal even minute amounts of contamination, which in turn can greatly complicate data interpretation. The scope of this review focuses on recently published innovative complementary or alternative methods to perform subcellular fractionation, which can further refine the way in which sample preparation is accomplished in organellar proteomics.
Collapse
Affiliation(s)
- Daniel J Gauthier
- Neuropeptides Structure and Metabolism Research Unit, Institut de Recherches Cliniques de Montréal, University of Montréal, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7.
| | | |
Collapse
|
39
|
Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in gram-negative bacterial outer membrane vesicles. MASS SPECTROMETRY REVIEWS 2008; 27:535-555. [PMID: 18421767 DOI: 10.1002/mas.20175] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gram-negative bacteria constitutively secrete outer membrane vesicles (OMVs) into the extracellular milieu. Recent research in this area has revealed that OMVs may act as intercellular communicasomes in polyspecies communities by enhancing bacterial survival and pathogenesis in hosts. However, the mechanisms of vesicle formation and the pathophysiological roles of OMVs have not been clearly defined. While it is obvious that mass spectrometry-based proteomics offers great opportunities for improving our knowledge of bacterial OMVs, limited proteomic data are available for OMVs. The present review aims to give an overview of the previous biochemical, biological, and proteomic studies in the emerging field of bacterial OMVs, and to give future directions for high-throughput and comparative proteomic studies of OMVs that originate from diverse Gram-negative bacteria under various environmental conditions. This article will hopefully stimulate further efforts to construct a comprehensive proteome database of bacterial OMVs that will help us not only to elucidate the biogenesis and functions of OMVs but also to develop diagnostic tools, vaccines, and antibiotics effective against pathogenic bacteria.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Choi CW, Hong YS, Kim SI. Application of free-flow electrophoresis/2-dimentional gel electrophoresis for fractionation and characterization of native proteome of Pseudomonas putida KT2440. J Microbiol 2008; 46:448-55. [DOI: 10.1007/s12275-008-0063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
|
41
|
Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death — from yeast apoptosis to human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1418-35. [DOI: 10.1016/j.bbamcr.2008.01.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
42
|
Zischka H, Larochette N, Hoffmann F, Hamöller D, Jägemann N, Lichtmannegger J, Jennen L, Müller-Höcker J, Roggel F, Göttlicher M, Vollmar AM, Kroemer G. Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition. Anal Chem 2008; 80:5051-8. [PMID: 18510346 DOI: 10.1021/ac800173r] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A pathological increase of the permeability of the mitochondrial membranes may culminate in the irreversible rupture of the mitochondrial outer membrane. Such a permeability transition is lethal because it results in the release of death-inducing molecules from mitochondria and/or metabolic failure. Current methods to assess this outer membrane damage are mostly indirect or scarcely representative of the overall mitochondrial population. Here we present an analytical and preparative approach using free flow electrophoresis to directly distinguish rat liver mitochondria that have undergone the permeability transition from unaffected organelles or from organelles that are damaged to a minor degree. Mitochondrial populations, which considerably differ in outer membrane integrity or cytochrome c content, were separated by this means. We further show that the relative abundance of each population depends on the dose of the permeability transition inducer and the duration of the treatment time. Finally, we have employed this approach to investigate the impairment of mitochondria that were isolated from livers subjected to ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Hans Zischka
- Institute of Toxicology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Oberschleissheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gloeckner CJ, Boldt K, Schumacher A, Roepman R, Ueffing M. A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 2008; 7:4228-34. [PMID: 17979178 DOI: 10.1002/pmic.200700038] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Isolation and dissection of native multiprotein complexes is a central theme in functional genomics. The development of the tandem affinity purification (TAP) tag has enabled an efficient and large-scale purification of native protein complexes. However, the TAP tag features a size of 21 kDa and requires time consuming cleavage. By combining a tandem Strep-tag II with a FLAG-tag we were able to reduce the size of the TAP (SF-TAP) tag to 4.6 kDa. Both moieties have a medium affinity and avidity to their immobilised binding partners. This allows the elution of SF-tagged proteins under native conditions using desthiobiotin in the first step and the FLAG octapeptide in the second step. The SF-TAP protocol represents an efficient, fast and straightforward purification of protein complexes from mammalian cells within 2.5 h. The power of this novel method is demonstrated by the purification of Raf associated protein complexes from HEK293 cells and subsequent analysis of their protein interaction network by dissection of interaction patterns from the Raf binding partners MEK1 and 14-3-3.
Collapse
|
44
|
Owsianowski E, Walter D, Fahrenkrog B. Negative regulation of apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1303-10. [PMID: 18406356 DOI: 10.1016/j.bbamcr.2008.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 12/29/2022]
Abstract
In recent years, yeast has been proven to be a useful model organism for studying programmed cell death. It not only exhibits characteristic markers of apoptotic cell death when heterologous inducers of apoptosis are expressed or when treated with apoptosis inducing drugs such as hydrogen peroxide (H(2)O(2)) or acetic acid, but contains homologues of several components of the apoptotic machinery identified in mammals, flies and nematodes, such as caspases, apoptosis inducing factor (AIF), Omi/HtrA2 and inhibitor-of-apoptosis proteins (IAPs). In this review, we focus on the role of negative regulators of apoptosis in yeasts. Bir1p is the only IAP protein in Saccharomyces cerevisiae and has long been known to play a role in cell cycle progression by acting as kinetochore and chromosomal passenger protein. Recent data established Bir1p's protective function against programmed cell death induced by H(2)O(2) treatment and in chronological ageing. Other factors that have a direct or indirect influence on intracellular levels of reactive oxygen species (ROS) and thus lead to apoptosis if they are misregulated or non-functional will be discussed.
Collapse
Affiliation(s)
- Esther Owsianowski
- ME Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
45
|
Eubel H, Lee CP, Kuo J, Meyer EH, Taylor NL, Millar AH. Free-flow electrophoresis for purification of plant mitochondria by surface charge. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:583-94. [PMID: 17727614 DOI: 10.1111/j.1365-313x.2007.03253.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sample purity is the key for a successful in-depth analysis of any given subcellular proteome. The suitability of free-flow electrophoresis to assist conventional, centrifugation-based techniques in the preparation of plant mitochondria from green and non-green tissue was assessed by various means, including functional assays, immunoblots, electron microscopy and differential gel electrophoresis. Results indicated a significant increase in purity of the mitochondrial samples, highlighted specific contaminants previously reported as mitochondrial proteins, and also pointed to new means for separating plastids and peroxisomes from mitochondria in plant organellar extracts by exploiting differences in surface charge. This approach has the potential to allow a deeper and more comprehensive investigation of the Arabidopsis organellar proteomes, by providing a second dimension of separation based on surface charge in addition to conventional centrifugation purification protocols relying on size and density.
Collapse
Affiliation(s)
- Holger Eubel
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, M316, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Braun RJ, Kinkl N, Beer M, Ueffing M. Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 2007; 389:1033-45. [PMID: 17680235 DOI: 10.1007/s00216-007-1514-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 01/26/2023]
Abstract
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.
Collapse
Affiliation(s)
- Ralf J Braun
- GSF-National Research Center for Environment and Health, Institute of Human Genetics, Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Anna E Speers
- Department of Pharmacology, University of Colorado School of Medicine, P.O. Box 6511, MS 8303, Aurora, Colorado 80045, USA
| | | |
Collapse
|
48
|
Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, Gomes AV, Ping P. Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics 2007; 6:2021-31. [PMID: 17660509 DOI: 10.1074/mcp.m700187-mcp200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome-dependent protein degradation participates in multiple essential cellular processes. Modulation of proteasomal activities may alter cardiac function and disease phenotypes. However, cardiovascular studies reported thus far have yielded conflicting results. We hypothesized that a contributing factor to the contradicting literature may be caused by existing proteasome heterogeneity in the myocardium. In this investigation, we provide the very first direct demonstration of distinct proteasome subpopulations in murine hearts. The cardiac proteasome subpopulations differ in their molecular compositions and proteolytic activities. Furthermore they were distinguished from proteasome subpopulations identified in murine livers. The study was facilitated by the development of novel protocols for in-solution isoelectric focusing of multiprotein complexes in a laminar flow that support an average resolution of 0.04 pH units. Utilizing these protocols, the majority of cardiac proteasome complexes displayed an isoelectric point of 5.26 with additional subpopulations focusing in the range from pH 5.10 to 5.33. In contrast, the majority of hepatic 20 S proteasomes had a pI of 5.05 and focused from pH 5.01 to 5.29. Importantly proteasome subpopulations degraded specific model peptides with different turnover rates. Among cardiac subpopulations, proteasomes with an approximate pI of 5.21 showed 40% higher trypsin-like activity than those with pI 5.28. Distinct proteasome assembly may be a contributing factor to variations in proteolytic activities because proteasomes with pI 5.21 contained 58% less of the inducible subunit beta 2i compared with those with pI 5.28. In addition, dephosphorylation of 20 S proteasomes demonstrated that besides molecular composition posttranslational modifications largely contribute to their pI values. These data suggest the possibility of mixed 20 S proteasome assembly, a departure from the currently hypothesized two subpopulations: constitutive and immuno forms. The identification of multiple distinct proteasome subpopulations in heart provides key mechanistic insights for achieving selective and targeted regulation of this essential protein degradation machinery. Thus, proteasome subpopulations may serve as novel therapeutic targets in the myocardium.
Collapse
Affiliation(s)
- Oliver Drews
- Department of Physiology, Division of Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
50
|
Abstract
Mitochondria are not only important for the energetic status of the cell, but are also the fatal organelles deciding about cellular life and death. Complex mitochondrial features decisive for cell death execution in mammals are present and functional in yeast: AIF and cytochrome c release to the cytosol, mitochondrial fragmentation as well as mitochondrial hyperpolarisation followed by an oxidative burst, and breakdown of mitochondrial membrane potential. The easy accessibility of mitochondrial manipulations such as repression of respiration by growing yeast on glucose or deletion of mitochondrial DNA (rho(0)) on the one hand and the unique ability of yeast cells to grow on non-fermentable carbon sources by switching on mitochondrial respiration on the other hand have made yeast an excellent tool to delineate the necessity for mitochondria in cell death execution. Yeast research indicates that the connection between mitochondria and apoptosis is intricate, as abrogation of mitochondrial function can be either deleterious or beneficial for the cell depending on the specific context of the death scenario. Surprisingly, mitochondrion dependent yeast apoptosis currently helps to understand the aetiology (or the complex biology) of lethal cytoskeletal alterations, ageing and neurodegeneration. For example, mutation of mitochondrial superoxide dismutase or CDC48/VCP mutations, both implicated in several neurodegenerative disorders, are associated with mitochondrial impairment and apoptosis in yeast.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, Universitätsplatz 2, University of Graz, 8010 Graz, Austria
| | | | | | | |
Collapse
|