1
|
Serna S, Comino N, Reichardt NC, López-Gallego F. Preparative Isolation of N-Glycans from Natural Sources Mediated by a Deglycosylating Heterogeneous Biocatalyst in Flow. CHEMSUSCHEM 2025; 18:e202402346. [PMID: 39817794 DOI: 10.1002/cssc.202402346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Efficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability. In this work, we develop a PNGaseF heterogeneous biocatalyst for the preparative isolation of N-glycans from natural sources. By controlling the immobilization conditions, 100-51 % of offered PNGaseF is immobilized on aldehyde-functionalized agarose porous microbeads through distinct protein orientations, achieving different performances. The enzyme orientation through the N-terminus provides the best activity/operational stability balance, being 20 % more efficient than that randomly oriented. This active and stable heterogeneous biocatalyst eases its application in a packed bed reactor (PBR) for continuous release of free N-glycans from a model glycoprotein. This PBR processes 1 g of ovalbumin from chicken egg white to isolate 95 % of its N-glycans upon operating the PBR for 7 days. Finally, by tuning the flow rate, we can control the profile of N-glycans isolated due to different enzyme kinetics for the deglycosylation reactions. In-line methodologies to isolate N-glycans open new paths for more sustainable protocols to prepare relevant glycans.
Collapse
Affiliation(s)
- Sonia Serna
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Natalia Comino
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Niels C Reichardt
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
2
|
Rangel-Angarita V, Chongsaritsinsuk J, Mahoney KE, Kim LM, Chen RJ, Appah-Sampong AA, Tran IP, Steigmeyer AD, Hollenhorst MA, Malaker SA. PNGaseF-Generated N-Glycans Adduct onto Peptides in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:542-552. [PMID: 39938005 DOI: 10.1021/jasms.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Glycoproteomics has recently increased in popularity due to instrumental and methodological advances. That said, O-glycoproteomic analysis is still challenging for various reasons, including signal suppression, search algorithm limitations, and co-occupancy of N- and O-glycopeptides. To decrease sample complexity and simplify analysis, most O-glycoproteomic workflows include PNGaseF digestion, which is an endoglycosidase that removes most N-glycan structures. Here, we report that N-glycans released from PNGaseF digestion were identified during data acquisition and hampered detection of O-glycopeptides. Importantly, we noted instances where free glycans adducted to unmodified peptides in the gas phase and were misidentified by search algorithms as O-glycopeptides. We confirmed the presence of free glycans in other experiments performed in our laboratory, as well as from data generated by other groups. To overcome this limitation, we demonstrated that released N-glycans can be removed using a molecular weight cut off filter prior to (glyco)protease digestion, which improves O-glycoproteomic coverage.
Collapse
Affiliation(s)
| | | | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Lea M Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Ryan J Chen
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Akua A Appah-Sampong
- Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Boston, Massachusetts 02115, United States
| | - Isabella P Tran
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | | | - Marie A Hollenhorst
- Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Boston, Massachusetts 02115, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
3
|
Kurogochi M, Suzuki C, Hanamatsu H, Furukawa JI. Advances in total glycomic analysis including sialylated sub-glycan isomers by SALSA method. BBA ADVANCES 2025; 7:100144. [PMID: 40094062 PMCID: PMC11909462 DOI: 10.1016/j.bbadva.2025.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
All eukaryotic cell surfaces are coated with various types of glycans, which are essential molecules in biological events. In this review, we summarize recent integrated glycomics studies using various biological samples. We introduce an improved sialic acid linkage-specific alkylamidation (SALSA) method for sialylated glycan analysis and an automated glycosphingolipid-glycan preparation system for large-scale glycomic analysis of human plasma/serum. Finally, we explain the importance of integrated glycomics of glycoconjugates through total glycomic analysis of human serum and mouse brain tissue, and discuss prospects for exploring glycans as effective biomarkers of biological phenomena.
Collapse
Affiliation(s)
- Masaki Kurogochi
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
| | - Chiharu Suzuki
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
| | - Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
4
|
Furukawa S, Fukami Y, Hanamatsu H, Yokota I, Furukawa JI, Hane M, Kitajima K, Sato C, Hiraga K, Satake Y, Yagi S, Koike H, Katsuno M. Serum glycobiomarkers for chronic inflammatory demyelinating polyneuropathy. Eur J Neurol 2025; 32:e70023. [PMID: 39722472 DOI: 10.1111/ene.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND This study conducted a comprehensive glycan analysis of serum to determine how glycan biomarkers are associated with the pathophysiology of chronic inflammatory demyelinating polyneuropathy (CIDP) and the effects of its treatment. METHODS We comparatively analyzed N- and O-glycans in the pretreatment serum of 27 treatment-naïve patients with typical CIDP and 20 age- and sex-matched healthy controls (HC) using mass spectrometry. We determined the association between clinical parameters and glycans. The serum glycan and neurofilament light-chain (NfL) levels were assessed at the baseline, and treatment response was defined according to the degree of improvement in the modified Rankin scale 12 weeks after the first dose of intravenous immunoglobulin (IVIg). RESULTS Compared with the HC, the CIDP group demonstrated significantly lower levels of serum total N-glycans (CIDP, median 973.3 [IQR 836.2-1131.3] pmol/μL; HC, 1125.0 [1005.0-1236.2] pmol/μL; p < 0.05), especially sialylated N-glycans (CIDP, 898.0 [752.2-1037.2] pmol/μL; HC, 1064.4 [942.7-1189.8] pmol/μL; p < 0.01). In contrast, the O-glycan levels did not differ significantly between the two groups. The treatment response was associated with low N-glycan levels, but not with the serum NfL levels. Low levels of sialylated N-glycans were associated with resistance to treatment over 12 weeks, with an area under the curve of 0.822 (p < 0.01). CONCLUSIONS Low levels of sialylated N-glycans could potentially serve as a novel biomarker, reflecting pathophysiology and therapeutic resistance in typical CIDP.
Collapse
Affiliation(s)
- Soma Furukawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuki Fukami
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaya Hane
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Ken Kitajima
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Chihiro Sato
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Keita Hiraga
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoru Yagi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Sriwilaijaroen N, Hanamatsu H, Yokota I, Nishikaze T, Ijichi T, Takahashi T, Sakoda Y, Furukawa JI, Suzuki Y. Edible bird's nest: N- and O-glycan analysis and synergistic anti-avian influenza virus activity with neuraminidase inhibitors. Antiviral Res 2024; 232:106040. [PMID: 39577572 DOI: 10.1016/j.antiviral.2024.106040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Zoonotic avian influenza viruses have continued to infect people on occasion. During treatment, antiviral resistant viruses have occasionally emerged, highlighting the need for a novel strategy for treating human illness. After pancreatin treatment, edible bird's nest (EBN), swiftlet saliva consumed for health purposes, possesses anti-avian viral activity by inhibiting receptor-binding hemagglutinin (HA) activity. Glycan analysis revealed an abundance of α2,3Neu5Ac decoy receptors in pancreatin-treated EBN. Fucosylated tri-α2,3Neu5Ac tri-antennary N-glycans (N-35) and di-α2,3Neu5Ac core 2 O-glycans (O-15) are predominant, accounting for 53.46% and 44.66% of total N- and O-glycan amounts, respectively. Isobologram analysis revealed that the treated EBN had a strong synergistic effect with either oseltamivir carboxylate or zanamivir, a competitive inhibitor of receptor-destroying neuraminidases (NAs), against the avian H5N1 virus. Taken together, EBN has the potential to be developed as a food-derived avian viral trap to prevent and decrease avian virus infection as well as in combination with a viral releasing-NA inhibitor to increase therapeutic potency, reduce toxicity, delay resistance development, and potentially prevent pandemic onset.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand; Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takashi Nishikaze
- Global Application Development Center, Shimadzu Corporation, Kyoto, Kyoto, 604-8511, Japan
| | - Tetsuo Ijichi
- Life Science Division, Combi Corporation, Saitama-shi, Saitama, 338-0832, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, 422-8526, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuo Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, 422-8526, Japan
| |
Collapse
|
6
|
Wu T, Sun Y, Wang D, Isaji T, Fukuda T, Suzuki C, Hanamatsu H, Nishikaze T, Tsumoto H, Miura Y, Furukawa JI, Gu J. The acetylglucosaminyltransferase GnT-Ⅲ regulates erythroid differentiation through ERK/MAPK signaling. J Biol Chem 2024; 300:108010. [PMID: 39571652 PMCID: PMC11699732 DOI: 10.1016/j.jbc.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024] Open
Abstract
Differentiation therapy is an alternative strategy used in treating chronic myelogenous leukemia to induce the differentiation of immature or cancerous cells toward mature cells and inhibit tumor cell proliferation. We aimed to explore N-glycans' roles in erythroid differentiation using the sodium butyrate (NaBu)-induced model of K562 cells (WT/NaBu cells). Here, using lectin blot, flow cytometry, real-time PCR, and mass spectrometry analyses, we demonstrated that the mRNA levels of N-acetylglucosaminyltransferase Ⅲ ((encoded by the MGAT3 gene) and its product (bisected N-glycans) were significantly increased during erythroid differentiation. To address the importance of GnTN-acetylglucosaminyltransferase-Ⅲ in this progress, we established a stable MGAT3 KO K562 cell line using the CRISPR/Cas9 technology. Compared to WT/NaBu cells, MGAT3 KO significantly impeded the progression of erythroid differentiation, as shown in decreased cell color and levels of erythroid markers, glycophorin A (CD235a), and β-globin. Consistently, MGAT3 KO mitigated the inhibitory impact of NaBu on cell proliferation. During induction, MGAT3 KO suppressed the cellular phosphorylated tyrosine and phospho-extracellular signal-regulated kinase (ERK)1/2 levels. Inhibition of the ERK/mitogen-activated protein kinase signaling pathway using U0126 blocked erythroid differentiation while concurrently suppressing the expression levels of MGAT3 and bisected N-glycans. Furthermore, the lack of bisecting GlcNAc modification on c-Kit and transferrin receptor 1 (CD71) suppressed cellular signaling and accelerated the degradation of the CD71 protein, respectively. Our study highlights the critical role of MGAT3 in regulating erythroid differentiation associated with the ERK/mitogen-activated protein kinase signaling pathway, which may shed light on identifying new differentiation therapy in chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Dan Wang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Chiharu Suzuki
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Hisatoshi Hanamatsu
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Jun-Ichi Furukawa
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan; Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Wu G, Grassi P, Molina BG, MacIntyre DA, Sykes L, Bennett PR, Dell A, Haslam SM. Glycomics of cervicovaginal fluid from women at risk of preterm birth reveals immuno-regulatory epitopes that are hallmarks of cancer and viral glycosylation. Sci Rep 2024; 14:20813. [PMID: 39242814 PMCID: PMC11379862 DOI: 10.1038/s41598-024-71950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
During pregnancy the immune system needs to maintain immune tolerance of the foetus while also responding to infection, which can cause premature activation of the inflammatory pathways leading to the onset of labour and preterm birth. The vaginal microbiome is an important modifier of preterm birth risk, with Lactobacillus dominance during pregnancy associated with term delivery while high microbial diversity is associated with an increased risk of preterm birth. Glycans on glycoproteins along the lower female reproductive tract are fundamental to microbiota-host interactions and the mediation of inflammatory responses. However, the specific glycan epitopes involved in these processes are not well understood. To address this, we conducted glycomic analyses of cervicovaginal fluid (CVF) from 36 pregnant women at high risk of preterm birth and 4 non-pregnant women. Our analysis of N- and O-glycans revealed a rich CVF glycome. While O-glycans were shown to be the main carriers of ABO blood group epitopes, the main features of N-glycans were the presence of abundant paucimannose and high mannose glycans, and a remarkable diversity of complex bi-, tri-, and tetra-antennary glycans decorated with fucose and sialic acid. We identified immuno-regulatory epitopes, such as Lewis antigens, and found that fucosylation was negatively correlated to pro-inflammatory factors, such as IL-1β, MMP-8, C3a and C5a, while glycans with only sialylated antennae were mainly positively correlated to those. Similarly, paucimannose glycans showed a positive correlation to pro-inflammatory factors. We revealed a high abundance of glycans which have previously been identified as hallmarks of cancer and viral glycosylation, such as Man8 and Man9 high mannose glycans. Although each pregnant woman had a unique glycomic profile, longitudinal studies showed that the main glycosylation features were consistent throughout pregnancy in women who delivered at term, whereas women who experienced extreme preterm birth exhibited sharp changes in the CVF glycome shortly before delivery. These findings shed light on the processes underlying the role of glycosylation in maintaining a healthy vaginal microbiome and associated host immune responses. In addition, these discoveries facilitate our understanding of the lower female reproductive tract which has broad implications for women's health.
Collapse
Affiliation(s)
- Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Belen Gimeno Molina
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, London, W1 2NY, UK
| | - David A MacIntyre
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Lynne Sykes
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, London, W1 2NY, UK
| | - Phillip R Bennett
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK.
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK.
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
8
|
Li Y, Zhai Y, Fu B, He Y, Feng Y, Ma F, Lu H. A comprehensive N-glycome map of porcine sperm membrane before and after capacitation. Carbohydr Polym 2024; 335:122084. [PMID: 38616102 DOI: 10.1016/j.carbpol.2024.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Mapping the N-glycome of porcine sperm before and after sperm capacitation is important for understanding the rearrangement of glycoconjugates during capacitation. In this work, we characterized the N-glycome on the membranes of 18 pairs of fresh porcine sperm before capacitation and porcine sperm after capacitation by MALDI-MS (Matrix-assisted laser desorption/ionization-mass spectrometry). A total of 377 N-glycans were detected and a comprehensive N-glycome map of porcine sperm membranes before and after capacitation was generated, which presents the largest N-glycome dataset of porcine sperm cell membranes. Statistical analysis revealed a significantly higher level of high mannose glycosylation and a significantly lower level of fucosylation, galactosylation, and α-2,6-NeuAc after capacitation, which is further verified by flow cytometry and lectin blotting. This research reveals new insights into the relationship between N-glycosylation variations and sperm capacitation, including the underlying mechanisms of the capacitation process.
Collapse
Affiliation(s)
- Yueyue Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujia Zhai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Bing Fu
- Department of Chemistry, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Yuanlin He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Iwamoto S, Kobayashi T, Hanamatsu H, Yokota I, Teranishi Y, Iwamoto A, Kitagawa M, Ashida S, Sakurai A, Matsuo S, Myokan Y, Sugimoto A, Ushioda R, Nagata K, Gotoh N, Nakajima K, Nishikaze T, Furukawa JI, Itano N. Tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation. Cell Death Dis 2024; 15:53. [PMID: 38225221 PMCID: PMC10789756 DOI: 10.1038/s41419-024-06432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.
Collapse
Affiliation(s)
- Shungo Iwamoto
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Yukiko Teranishi
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Akiho Iwamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Miyu Kitagawa
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Sawako Ashida
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ayane Sakurai
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Suguru Matsuo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuma Myokan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Aiyu Sugimoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Naoki Itano
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
10
|
Hanamatsu H, Miura Y, Nishikaze T, Yokota I, Homan K, Onodera T, Hayakawa Y, Iwasaki N, Furukawa JI. Simultaneous and sialic acid linkage-specific N- and O-linked glycan analysis by ester-to-amide derivatization. Glycoconj J 2023; 40:259-267. [PMID: 36877384 DOI: 10.1007/s10719-023-10109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive β-elimination in the presence of hydroxylamine. O-glycans released by non-reductive β-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.
Collapse
Affiliation(s)
- Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan.
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshiaki Miura
- Sumitomo Bakelite Co., Ltd., 5-8, Tennoz Parkside Building, Higashi-Shinagawa 2-chome, Shinagawa-ku, 140-0002, Tokyo, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, 604-8511, Kyoto, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, 464-8601, Nagoya, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Yoshihiro Hayakawa
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, 604-8511, Kyoto, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, 464-8601, Nagoya, Japan.
| |
Collapse
|
11
|
Lectin microarray profiling demonstrates equivalent global glycosylation for whey protein ingredients enriched with α-lactalbumin and milk fat globule membrane. Food Res Int 2023; 164:112416. [PMID: 36737995 DOI: 10.1016/j.foodres.2022.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Human milk fat globule membrane (MFGM) and whey proteins are nutritionally and functionally valuable, with many beneficial bioactivities associated with their glycosylation. However glycosylation of milk components other than free milk oligosaccharides are underinvestigated. Whey protein concentrate (WPC) ingredients with various enrichments or depletions are used in infant formula (IF) formulations to contribute to human milk equivalence and bioactivity benefits, but their overall or global glycosylation has not been compared. We compared the global glycosylation of commercial WPC ingredients for use in various IF formulations; two MFGM-enriched WPC ingredients (high fat HF1 and lower fat HF2), an α-lactalbumin-enriched WPC (WPC Lac) which has α-lactalbumin concentration closer to human milk and significantly less β-lactoglobulin which is not present in human milk, and two base WPC ingredients (WPC 80 and WPC 35) using lectin microarray profiling. WPC Lac and WPC HF1 glycosylation were highly similar to each other and both somewhat similar to WPC 35, while WPC HF2 was more similar to the base WPC 80 ingredient. N-linked glycosylation analysis demonstrated that WPC HF1 and WPC Lac were qualitatively most similar to one another, with WPC 80 and WPC 35 having similar structures, confirming lectin microarray profiling as a valuable method to compare global glycosylation. Thus WPC Lac may be a valuable ingredient for providing equivalent glycosylation to MFGM supplementation.
Collapse
|
12
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
13
|
Rosenau J, Grothaus IL, Yang Y, Kumar ND, Ciacchi LC, Kelm S, Waespy M. N-glycosylation modulates enzymatic activity of Trypanosoma congolense trans-sialidase. J Biol Chem 2022; 298:102403. [PMID: 35995210 PMCID: PMC9493392 DOI: 10.1016/j.jbc.2022.102403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme–substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure–function relationship potentially inherent in several members of the TS enzyme family.
Collapse
Affiliation(s)
- Jana Rosenau
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Isabell Louise Grothaus
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany; University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Yikun Yang
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Nilima Dinesh Kumar
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Sørge Kelm
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Mario Waespy
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany.
| |
Collapse
|
14
|
Suzuki Y, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Effects of N-linked glycans of bilirubin oxidase on direct electron transfer-type bioelectrocatalysis. Bioelectrochemistry 2022; 146:108141. [PMID: 35594729 DOI: 10.1016/j.bioelechem.2022.108141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022]
Abstract
Bilirubin oxidase from Myrothecium verrucaria (mBOD) is a promising enzyme for catalyzing the four-electron reduction of dioxygen into water and realizes direct electron transfer (DET)-type bioelectrocatalysis. It has two N-linked glycans (N-glycans), and N472 and N482 are known as binding sites. Both binding sites located on opposite side of the type I (T1) Cu, which is the electrode-active site of BOD. We investigated the effect of N-glycans on DET-type bioelectrocatalysis by performing electrochemical measurements using electrodes with controlled surface charges. Two types of BODs with different N-glycans, mBOD and recombinant BOD overexpressed in Pichia pastoris (pBOD), and their deglycosylated forms (dg-mBOD and dg-pBOD) were used in this study. Kinetic analysis of the steady-state catalytic waves revealed that both size and composition of N-glycans affected the orientation of adsorbed BODs on the electrodes. Interestingly, the most favorable orientation was achieved with pBOD, which has the largest N-glycans. Furthermore, the effect of the orientation control by the N-glycans is cooperative with electrostatic interaction.
Collapse
Affiliation(s)
- Yohei Suzuki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Itoh
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kunishige Kataoka
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Satoshi Yamashita
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kenji Kano
- Office of Society Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Recent advances and trends in sample preparation and chemical modification for glycan analysis. J Pharm Biomed Anal 2022; 207:114424. [PMID: 34653745 DOI: 10.1016/j.jpba.2021.114424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Growing significance of glycosylation in protein functions has accelerated the development of methodologies for detection, identification, and characterization of protein glycosylation. In the past decade, glycobiology research has been advanced by innovative techniques with further progression in the post-genome era. Although significant technical progress has been made in terms of analytical throughput, comprehensiveness, and sensitivity, most methods for glycosylation analysis still require laborious and time-consuming sample preparation tasks. Additionally, sample preparation methods that are focused on specific glycan(s) require an in-depth understanding of various issues in glycobiology. In this review, modern sample preparation and chemical modification methods for the structural and quantitative glycan analyses together with the challenges and advantages of recent sample preparation methods are summarized. The techniques presented herein can facilitate the exploration of biomarkers, understanding of unknown glycan functions, and development of biopharmaceuticals.
Collapse
|
16
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
17
|
Coura MDM, Barbosa EA, Brand GD, Bloch C, de Sousa JB. Identification of Differential N-Glycan Compositions in the Serum and Tissue of Colon Cancer Patients by Mass Spectrometry. BIOLOGY 2021; 10:biology10040343. [PMID: 33923867 PMCID: PMC8074232 DOI: 10.3390/biology10040343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Incidence of colorectal cancer (CRC) has been rising in Brazil. To date, no reliable biomarker has been described in CRC for diagnosis and prognosis. Modifications in the N-glycosylation profile are usually associated with many cancers, as CRC. In turn, mass spectrometry (MS)-based methods are the most accurate technology in quantification of N-glycans. Therefore, we described a unique pattern of compositions altered in serum and tissues of stages II and III colon cancer patients, identified by MALDI-TOF/MS and LC-MS technology. N-glycans were mostly found decreased in serum whilst oligomannosidic, hypogalactosylated, and tetra-antennary forms were overexpressed in tumor tissues. Total N-glycome in serum of cancer patients was different from the profile found in serum of healthy individuals. Strikingly, no correlation between tissue N-glycosylation profile and serum profile was observed in cancer patients, posing the question where these compositions are originated from. Abstract Colorectal cancer (CRC) ranks second as the leading cause of cancer-related deaths worldwide. N-glycosylation is one of the most common posttranslational protein modifications. Therefore, we studied the total serum N-glycome (TSNG) of 13 colon cancer patients compared to healthy controls using MALDI-TOF/MS and LC-MS. N-glycosylation of cancer tumor samples from the same cohort were further quantified using a similar methodology. In total, 23 N-glycan compositions were down-regulated in the serum of colon cancer patients, mostly galactosylated forms whilst the mannose-rich HexNAc2Hex7, the fucosylated bi-antennary glycan HexNAc4Hex5Fuc1NeuAc2, and the tetra-antennary HexNAc6Hex7NeuAc3 were up-regulated in serum. Hierarchical clustering analysis of TSNG correctly singled out 85% of the patients from controls. Albeit heterogenous, N-glycosylation of tumor samples showed overrepresented oligomannosidic, bi-antennary hypogalactosylated, and branched compositions related to normal colonic tissue, in both MALDI-TOF/MS and LC-MS analysis. Moreover, compositions found upregulated in tumor tissue were mostly uncorrelated to compositions in serum of cancer patients. Mass spectrometry-based N-glycan profiling in serum shows potential in the discrimination of patients from healthy controls. However, the compositions profile in serum showed no parallel with N-glycans in tumor microenvironment, which suggests a different origin of compositions found in serum of cancer patients.
Collapse
Affiliation(s)
- Marcelo de M.A. Coura
- Division of Colorectal Surgery, University Hospital of Brasilia, School of Medicine, University of Brasilia, SGAN 605, Brasilia-DF 70840-901, Brazil;
- Correspondence:
| | - Eder A. Barbosa
- Laboratory of Mass Spectrometry, EMBRAPA Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte, Brasilia-DF 70770-917, Brazil; (E.A.B.); (C.B.J.)
- Laboratory for the Synthesis and Analysis of Biomolecules, Institute of Chemistry, Campus Universitario Darcy Ribeiro, University of Brasilia, Brasilia-DF 70910-900, Brazil;
| | - Guilherme D. Brand
- Laboratory for the Synthesis and Analysis of Biomolecules, Institute of Chemistry, Campus Universitario Darcy Ribeiro, University of Brasilia, Brasilia-DF 70910-900, Brazil;
| | - Carlos Bloch
- Laboratory of Mass Spectrometry, EMBRAPA Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte, Brasilia-DF 70770-917, Brazil; (E.A.B.); (C.B.J.)
| | - Joao B. de Sousa
- Division of Colorectal Surgery, University Hospital of Brasilia, School of Medicine, University of Brasilia, SGAN 605, Brasilia-DF 70840-901, Brazil;
| |
Collapse
|
18
|
Colombo M, Asadi Shehni A, Thoma I, McGurnaghan SJ, Blackbourn LAK, Wilkinson H, Collier A, Patrick AW, Petrie JR, McKeigue PM, Saldova R, Colhoun HM. Quantitative levels of serum N-glycans in type 1 diabetes and their association with kidney disease. Glycobiology 2020; 31:613-623. [PMID: 33245334 DOI: 10.1093/glycob/cwaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated associations of quantitative levels of N-glycans with hemoglobin A1c (HbA1c), renal function and renal function decline in type 1 diabetes. We measured 46 total N-glycan peaks (GPs) on 1565 serum samples from the Scottish Diabetes Research Network Type 1 Bioresource Study (SDRNT1BIO) and a pool of healthy donors. Quantitation of absolute abundance of each GP used 2AB-labeled mannose-3 as a standard. We studied cross-sectional associations of GPs and derived measures with HbA1c, albumin/creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR), and prospective associations with incident albuminuria and final eGFR. All GPs were 1.4 to 3.2 times more abundant in SDRTN1BIO than in the healthy samples. Absolute levels of all GPs were slightly higher with higher HbA1c, with strongest associations for triantennary trigalactosylated disialylated, triantennary trigalactosylated trisialylated structures with core or outer arm fucose, and tetraantennary tetragalactosylated trisialylated glycans. Most GPs showed increased abundance with worsening ACR. Lower eGFR was associated with higher absolute GP levels, most significantly with biantennary digalactosylated disialylated glycans with and without bisect, triantennary trigalactosylated trisialylated glycans with and without outer arm fucose, and core fucosylated biantennary monogalactosylated monosialylated glycans. Although several GPs were inversely associated prospectively with final eGFR, cross-validated multivariable models did not improve prediction beyond clinical covariates. Elevated HbA1c is associated with an altered N-glycan profile in type 1 diabetes. Although we could not establish GPs to be prognostic of future renal function decline independently of HbA1c, further studies to evaluate their impact in the pathogenesis of diabetic kidney disease are warranted.
Collapse
Affiliation(s)
- Marco Colombo
- Independent conultant, Via Palestro 16/B, 23900, Lecco, Italy
| | - Akram Asadi Shehni
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Ioanna Thoma
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Stuart J McGurnaghan
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Luke A K Blackbourn
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Andrew Collier
- School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0B4, UK
| | - Alan W Patrick
- Royal Infirmary of Edinburgh, NHS Lothian, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Dublin D04 V1W8, Ireland
| | - Helen M Colhoun
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK.,Public Health, NHS Fife, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | | |
Collapse
|
19
|
Samal J, Saldova R, Rudd PM, Pandit A, O'Flaherty R. Region-Specific Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain. Anal Chem 2020; 92:12842-12851. [PMID: 32815717 DOI: 10.1021/acs.analchem.0c01206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson's disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying "brain-type" glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland
| | - Radka Saldova
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland.,GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland.,UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Co. Dublin A94X099, Ireland
| | - Pauline M Rudd
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland.,Analytics Group, Bioprocessing Technology Institute (AStar), 20 Biopolis Way, 06-01 Centros, Singapore 138668
| | - Abhay Pandit
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland
| | - Róisín O'Flaherty
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland
| |
Collapse
|
20
|
Furukawa JI, Hanamatsu H, Nishikaze T, Manya H, Miura N, Yagi H, Yokota I, Akasaka-Manya K, Endo T, Kanagawa M, Iwasaki N, Tanaka K. Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation. Anal Chem 2020; 92:14383-14392. [DOI: 10.1021/acs.analchem.0c02209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jun-ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Kita15, Nishi7, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime 791-0295, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-1, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Norimasa Iwasaki
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
21
|
Elwakiel M, Bakx EJ, Szeto IM, Li Y, Hettinga KA, Schols HA. Serum Protein N-Glycans in Colostrum and Mature Milk of Chinese Mothers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6873-6883. [PMID: 32496058 PMCID: PMC7317985 DOI: 10.1021/acs.jafc.0c02161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To study the Chinese human milk N-glycome over lactation, N-glycans were released and separated from serum proteins, purified by solid-phase extraction, and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 66 different putative N-glycans were found in the colostrum (week 1) and mature milk (week 4) of seven Chinese mothers. A clear difference was observed between milk of five secretor and two nonsecretor mothers, based on the type and relative amounts of the individual N-glycans. The relative levels of the total neutral nonfucosylated and the fucosylated N-glycans in milk of five secretor mothers increased and decreased over lactation, respectively. This pattern could not be observed for the milk from the two nonsecretor mothers. Overall, this was the first study that provided detailed information on individual N-glycans in milk among mothers and over time as well as that fucosylation of N-glycans in milk was associated with the mother's secretor status.
Collapse
Affiliation(s)
- Mohèb Elwakiel
- Laboratory
of Food Chemistry, Wageningen University
& Research, 6708 WG Wageningen, The Netherlands
- Food
Quality and Design, Wageningen University
& Research, 6708 WG Wageningen, The Netherlands
| | - Edwin J. Bakx
- Laboratory
of Food Chemistry, Wageningen University
& Research, 6708 WG Wageningen, The Netherlands
| | - Ignatius M. Szeto
- Inner
Mongolia Yili Industrial Group Co., Ltd., Jinshan Road 8, 010110 Hohhot, China
| | - Yitong Li
- Inner
Mongolia Yili Industrial Group Co., Ltd., Jinshan Road 8, 010110 Hohhot, China
| | - Kasper A. Hettinga
- Food
Quality and Design, Wageningen University
& Research, 6708 WG Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University
& Research, 6708 WG Wageningen, The Netherlands
- . Tel: +31 317 482239
| |
Collapse
|
22
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
23
|
Gebrehiwot AG, Melka DS, Kassaye YM, Gemechu T, Lako W, Hinou H, Nishimura SI. Exploring serum and immunoglobulin G N-glycome as diagnostic biomarkers for early detection of breast cancer in Ethiopian women. BMC Cancer 2019; 19:588. [PMID: 31208374 PMCID: PMC6580580 DOI: 10.1186/s12885-019-5817-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alterations in protein glycosylation patterns have potentially been targeted for biomarker discovery in a wide range of diseases including cancer. Although there have been improvements in patient diagnosis and survival for breast cancer (BC), there is no clinically validated serum biomarker for its early diagnosis. Here, we profiled whole serum and purified Immunoglobulin G (IgG) fraction N-glycome towards identification of non-invasive glycan markers of BC. METHODS We employed a comprehensive glycomics approach by integrating glycoblotting-based glycan purification with MALDI-TOF/MS based quantitative analysis. Sera of BC patients belonging to stages I-IV and normal controls (NC) were collected from Ethiopian women during 2015-2016. IgG was purified by affinity chromatography using protein G spin plate and further subjected to glycoblotting for glycan release. Mass spectral data were further processed and evaluated rigorously, using various bioinformatics and statistical tools. RESULTS Out of 35 N-glycans that were significantly up-regulated in the sera of all BC patients compared to the NC, 17 complex type N-glycans showed profound expression abundance and diagnostic potential (AUC = 0.8-1) for the early stage (I and II) BC patients. Most of these glycans were core-fucosylated, multiply branched and sialylated structures, whose abundance has been strongly associated with greater invasive and metastatic potential of cancer. N-glycans quantified form IgG confirmed their abundance in BC patients, of which two core-fucosylated and agalactosylated glycans (m/z 1591, 1794) could specifically distinguish (AUC = 0.944 and 0.921, p ≤ 0.001) stage II patients from NC. Abundance of such structural features in IgG is associated with a decrease in its immunosuppressive potential towards tumor cells, which in part may correlate with the aggressive nature of BC commonly noticed in black population. CONCLUSIONS Our comprehensive study has addressed for the first time both whole serum and IgG N-glycosylation signatures of native black women suffering from BC and revealed novel glyco-biomarkers with marked overexpression and distinguishing ability at early stage patients. Further studies on direct identification of the intact glycoproteins using a glycoprteomics approach will provide a deeper understanding of specific biomarkers towards their clinical utility.
Collapse
Affiliation(s)
- Abrha G. Gebrehiwot
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| | - Daniel Seifu Melka
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yimenashu Mamo Kassaye
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tufa Gemechu
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| |
Collapse
|
24
|
Gebrehiwot AG, Melka DS, Kassaye YM, Rehan IF, Rangappa S, Hinou H, Kamiyama T, Nishimura SI. Healthy human serum N-glycan profiling reveals the influence of ethnic variation on the identified cancer-relevant glycan biomarkers. PLoS One 2018; 13:e0209515. [PMID: 30592755 PMCID: PMC6310272 DOI: 10.1371/journal.pone.0209515] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Most glycomics studies have focused on understanding disease mechanisms and proposing serum markers for various diseases, yet the influence of ethnic variation on the identified glyco-biomarker remains poorly addressed. This study aimed to investigate the inter-ethnic serum N-glycan variation among US origin control, Japanese, Indian, and Ethiopian healthy volunteers. Methods Human serum from 54 healthy subjects of various ethnicity and 11 Japanese hepatocellular carcinoma (HCC) patients were included in the study. We employed a comprehensive glycoblotting-assisted MALDI-TOF/MS-based quantitative analysis of serum N-glycome and fluorescence HPLC-based quantification of sialic acid species. Data representing serum N-glycan or sialic acid levels were compared among the ethnic groups using SPSS software. Results Total of 51 N-glycans released from whole serum glycoproteins could be reproducibly quantified within which 33 glycoforms were detected in all ethnicities. The remaining N-glycans were detected weakly but exclusively either in the Ethiopians (13 glycans) or in all the other ethnic groups (5 glycans). Highest abundance (p < 0.001) of high mannose, core-fucosylated, hyperbranched/hypersialylated N-glycans was demonstrated in Ethiopians. In contrast, only one glycan (m/z 2118) significantly differed among all ethnicities being highest in Indians and lowest in Ethiopians. Glycan abundance trend in Ethiopians was generally close to that of Japanese HCC patients. Glycotyping analysis further revealed ethnic-based disparities mainly in the branched and sialylated structures. Surprisingly, some of the glycoforms greatly elevated in the Ethiopian subjects have been identified as serum biomarkers of various cancers. Sialic acid level was significantly increased primarily in Ethiopians, compared to the other ethnicities. Conclusion The study revealed ethnic-specific differences in healthy human serum N-glycome with highest abundance of most glycoforms in the Ethiopian ethnicity. The results strongly emphasized the need to consider ethnicity matching for accurate glyco-biomarker identification. Further large-scale study employing various ethnic compositions is needed to verify the current result.
Collapse
Affiliation(s)
- Abrha G Gebrehiwot
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Daniel Seifu Melka
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yimenashu Mamo Kassaye
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ibrahim F Rehan
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan.,Department of Animal Behaviour and Husbandry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Shobith Rangappa
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroshi Hinou
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Division of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
25
|
Smith J, Mittermayr S, Váradi C, Bones J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2018; 142:700-720. [PMID: 28170017 DOI: 10.1039/c6an02715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-translational modification of proteins by the attachment of glycans is governed by a variety of highly specific enzymes and is associated with fundamental impacts on the parent protein's physical, chemical and biological properties. The inherent connection between cellular physiology and specific glycosylation patterns has been shown to offer potential for diagnostic and prognostic monitoring of altered glycosylation in the disease state. Conversely, glycoprotein based biopharmaceuticals have emerged as dominant therapeutic strategies in the treatment of intricate diseases. Glycosylation present on these biopharmaceuticals represents a major critical quality attribute with impacts on both pharmacokinetics and pharmacodynamics. The structural variety of glycans, based upon their non-template driven assembly, poses a significant analytical challenge for both qualitative and quantitative analysis. Labile monosaccharide constituents, isomeric species and often low sample availability from biological sources necessitates meticulous sample handling, ultra-high-resolution analytical separation and sensitive detection techniques, respectively. In this article a critical review of analytical quantitation approaches using liquid phase separations coupled to mass spectrometry for released glycans of biopharmaceutical and biomedical significance is presented. Considerations associated with sample derivatisation strategies, ionisation, relative quantitation through isotopic as well as isobaric labelling, metabolic/enzymatic incorporation and targeted analysis are all thoroughly discussed.
Collapse
Affiliation(s)
- Josh Smith
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland
| | - Stefan Mittermayr
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Csaba Váradi
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1 W8, Ireland
| |
Collapse
|
26
|
Yoshida Y, Furukawa JI, Naito S, Higashino K, Numata Y, Shinohara Y. Identification of unique glycoisoforms of vitamin D-binding protein and haptoglobin as biomarker candidates in hepatocarcinogenesis of STAM mice. Glycoconj J 2018; 35:467-476. [PMID: 30194503 DOI: 10.1007/s10719-018-9838-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
|
27
|
Brijesha N, Nishimura SI, Aparna HS. Comparative Glycomics of Fat Globule Membrane Glycoconjugates from Buffalo (Bubalus bubalis) Milk and Colostrum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1496-1506. [PMID: 28145111 DOI: 10.1021/acs.jafc.6b03330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The health-promoting effects of milk fat globule membrane (MFGM) glycoconjugates has attracted curiosity especially with regard to the challenges encountered to unravel the glycan complexities of MFGM glycoproteins and glycosphingolipids. In this context, we characterized glycans present in buffalo milk and colostrum fat globule membranes by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis by adopting chemoselective glycoblotting technique. Unlike human and bovine MFGM glycoproteins, the variations were obvious with respect to their number, size, heterogeneity, and abundance among the samples analyzed. Among N-linked glycans, mono-, di-, and trisialyl glycans were apparent in colostrum, while MFGM predominantly contained mono- and disialyl glycans, in addition to neutral and high-mannose glycoforms. The structural assignments of major glycans were confirmed by TOF/TOF analysis. Core 1 O-glycans were more common in both samples, and the major glycosphingolipids were GM3 and GD3 irrespective of the samples analyzed. The colostrum N-glycans, being effective antibacterials against human pathogens, established the structure-function relationship of oligosaccharides in early milk in providing innate protection to the newborn.
Collapse
Affiliation(s)
- Nagaraju Brijesha
- Department of Biotechnology, University of Mysore , Manasagangotri, Mysore 570 006, Karnataka, India
| | | | | |
Collapse
|
28
|
Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 2016; 409:359-378. [PMID: 27888305 PMCID: PMC5203856 DOI: 10.1007/s00216-016-0073-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Reversed-phase chromatography is a method that is often used for glycan separation. For this, glycans are often derivatized with a hydrophobic tag to achieve retention on hydrophobic stationary phases. The separation and elution order of glycans in reversed-phase chromatography is highly dependent on the hydrophobicity of the tag and the contribution of the glycan itself to the retention. The contribution of the different monosaccharides to the retention strongly depends on the position and linkage, and isomer separation may be achieved. The influence of sialic acids and fucoses on the retention of glycans is still incompletely understood and deserves further study. Analysis of complex samples may come with incomplete separation of glycan species, thereby complicating reversed-phase chromatography with fluorescence or UV detection, whereas coupling with mass spectrometry detection allows the resolution of complex mixtures. Depending on the column properties, eluents, and run time, separation of isomeric and isobaric structures can be accomplished with reversed-phase chromatography. Alternatively, porous graphitized carbon chromatography and hydrophilic interaction liquid chromatography are also able to separate isomeric and isobaric structures, generally without the necessity of glycan labeling. Hydrophilic interaction liquid chromatography, porous graphitized carbon chromatography, and reversed-phase chromatography all serve different research purposes and thus can be used for different research questions. A great advantage of reversed-phase chromatography is its broad distribution as it is used in virtually every bioanalytical research laboratory, making it an attracting platform for glycan analysis. Glycan isomer separation by reversed phase liquid chromatography ![]()
Collapse
|
29
|
Yoshida Y, Furukawa JI, Naito S, Higashino K, Numata Y, Shinohara Y. Quantitative analysis of total serum glycome in human and mouse. Proteomics 2016; 16:2747-2758. [DOI: 10.1002/pmic.201500550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Yasunobu Yoshida
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics; Graduate School of Advanced Life Science; Hokkaido University; Sapporo Japan
- Department of Orthopaedic Orthopaedic Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Shoichi Naito
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics; Graduate School of Advanced Life Science; Hokkaido University; Sapporo Japan
- Department of Pharmacy; Kinjo Gakuin University; Nagoya Japan
| |
Collapse
|
30
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
31
|
L S MB, Nishimura SI, H S A. Inhibitory potential of Buffalo (Bubalus bubalis) colostrum immunoglobulin G on Klebsiella pneumoniae. Int J Biol Macromol 2016; 88:138-45. [PMID: 27017977 DOI: 10.1016/j.ijbiomac.2016.03.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022]
Abstract
The unique components of colostrum like free oligosaccharides and glycoconjugates are known to offer resistance to enzymatic digestion in the gastrointestinal tract and have the ability to inhibit the localized adherence of enteropathogens to the digestive tract of the neonates. In this context, we have evaluated the in vitro effect of buffalo colostrum immunoglobulin G on human pathogen Klebsiella pneumoniae, a predominant multidrug resistant pathogen associated with nasocomial infections. The investigation revealed growth inhibitory potential of immunoglobulin G in a dose dependent manner supported by scanning electron microscopic studies. The N-glycan enriched fraction of immunoglobulin G after PNGase treatment was found more effective, comparable to ampicillin than native immunoglobulin G supporting the fact that colostrum derived oligosaccharides is crucial and act as ideal substrates for undesirable and pathogenic bacteria. The MALDI TOF/TOF analysis confirmed the glycostructures of abundant N-glycans of immunoglobulin G exerting antibacterial activity. The proteomic analysis revealed variations between control and treated cells and expression of chemotaxis-CheY protein (14kDa) was evidenced in response to immunoglobulin G treatment. Hence, it would be interesting to investigate the mode of inhibition of multidrug-resistant K. pneumoniae by buffalo colostrum immunoglobulin G with the identification of a newly expressed signalling protein.
Collapse
Affiliation(s)
- Mamatha Bhanu L S
- Department of Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - S-I Nishimura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Aparna H S
- Department of Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India.
| |
Collapse
|
32
|
Etxebarria J, Reichardt NC. Methods for the absolute quantification of N-glycan biomarkers. Biochim Biophys Acta Gen Subj 2016; 1860:1676-87. [PMID: 26953846 DOI: 10.1016/j.bbagen.2016.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. SCOPE OF REVIEW This review discusses opportunities of glycan biomarkers in personalized medicine and reviews the methodology for N-glycan analysis with a specific focus on methods for absolute quantification. MAJOR CONCLUSIONS The entry into the clinical practice of glycan markers is delayed in large part due to a lack of adequate methodology for the precise and robust quantification of protein glycosylation. Only absolute glycan quantification can provide a complete picture of the disease related changes and will provide the method robustness required by clinical applications. GENERAL SIGNIFICANCE Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Juan Etxebarria
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain; CIBER-BBN, Paseo Miramon 182, 20009 San Sebastian, Spain.
| |
Collapse
|
33
|
Neves AA, Wainman YA, Wright A, Kettunen MI, Rodrigues TB, McGuire S, Hu D, Bulat F, Geninatti Crich S, Stöckmann H, Leeper FJ, Brindle KM. Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 128:1308-1312. [PMID: 27346899 PMCID: PMC4848764 DOI: 10.1002/ange.201509858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/06/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe. Significant N-azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10-fold). This approach has the potential to enable the rapid and non-invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.
Collapse
Affiliation(s)
- André A. Neves
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Yéléna A. Wainman
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alan Wright
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Mikko I. Kettunen
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandNeulaniementie 270211KuopioFinland
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Sarah McGuire
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - De‐En Hu
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Flaviu Bulat
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health ScienceMolecular Imaging CenterVia Nizza 5210126TurinItaly
| | | | - Finian J. Leeper
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| |
Collapse
|
34
|
Rehan IF, Ueda K, Mitani T, Amano M, Hinou H, Ohashi T, Kondo S, Nishimura SI. Large-Scale Glycomics of Livestock: Discovery of Highly Sensitive Serum Biomarkers Indicating an Environmental Stress Affecting Immune Responses and Productivity of Holstein Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10578-10590. [PMID: 26595672 DOI: 10.1021/acs.jafc.5b04304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Because various stresses strongly influence the food productivity of livestock, biomarkers to indicate unmeasurable environmental stress in domestic animals are of increasing importance. Thermal comfort is one of the basic principles of dairy cow welfare that enhances productivity. To discover sensitive biomarkers that monitor such environmental stresses in dairy cows, we herein performed, for the first time, large-scale glycomics on 336 lactating Holstein cow serum samples over 9 months between February and October. Glycoblotting combined with MALDI-TOF/MS and DMB/HPLC allowed for comprehensive glycomics of whole serum glycoproteins. The results obtained revealed seasonal alterations in serum N-glycan levels and their structural characteristics, such as an increase in high-mannose type N-glycans in spring, the occurrence of di/triantennary complex type N-glycans terminating with two or three Neu5Gc residues in summer and autumn, and N-glycans in winter dominantly displaying Neu5Ac. A multivariate analysis revealed a correlation between the serum expression levels of these season-specific glycoforms and productivity.
Collapse
Affiliation(s)
- Ibrahim F Rehan
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Animal Behaviour and Management Department, Faculty of Veterinary Medicine, South Valley University , Qena 83523, Egypt
| | - Koichiro Ueda
- Animal Production System, Graduate School of Agriculture, Hokkaido University , N9, W9, Sapporo 060-8589, Japan
| | - Tomohiro Mitani
- Animal Production System, Graduate School of Agriculture, Hokkaido University , N9, W9, Sapporo 060-8589, Japan
| | - Maho Amano
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Tetsu Ohashi
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Seiji Kondo
- Animal Production System, Graduate School of Agriculture, Hokkaido University , N9, W9, Sapporo 060-8589, Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
35
|
Neves AA, Wainman YA, Wright A, Kettunen MI, Rodrigues TB, McGuire S, Hu DE, Bulat F, Geninatti Crich S, Stöckmann H, Leeper FJ, Brindle KM. Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2015; 55:1286-90. [PMID: 26633082 PMCID: PMC4737346 DOI: 10.1002/anie.201509858] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/23/2022]
Abstract
Glycosylation is a ubiquitous post‐translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell–cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium‐based bioorthogonal MRI probe. Significant N‐azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10‐fold). This approach has the potential to enable the rapid and non‐invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.
Collapse
Affiliation(s)
- André A Neves
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| | - Yéléna A Wainman
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.,Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alan Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Mikko I Kettunen
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Sarah McGuire
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Flaviu Bulat
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Science, Molecular Imaging Center, Via Nizza 52, 10126, Turin, Italy
| | - Henning Stöckmann
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Finian J Leeper
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| |
Collapse
|
36
|
Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, Nishimura SI. A comprehensive glycome profiling of Huntington's disease transgenic mice. Biochim Biophys Acta Gen Subj 2015; 1850:1704-18. [DOI: 10.1016/j.bbagen.2015.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
|
37
|
Bhanu LSM, Amano M, Nishimura SI, Aparna HS. Glycome characterization of immunoglobulin G from buffalo (Bubalus bubalis) colostrum. Glycoconj J 2015; 32:625-34. [DOI: 10.1007/s10719-015-9608-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 01/16/2023]
|
38
|
Stöckmann H, O'Flaherty R, Adamczyk B, Saldova R, Rudd PM. Automated, high-throughput serum glycoprofiling platform. Integr Biol (Camb) 2015; 7:1026-32. [PMID: 26189827 DOI: 10.1039/c5ib00130g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complex carbohydrates are rapidly becoming excellent biomarker candidates because of their high sensitivity to pathological changes. However, the discovery of clinical glycobiomarkers has been slow, due to the scarcity of high-throughput glycoanalytical workflows that allow rapid glycoprofiling of large clinical sample sets. To generate high-quality quantitative glycomics data in a high-throughput fashion, we have developed a robotized platform for rapid serum-based N-glycan sample preparation. The sample preparation workflow features a fully automated, rapid glycoprotein denaturation followed by sequential enzymatic glycan release, glycan purification on solid-supported hydrazide and fluorescent labelling. This allows accurate glycan quantitation by ultra-high performance liquid chromatography (UPLC). The sample preparation workflow was automated using an eight-channel Hamilton Robotics liquid handling workstation, allowing the preparation of almost 100 samples in 14 hours with excellent reproducibility and thus should greatly facilitate serum-based glyco-biomarker discovery.
Collapse
Affiliation(s)
- H Stöckmann
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co.Dublin, Ireland.
| | | | | | | | | |
Collapse
|
39
|
Furukawa JI, Piao J, Yoshida Y, Okada K, Yokota I, Higashino K, Sakairi N, Shinohara Y. Quantitative O-Glycomics by Microwave-Assisted β-Elimination in the Presence of Pyrazolone Analogues. Anal Chem 2015; 87:7524-8. [DOI: 10.1021/acs.analchem.5b02155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jun-ichi Furukawa
- Laboratory
of Medical and Functional Glycomics, Graduate School of Advanced Life
Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Jinhua Piao
- Laboratory
of Medical and Functional Glycomics, Graduate School of Advanced Life
Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasunobu Yoshida
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Kita-21 Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Kazue Okada
- Laboratory
of Medical and Functional Glycomics, Graduate School of Advanced Life
Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ikuko Yokota
- Laboratory
of Medical and Functional Glycomics, Graduate School of Advanced Life
Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Kita-21 Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Nobuo Sakairi
- Graduate
School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuro Shinohara
- Laboratory
of Medical and Functional Glycomics, Graduate School of Advanced Life
Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
40
|
Furukawa JI, Tsuda M, Okada K, Kimura T, Piao J, Tanaka S, Shinohara Y. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy. PLoS One 2015; 10:e0128300. [PMID: 26132161 PMCID: PMC4488535 DOI: 10.1371/journal.pone.0128300] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/27/2015] [Indexed: 12/03/2022] Open
Abstract
Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response.
Collapse
Affiliation(s)
- Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazue Okada
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Taichi Kimura
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jinhua Piao
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- * E-mail: (YS); (ST)
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
- * E-mail: (YS); (ST)
| |
Collapse
|
41
|
Hegedűs T, Chaubey PM, Várady G, Szabó E, Sarankó H, Hofstetter L, Roschitzki B, Stieger B, Sarkadi B. Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav056. [PMID: 26078478 PMCID: PMC4480073 DOI: 10.1093/database/bav056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
Abstract
Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies-the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics.
Collapse
Affiliation(s)
- Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Pururawa Mayank Chaubey
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - György Várady
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Edit Szabó
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hajnalka Sarankó
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lia Hofstetter
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bernd Roschitzki
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bruno Stieger
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Balázs Sarkadi
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary, Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
42
|
Moh ES, Thaysen-Andersen M, Packer NH. Relative versus absolute quantitation in disease glycomics. Proteomics Clin Appl 2015; 9:368-82. [DOI: 10.1002/prca.201400184] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/21/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Edward S.X. Moh
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | | - Nicolle H. Packer
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
43
|
Kimura K, Nishimura SI, Miyoshi R, Hoque A, Miyoshi T, Watanabe Y. Application of glyco-blotting for identification of structures of polysaccharides causing membrane fouling in a pilot-scale membrane bioreactor treating municipal wastewater. BIORESOURCE TECHNOLOGY 2015; 179:180-186. [PMID: 25544495 DOI: 10.1016/j.biortech.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
A new approach for the analysis of polysaccharides in membrane bioreactor (MBR) is proposed in this study. Enrichment of polysaccharides by glyco-blotting, in which polysaccharides are specifically collected via interactions between the aldehydes in the polysaccharides and aminooxy groups on glycoblotting beads, enabled MALDI-TOF/MS analysis at a high resolution. Structures of polysaccharides extracted from fouled membranes used in a pilot-scale MBR treating municipal wastewater and those in the supernatant of the mixed liquor suspension in the MBR were investigated. It was found that the overlap between polysaccharides found in the supernatants and those extracted from the fouled membrane was rather limited, suggesting that polysaccharides that dominate in supernatants may not be important in membrane fouling in MBRs. Analysis using a bacterial carbohydrate database suggested that capsular polysaccharides (CPS) and/or lipo-polysaccharides (LPS) produced by gram-negative bacteria are key players in the evolution of membrane fouling in MBRs.
Collapse
Affiliation(s)
- Katsuki Kimura
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals, LLC, 1-715, N7W4, Kita-ku, Sapporo 060-0807, Japan
| | - Asiful Hoque
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Taro Miyoshi
- Center for Environmental Nano and Bio Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yoshimasa Watanabe
- Center for Environmental Nano and Bio Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
44
|
Giménez E, Balmaña M, Figueras J, Fort E, Bolós CD, Sanz-Nebot V, Peracaula R, Rizzi A. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis. Anal Chim Acta 2015; 866:59-68. [PMID: 25732693 DOI: 10.1016/j.aca.2015.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α1-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a candidate structure worth to be corroborated by an extended study including more clinical cases; especially those with chronic pancreatitis and initial stages of pancreatic cancer. Importantly, the results demonstrate that the presented methodology combining an enrichment of a target protein by IAC with isotope coded relative quantitation of N-glycans can be successfully used for targeted glycomics studies. The methodology is assumed being suitable as well for other such studies aimed at finding novel cancer associated glycoprotein biomarkers.
Collapse
Affiliation(s)
- Estela Giménez
- Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona, Spain.
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - Joan Figueras
- Department of Surgery, Dr. Josep Trueta University Hospital, IdlBGi, 17007 Girona, Spain
| | - Esther Fort
- Digestive Unit, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Carme de Bolós
- Gastroesophagic Cancer Research Group, Research Programme in Cancer, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Victòria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - Andreas Rizzi
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria
| |
Collapse
|
45
|
Miura N, Okada T, Murayama D, Hirose K, Sato T, Hashimoto R, Fukushima N. Functional network in posttranslational modifications: Glyco-Net in Glycoconjugate Data Bank. Methods Mol Biol 2015; 1273:149-157. [PMID: 25753709 DOI: 10.1007/978-1-4939-2343-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Elucidating pathways related to posttranslational modifications (PTMs) such as glycosylation is of growing importance in post-genome science and technology. Graphical networks describing the relationships among glycan-related molecules, including genes, proteins, lipids, and various biological events, are considered extremely valuable and convenient tools for the systematic investigation of PTMs. Glyco-Net (http://bibi.sci.hokudai.ac.jp/functions/) can dynamically make network figures among various biological molecules and biological events. A certain molecule or event is expressed with a node, and the relationship between the molecule and the event is indicated by arrows in the network figures. In this chapter, we mention the features and current status of the Glyco-Net and a simple example of the search with the Glyco-Net.
Collapse
Affiliation(s)
- Nobuaki Miura
- Graduate School of Life Sciences, Hokkaido University, 1-204, Open Laboratory in Central Campus, Sapporo, 060-0812, Japan,
| | | | | | | | | | | | | |
Collapse
|
46
|
Nonreductive chemical release of intact N-glycans for subsequent labeling and analysis by mass spectrometry. Anal Biochem 2014; 462:1-9. [PMID: 24912132 DOI: 10.1016/j.ab.2014.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 11/23/2022]
Abstract
A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate-peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies.
Collapse
|
47
|
Zhang Q, Li H, Feng X, Liu BF, Liu X. Purification of derivatized oligosaccharides by solid phase extraction for glycomic analysis. PLoS One 2014; 9:e94232. [PMID: 24705408 PMCID: PMC3976416 DOI: 10.1371/journal.pone.0094232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Profiling of glycans released from proteins is very complex and important. To enhance the detection sensitivity, chemical derivatization is required for the analysis of carbohydrates. Due to the interference of excess reagents, a simple and reliable purification method is usually necessary for the derivatized oligosaccharides. Various SPE based methods have been applied for the clean-up process. To demonstrate the differences among these methods, seven types of self-packed SPE cartridges were systematically compared in this study. The optimized conditions were determined for each type of cartridge and it was found that microcrystalline cellulose was the most appropriate SPE material for the purification of derivatized oligosaccharide. Normal phase HPLC analysis of the derivatized maltoheptaose was realized with a detection limit of 0.12 pmol (S N−1 = 3) and a recovery over 70%. With the optimized SPE method, relative quantification analysis of N-glycans from model glycoproteins were carried out accurately and over 40 N-glycans from human serum samples were determined regardless of the isomers. Due to the high stability and sensitivity, microcrystalline cellulose cartridge showed potential applications in glycomics analysis.
Collapse
Affiliation(s)
- Qiwei Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Henghui Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XJF); (XL)
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XJF); (XL)
| |
Collapse
|
48
|
Ito K, Furukawa JI, Yamada K, Tran NL, Shinohara Y, Izui S. Lack of galactosylation enhances the pathogenic activity of IgG1 but Not IgG2a anti-erythrocyte autoantibodies. THE JOURNAL OF IMMUNOLOGY 2013; 192:581-8. [PMID: 24337750 DOI: 10.4049/jimmunol.1302488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IgG bears asparagine-linked oligosaccharide side chains in the Fc region. Variations in their extent of galactosylation and sialylation could modulate IgG Fc-dependent effector functions, and hence Ab activity. However, it has not yet been clarified whether the pathogenic potential of IgG autoantibodies is consistently enhanced by the absence of galactose residues per se or the lack of terminal sialylation, which is dependent on galactosylation. Moreover, it remains to be defined whether the increased pathogenicity of agalactosylated IgG is related to activation of the complement pathway by mannose-binding lectin, as suggested by in vitro studies. Using a murine model of autoimmune hemolytic anemia, we defined the contribution of galactosylation or sialylation to the pathogenic activity of IgG1 and IgG2a anti-erythrocyte class-switch variants of 34-3C monoclonal autoantibody. We generated their degalactosylated or highly sialylated glycovariants and compared their pathogenic effects with those of highly galactosylated or desialylated counterparts. Our results demonstrated that lack of galactosylation, but not sialylation, enhanced the pathogenic activity of 34-3C IgG1, but not IgG2a autoantibodies. Moreover, analysis of in vivo complement activation and of the pathogenic activity in mice deficient in C3 or IgG FcRs excluded the implication of mannose-binding lectin-mediated complement activation in the enhanced pathogenic effect of agalactosylated IgG1 anti-erythrocyte autoantibodies.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Yang G, Cui T, Wang Y, Sun S, Ma T, Wang T, Chen Q, Li Z. Selective isolation and analysis of glycoprotein fractions and their glycomes from hepatocellular carcinoma sera. Proteomics 2013; 13:1481-98. [PMID: 23436760 DOI: 10.1002/pmic.201200259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/29/2013] [Accepted: 02/12/2013] [Indexed: 01/20/2023]
Abstract
As one of the most important post-translational modifications, the discovery, isolation, and identification of glycoproteins are becoming increasingly important. In this study, a Con A-magnetic particle conjugate-based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and hepatocellular carcinoma (HCC) case sera. The isolated glycoproteins and their N-linked glycans were identified by LC-ESI-MS/MS and MALDI-TOF/TOF-MS, respectively. A total of 93 glycoproteins from the healthy donors and 85 glycoproteins from the HCC cases were identified. There were 34 different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34). Twenty-eight glycans from the healthy donors and 30 glycans from the HCC cases were detected and there were 22 different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Among these glycoproteins, 50 were known to be N-linked glycoproteins and three novel glycopeptides from two predicted potential glycoproteins were discovered. Moreover, lectin blotting, Western blotting and lectin/glyco-antibody microarrays were applied to definitely elucidate the change of selective protein expressions and their glycosylation levels, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.
Collapse
Affiliation(s)
- Ganglong Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ishihara T, Kakiya K, Takahashi K, Miwa H, Rokushima M, Yoshinaga T, Tanaka Y, Ito T, Togame H, Takemoto H, Amano M, Iwasaki N, Minami A, Nishimura SI. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics. Biochim Biophys Acta Gen Subj 2013; 1840:645-55. [PMID: 24161698 DOI: 10.1016/j.bbagen.2013.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. METHODS To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. RESULTS Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. CONCLUSION The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. GENERAL SIGNIFICANCE These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents.
Collapse
Affiliation(s)
- Takeshi Ishihara
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co. Ltd., Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|