1
|
Gerhart J, George-Weinstein M. Myo/Nog Cells: The Jekylls and Hydes of the Lens. Cells 2023; 12:1725. [PMID: 37443759 PMCID: PMC10340492 DOI: 10.3390/cells12131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues.
Collapse
|
2
|
Barros RC, Gelens E, Bulten E, Tuin A, de Jong MR, Kuijer R, van Kooten TG. Self-assembled nanofiber coatings for controlling cell responses. J Biomed Mater Res A 2017; 105:2252-2265. [PMID: 28513985 DOI: 10.1002/jbm.a.36092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 01/29/2023]
Abstract
Nanofibers are thought to enhance cell adhesion, growth, and function. We demonstrate that the choice of building blocks in self-assembling nanofiber systems can be used to control cell behavior. The use of 2 D-coated, self-assembled nanofibers in controlling lens epithelial cells, fibroblasts, and mesenchymal stem cells was investigated, focusing on gene and protein expression related to the fibrotic response. To this end, three nanofibers with different characteristics (morphology, topography, and wettability) were compared with two standard materials frequently used in culturing cells, TCPS, and a collagen type I coating. Cell metabolic activity, cell morphology, and gene and protein expression were analyzed. The most hydrophilic nanofiber with more compact network consisting of small fibers proved to provide a beneficial 2 D environment for cell proliferation and matrix formation while decreasing the fibrotic/stress behavior in all cell lines when compared with TCPS and the collagen type I coating. This nanofiber demonstrates the potential to be used as a biomimetic coating to study the development of fibrosis through epithelial-to-mesenchymal transition. This study also shows that nanofiber structures do not enhance cell function by definition, because the physico-chemical characteristics of the nanofibers influence cell behavior as well and actually can be used to regulate cell behavior toward suboptimal performance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2252-2265, 2017.
Collapse
Affiliation(s)
- Raquel C Barros
- Department of Biomedical Engineering, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands
| | - Edith Gelens
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Erna Bulten
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Annemarie Tuin
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Menno R de Jong
- Nano Fiber Matrices B.V. (Nano-FM), Zernikepark 6-8, Groningen, 9747 AN, The Netherlands
| | - Roel Kuijer
- Department of Biomedical Engineering, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands
| | - Theo G van Kooten
- Department of Biomedical Engineering, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Gerhart J, Greenbaum M, Scheinfeld V, FitzGerald P, Crawford M, Bravo-Nuevo A, Pitts M, George-Weinstein M. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens. PLoS One 2014; 9:e95262. [PMID: 24736495 PMCID: PMC3988172 DOI: 10.1371/journal.pone.0095262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
Posterior capsule opacification (PCO) is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA) was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Marvin Greenbaum
- Lankenau Medical Center, Wynnewood, Pennsylvania, United States of America
| | - Victoria Scheinfeld
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Paul FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Mitchell Crawford
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Arturo Bravo-Nuevo
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Meghan Pitts
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Mindy George-Weinstein
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| |
Collapse
|
4
|
Shimada A, Miyata Y, Kosano H. Type I collagen accelerates the spreading of lens epithelial cells through the expression and activation of matrix metalloproteinases. Curr Eye Res 2014; 39:460-71. [PMID: 24400880 DOI: 10.3109/02713683.2013.853194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) are involved in posterior capsule opacification (PCO), but the mechanisms that promote MMP expression are yet to be determined. In this study, we investigated whether type I collagen, which is only detected in aged or cataractous lens capsules, affects the expression and activation of MMPs in primary-cultured chicken lens epithelial cells (LECs). MATERIALS AND METHODS Chicken LECs were isolated from chicken embryos and cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS) on type I collagen-coated dishes. The activity of secreted MMPs was examined using gelatin zymography, and cell spreading was determined as the average area of randomly distributed cells. For some experiments, LECs were cultured in the presence of the broad-spectrum MMP inhibitor, GM6001. LECs cultured on uncoated dishes were used as controls. To examine the involvement of MMP in cell migration, a wound-healing assay was performed in the presence of the MMP inhibitor. RESULTS Chicken LECs constitutively express the pro-form of MMP-2. When LECs were cultured on type I collagen-coated dishes, they expressed the active form of MMP-2 and the pro-form of MMP-9. This expression and activation by type I collagen was also observed in the human LEC line SRA-01/04, but not the human Müller glial cell line, MIO-M1. Type I collagen enhanced cell spreading, which was suppressed by the MMP inhibitor. Type I collagen also accelerated α-smooth muscle actin expression. In addition, LEC migration was inhibited by the MMP inhibitor in a dose-dependent manner in the wound-healing assay. CONCLUSION Type I collagen promotes the expression and activation of MMPs in a LEC-specific manner. These results suggest that type I collagen may play a role in PCO development.
Collapse
Affiliation(s)
- Arata Shimada
- Faculty of Pharmaceutical Science, Teikyo University , Itabashi-ku, Tokyo , Japan
| | | | | |
Collapse
|
5
|
Weber GF, Menko AS. Actin filament organization regulates the induction of lens cell differentiation and survival. Dev Biol 2006; 295:714-29. [PMID: 16678812 DOI: 10.1016/j.ydbio.2006.03.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 01/08/2023]
Abstract
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo. Experimental disassembly of actin stress fibers in cultured lens epithelial cells with either the ROCK inhibitor Y-27632, which destabilizes stress fibers, or the actin depolymerizing drug cytochalasin D induced expression of lens cell differentiation markers. Significantly, short-term disassembly of actin stress fibers in lens epithelial cells by cytochalasin D was sufficient to signal lens cell differentiation. As differentiation proceeds, lens fiber cells assemble actin into cortical filaments. Both the actin stress fibers in lens epithelial cells and the cortical actin filaments in lens fiber cells were found to be necessary for cell survival. Sustained cytochalasin D treatment of undifferentiated lens epithelial cells suppressed Bcl-2 expression and the cells ultimately succumbed to apoptotic cell death. Inhibition of Rac-dependent cortical actin organization induced apoptosis of differentiating lens fiber cells. Our results demonstrate that disassembly of actin stress fibers induced lens cell differentiation, and that actin filaments provide an essential survival signal to both lens epithelial cells and differentiating lens fiber cells.
Collapse
Affiliation(s)
- Gregory F Weber
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
6
|
Kampmeier J, Baldysiak-Figiel A, de Jong-Hesse Y, Lang GK, Lang GE. Effect of growth factors on proliferation and expression of growth factor receptors in a human lens epithelial cell line. J Cataract Refract Surg 2006; 32:510-4. [PMID: 16631066 DOI: 10.1016/j.jcrs.2005.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), and transforming growth factor beta 2 (TGFbeta2) on proliferation of a human lens epithelial cell line (HLEC-SRA 01/04); the effect of bFGF and TGFbeta2 on proliferation of human lens epithelial cells (HLECs); and the expression of bFGF, EGF, IGF-1, and TGFbeta2 receptors in an HLEC-SRA 01/04 cell line. SETTING Department of Ophthalmology, University of Ulm, Ulm, Germany. METHODS Both HLEC and HLEC-SRA 01/04 were treated with 1 to 50 ng/mL bFGF and TGFbeta2) Additionally, HLEC-SRA 01/04 were cultured with EGF and IGF-1 at a concentration of 1 to 50 ng/mL for 48 hours in the presence of [3H]-thymidine. In all experiments, untreated serum-free negative controls were used. (3H)-thymidine incorporation as a direct measure of lens epithelial cell proliferation was assessed by liquid scintillation counting. The expression of bFGF, EGF, IGF-1, and TGFbeta2 receptors in HLEC-SRA 01/04 were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was performed using the 2-sample t test for the means. RESULTS Proliferation of HLECs was dose dependently induced by bFGF and TGFbeta2, showing maximum effects at 10 ng/mL (P = .0003) and at 50 ng/mL (P < .0001), respectively. Proliferation of HLEC-SRA 01/04 was also induced by bFGF, showing slight but significant effects (P < .03). Additionally, HLEC-SRA 01/04 proliferation was dose-dependently induced by EGF with a maximum effect at 5 ng/mL (P < .01), IGF-1 with a maximum effect at 5 ng/mL (P < .0001), and TGFbeta2 with a maximum effect at 10 ng/mL (P < .0001) compared with the control. The RT-PCR analysis revealed bFGF, EGF, IGF-1, and TGFbeta2 receptor expression in the HLEC-SRA 01/04 cell line. CONCLUSIONS The data showed that bFGF and TGFbeta2 are strong mitogens for HLEC. The HLEC-SRA 01/04 cell line derived from HLEC reacted to growth factors, with cell proliferation only to a lesser extent. Such quiescence of these cells, when compared with cells in primary culture, cannot be explained by the lack of respective receptors for growth factors. Further investigation of growth factor-induced responses of both cell types will provide new insight into the proliferative processes involved in postoperative secondary cataract formation.
Collapse
|
7
|
Abstract
The intraocular lens has recently been recognized as a potential source for neuroprotective and neurite-promoting activities. The lens is ontogenetically and functionally a peculiar intraocular tissue with the unique feature of performing incomplete cellular apoptosis throughout the lifetime. The ectodermally derived epithelial cells permanently divide to produce the nuclei- and organelle-free lens fibre cells that allow for the optical transparency. The underlying extremely specific physical, biochemical, metabolic and structural mechanism lead to efficient protection from photo-oxidative stress caused by exposure to short-wavelength light. The fact that fibre cells undergo incomplete apoptosis is also of crucial importance to other cellular systems. In particular, injured nerve cells such as axotomized retinal ganglion cells may profit from the apoptosis-blocking mechanisms operating within the lens fibres. In this review we first discuss some factors involved in the lens differentiation and partial apoptosis as a basic principle of long-term survival. We then present recent experimental evidence that lenticular factors also operate outside the lens, and in particular within the retina to contribute to axonal regeneration, e.g. after a trauma. In turn, factors such as GAP-43 that were thought to be exclusively expressed within nervous tissue have now also been discovered within the lenticular tissue. Experiments of the direct confrontation of lenticular epithelial and fibre cells with regenerating ganglion cell axons in vitro are presented. It is concluded that survival factors supplied by the lens might be used to facilitate survival within neuronal tissue.
Collapse
Affiliation(s)
- T Stupp
- Department of Experimental Ophthalmology, School of Medicine, University Eye Hospital of Münster and Interdisciplinary Clinical Research Center (IZKF), Domagkstrasse 15, D-48149 Münster, Germany
| | | |
Collapse
|
8
|
Lim JM, Kim JA, Lee JH, Joo CK. Downregulated Expression of Integrin α6 by Transforming Growth Factor-β1 on Lens Epithelial Cells in Vitro. Biochem Biophys Res Commun 2001; 284:33-41. [PMID: 11374867 DOI: 10.1006/bbrc.2001.4942] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrins represent the main cell surface receptors that mediate cell-matrix and cell-cell interactions. They play critical roles in adhesion, migration, morphogenesis, and the differentiation of several cell types. Previous studies have demonstrated that members of the fibroblast growth factor (FGF)-2, transforming growth factor (TGF)-beta(1), and insulin growth factor (IGF)-1 play important roles in lens biology. In particularly, TGF-beta(1) appears to play a key role in extracellular matrix production, cell proliferation, and cell differentiation of lens epithelial cells. In this study we investigated the effects of FGF-2, TGF-beta(1), and IGF-1 on the modulation of integrin receptors using lens epithelial cell lines (HLE B-3 and alphaTN-4) and lens explants. We found that the expression of integrin alpha6 is downregulated by TGF-beta(1), but is not responsive to FGF-2 or IGF-1. The promoter activity of the integrin alpha6 gene decreased upon TGF-beta(1) treatment in a transient transfection assay, and flow cytometric analysis demonstrated the reduced expression of integrin alpha6 by TGF-beta(1), whereas significant changes were not observed in the level of integrin alpha6 after the addition of FGF-2. These findings suggest that the reduced expression of integrin alpha6 caused by TGF-beta(1) might play a role in the activation of the cell cycle genes required during the fiber differentiation of the lens.
Collapse
Affiliation(s)
- J M Lim
- Department of Ophthalmology and Visual Science, College of Medicine, Catholic University of Korea, and Catholic Research Institutes of Medical Sciences, Seoul, Korea
| | | | | | | |
Collapse
|
9
|
Garner MH. Lens sphingomyelinases. Exp Eye Res 2000; 71:103-7. [PMID: 10880281 DOI: 10.1006/exer.2000.0851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Richiert DM, Ireland ME. Matrix metalloproteinase secretion is stimulated by TGF-beta in cultured lens epithelial cells. Curr Eye Res 1999; 19:269-75. [PMID: 10487967 DOI: 10.1076/ceyr.19.3.269.5316] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine if TGF-beta regulates the expression of metalloproteinases in chick lens annular pad cells. METHODS The activity of secreted matrix metalloproteinases was examined with gelatin zymography in primary cultures exposed to TGF-beta. RESULTS Metalloproteinases with electrophoretic mobilities corresponding to MMP2 and MMP9 were tentatively identified. Activated, processed forms of the two metalloproteinases were also observed. Plasminogen activators potentially capable of initiating metalloproteinase cascades were concomitantly elicited. Metalloproteinase secretion was shown to be specific for TGF-beta stimulation and independent of substrate composition. CONCLUSIONS These results indicate that TGF-beta-mediated processes could be responsible for localized lens capsular heterogeneity, establishing a substrate suitable for cell migration or the release of matrix-bound factors which influence the terminal differentiation of lens cells.
Collapse
Affiliation(s)
- D M Richiert
- Wayne State University School of Medicine Department of Anatomy and Cell Biology 540 E. Canfield, MI 48201, Detroit, USA.
| | | |
Collapse
|