1
|
Devi K, Bali A, Bhatia P, Singh N, Jaggi AS. Exploring the ameliorative potential of Bacopa monnieri in acetic acid induced ulcerative colitis in mice. Nat Prod Res 2024; 38:2105-2110. [PMID: 37427984 DOI: 10.1080/14786419.2023.2233047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
The aim of the present study was to evaluate the role of Bacopa monnieri in acetic-acid-induced ulcerative colitis in mice. Acetic acid (3%v/v, in 0.9% saline) was infused intrarectally to induce ulceration in mice. Administration of acetic acid resulted in severe inflammation of the colon along with an increase in the myeloperoxidase (MPO) activity assessed on 7th day. Treatment with Bacopa monnieri extract (20 mg/kg and 40 mg/kg, p.o) and saponin-rich fraction (5 mg/kg and 10 mg/kg; p.o) for 7 days i.e. 2 days before and 5 days after acetic acid infusion, significantly attenuated the colonic inflammation in a dose-dependent manner. Furthermore, it also reduced the MPO levels and the disease activity score as compared to the control group. It may be concluded that Bacopa monnieri has the potential for ameliorating acetic-acid-induced colitis and its saponin-rich fraction may be responsible for this effect.
Collapse
Affiliation(s)
- Karam Devi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab Bathinda, Bathinda, India
| | - Pankaj Bhatia
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
2
|
Bhandari P, Sendri N, Devidas SB. Dammarane triterpenoid glycosides in Bacopa monnieri: A review on chemical diversity and bioactivity. PHYTOCHEMISTRY 2020; 172:112276. [PMID: 32058865 DOI: 10.1016/j.phytochem.2020.112276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bacopa monnieri (L.) is a reputed medicinal herb in traditional system of medicine of India, where it is used as nervine tonic to sharpen intellect and memory. This review discusses chemical characterization of dammarane triterpenoid glycosides which are well accepted for improvement in memory and for potential pharmacological activities. In addition, this review provides information on the chemical composition of specialized metabolites of B. monnieri and in the formulations by different analytical techniques. This comprehensive review covers literature up to 2019 with an emphasis on structural characterization of dammarane triterpenoid glycosides by spectroscopic techniques, chemical composition by analytical methods and pharmacological activities.
Collapse
Affiliation(s)
- Pamita Bhandari
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| | - Nitisha Sendri
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Shinde Bhagatsing Devidas
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
3
|
Shahid M, Subhan F, Ahmad N, Ullah I. A bacosides containing Bacopa monnieri extract alleviates allodynia and hyperalgesia in the chronic constriction injury model of neuropathic pain in rats. Altern Ther Health Med 2017; 17:293. [PMID: 28583132 PMCID: PMC5460461 DOI: 10.1186/s12906-017-1807-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The current therapy of neuropathic pain is inadequate and is limited by the extent of pain relief and the occurrence of dose dependant side effects. Insufficient control of pain with conventional medications prompts the use of complementary and alternative medicine therapies by patients with neuropathic pain. This study therefore investigated a standardized methanolic extract of Bacopa monnieri, a widely reputed nootropic plant, for prospective antinociceptive effect in the chronic constriction injury (CCI) model of neuropathic pain. METHODS Placement of four loose ligatures around the sciatic nerve produced partial denervation of the hindpaw in rats. Bacopa monnieri (40 and 80 mg/kg, p.o) and the positive control, gabapentin (75 mg/kg, i.p), were administered daily after CCI or sham surgery and the behavioral paradigms of static- and dynamic-allodynia (paw withdrawal threshold to von Frey filament stimulation [PWT] and paw withdrawal latency to light-brushing [PWL]), cold-allodynia (paw withdrawal duration [PWD] to acetone), heat- (PWL to heat-stimulus) and punctate-hyperalgesia (PWD to pin-prick) were assessed on days 3, 7, 14 and 21. RESULTS CCI consistently generated static- (days 3-21), dynamic- (days 14-21) and cold-allodynia (days 3-21) plus heat- and mechano-hyperalgesia (days 3-21). The tested doses of Bacopa monnieri significantly attenuated the CCI-induced allodynia and hyperalgesia, exemplified by increased PWT (days 7-21), PWL to light brushing (days 14-21) and heat (days 7-21) as well as decreased PWD to pin prick and cold stimuli (days 3-21). The extract also counterbalanced the CCI-induced aberrations in the nociceptive behaviors by increasing the pain threshold to that of pre-surgery baseline. Gabapentin also afforded analogous beneficial behavioral profile but of higher magnitude. CONCLUSIONS Our findings suggest that Bacopa monnieri can be used as adjuvant therapy for neuropathic pain conditions afflicted with allodynia and hyperalgesia.
Collapse
|
4
|
Mathur D, Goyal K, Koul V, Anand A. The Molecular Links of Re-Emerging Therapy: A Review of Evidence of Brahmi (Bacopa monniera). Front Pharmacol 2016; 7:44. [PMID: 26973531 PMCID: PMC4778428 DOI: 10.3389/fphar.2016.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
The convolution associated with memory is being resolved with advancement in neuroscience. According to the concurrent assumptions, synaptic plasticity forms one of the basis of memory formation, stabilization and strengthening. In Alzheimer's disease (AD), which is generally characterized by memory dysfunction, connections amongst the cells in the brain are attenuated or lost leading to degeneration of neural networks. Numerous attempts have been made to find new therapies for memory dysfunction with increasing attention and investments being laid on herbal drugs. Many herbal plants and extracts have already documented beneficial results when tested for antiamnesic effects. Brahmi (Bacopa monniera) is one such common herbal drug, which is employed for a long time in the Indian and Chinese medical system in order to treat several disorders. Previous research has shown that Brahmi exerts many pharmacological effects including memory boosting capacity in the treatment of Alzheimer's disease and Schizophrenia, exhibiting antiparkinsonian, antistroke, and anticonvulsant potentials. The present review discusses the chemical constituents of Brahmi along with in vitro and in vivo studies based on the pharmacological effects exerted by it. The efficacy of Brahmi in treating various disorders has evoked sufficient research in recent years and now it is a time to launch multiple clinical trials.
Collapse
Affiliation(s)
- Deepali Mathur
- Department of Functional Biology, Faculty of Biological Sciences, University of Valencia Valencia, Spain
| | - Kritika Goyal
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Veena Koul
- Center for Biomedical Engineering, Indian Institute of Technology New Delhi, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| |
Collapse
|
5
|
Hussein SA, Hassanein MRR, Amin A, Hussein AHM. Alpha-Lipoic Acid Protects Rat Kidney Against Oxidative Stress-Mediated DNA Damage and Apoptosis Induced by Lead. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajbmb.2016.1.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Bacopa monniera selectively attenuates suppressed Superoxide dismutase activity in Diazepam induced amnesic mice. Ann Neurosci 2014; 18:8-13. [PMID: 25205911 PMCID: PMC4117027 DOI: 10.5214/ans.0972.7531.1118104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/10/2010] [Accepted: 01/04/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Amnesia is characterized by loss of memory that could result from abnormal neuro-chemical homeostasis, genetic predisposition or drug abuse. We earlier reported that B. monniera attenuates diazepam, scopolamine and L-NNA induced amnesia and wanted to test if SOD levels were affected by its administration. PURPOSE B. monniera is earlier reported to augment the defense system for oxidative stress by increasing the activities of superoxide dismutase, therefore, we investigated its levels after B. monniera administration in combination with different amnesic agents. METHODS We treated mice with amnesic agents such as scopolamine, diazepam, L-NNA and MK 801 either with or without B. monniera. RESULTS Diazepam (1.75 mg/kg ip) significantly reduced SOD activity while it was unaltered when Scopolamine (0.1 mg/kg ip), MK 801 (0.17 mg/kg ip) and L-NNA (30 mg/kg ip) were administered. B. monniera significantly attenuated diazepam induced suppression of SOD activity. CONCLUSION It is suggested that the mechanism of B. monniera's antiamnesic effect may vary depending on the type of amnesic agent used. However, antioxidant mechanism may be central to evoking the memory enhancing effects of B. monniera against diazepam induced amnesia.
Collapse
|
7
|
Vale FF, Oleastro M. Overview of the phytomedicine approaches against Helicobacter pylori. World J Gastroenterol 2014; 20:5594-5609. [PMID: 24914319 PMCID: PMC4024768 DOI: 10.3748/wjg.v20.i19.5594] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/18/2013] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) successfully colonizes the human stomach of the majority of the human population. This infection always causes chronic gastritis, but may evolve to serious outcomes, such as peptic ulcer, gastric carcinoma or mucosa-associated lymphoid tissue lymphoma. H. pylori first line therapy recommended by the Maastricht-4 Consensus Report comprises the use of two antibiotics and a proton-pomp inhibitor, but in some regions failure associated with this treatment is already undesirable high. Indeed, treatment failure is one of the major problems associated with H. pylori infection and is mainly associated with bacterial antibiotic resistance. In order to counteract this situation, some effort has been allocated during the last years in the investigation of therapeutic alternatives beyond antibiotics. These include vaccines, probiotics, photodynamic inactivation and phage therapy, which are briefly revisited in this review. A particular focus on phytomedicine, also described as herbal therapy and botanical therapy, which consists in the use of plant extracts for medicinal purposes, is specifically addressed, namely considering its history, category of performed studies, tested compounds, active principle and mode of action. The herbs already experienced are highly diverse and usually selected from products with a long history of employment against diseases associated with H. pylori infection from each country own folk medicine. The studies demonstrated that many phytomedicine products have an anti-H. pylori activity and gastroprotective action. Although the mechanism of action is far from being completely understood, current knowledge correlates the beneficial action of herbs with inhibition of essential H. pylori enzymes, modulation of the host immune system and with attenuation of inflammation.
Collapse
|
8
|
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 2013; 16:313-26. [PMID: 23772955 PMCID: PMC3746283 DOI: 10.1089/rej.2013.1431] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/17/2013] [Indexed: 11/13/2022] Open
Abstract
This review synthesizes behavioral research with neuromolecular mechanisms putatively involved with the low-toxicity cognitive enhancing action of Bacopa monnieri (BM), a medicinal Ayurvedic herb. BM is traditionally used for various ailments, but is best known as a neural tonic and memory enhancer. Numerous animal and in vitro studies have been conducted, with many evidencing potential medicinal properties. Several randomized, double-blind, placebo-controlled trials have substantiated BM's nootropic utility in humans. There is also evidence for potential attenuation of dementia, Parkinson's disease, and epilepsy. Current evidence suggests BM acts via the following mechanisms-anti-oxidant neuroprotection (via redox and enzyme induction), acetylcholinesterase inhibition and/or choline acetyltransferase activation, β-amyloid reduction, increased cerebral blood flow, and neurotransmitter modulation (acetylcholine [ACh], 5-hydroxytryptamine [5-HT], dopamine [DA]). BM appears to exhibit low toxicity in model organisms and humans; however, long-term studies of toxicity in humans have yet to be conducted. This review will integrate molecular neuroscience with behavioral research.
Collapse
Affiliation(s)
- Sebastian Aguiar
- Department of Neuroscience, Pitzer College, Claremont, California 91711, USA.
| | | |
Collapse
|
9
|
Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:972028. [PMID: 23984424 PMCID: PMC3745907 DOI: 10.1155/2013/972028] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/20/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
Abstract
Wound healing effects of 50% ethanol extract of dried whole plant of Bacopa monniera (BME) was studied on wound models in rats. BME (25 mg/kg) was administered orally, once daily for 10 days (incision and dead space wound models) or for 21 days or more (excision wound model) in rats. BME was studied for its in vitro antimicrobial and in vivo wound breaking strength, WBS (incision model), rate of contraction, period of epithelization, histology of skin (excision model), granulation tissue free radicals (nitric oxide and lipid peroxidation), antioxidants (catalase, superoxide dismutase, and reduced glutathione), acute inflammatory marker (myeloperoxidase), connective tissue markers (hydroxyproline, hexosamine, and hexuronic acid), and deep connective tissue histology (dead space wound). BME showed antimicrobial activity against skin pathogens, enhanced WBS, rate of contraction, skin collagen tissue formation, and early epithelization period with low scar area indicating enhanced healing. Healing effect was further substantiated by decreased free radicals and myeloperoxidase and enhanced antioxidants and connective tissue markers with histological evidence of more collagen formation in skin and deeper connective tissues. BME decreased myeloperoxidase and free radical generated tissue damage, promoting antioxidant status, faster collagen deposition, other connective tissue constituent formation, and antibacterial activity.
Collapse
|
10
|
Vítor JMB, Vale FF. Alternative therapies for Helicobacter pylori: probiotics and phytomedicine. ACTA ACUST UNITED AC 2012; 63:153-64. [PMID: 22077218 DOI: 10.1111/j.1574-695x.2011.00865.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a common human pathogen infecting about 30% of children and 60% of adults worldwide and is responsible for diseases such as gastritis, peptic ulcer and gastric cancer. Treatment against H. pylori is based on the use of antibiotics, but therapy failure can be higher than 20% and is essentially due to an increase in the prevalence of antibiotic-resistant bacteria, which has led to the search for alternative therapies. In this review, we discuss alternative therapies for H. pylori, mainly phytotherapy and probiotics. Probiotics are live organisms or produced substances that are orally administrated, usually in addition to conventional antibiotic therapy. They may modulate the human microbiota and promote health, prevent antibiotic side effects, stimulate the immune response and directly compete with pathogenic bacteria. Phytomedicine consists of the use of plant extracts as medicines or health-promoting agents, but in most cases the molecular mode of action of the active ingredients of these herbal extracts is unknown. Possible mechanisms include inhibition of H. pylori urease enzyme, disruption of bacterial cell membrane, and modulation of the host immune system. Other alternative therapies are also reviewed.
Collapse
Affiliation(s)
- Jorge M B Vítor
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
11
|
Rauf K, Subhan F, Sewell RDE. A Bacoside containing Bacopa monnieri extract reduces both morphine hyperactivity plus the elevated striatal dopamine and serotonin turnover. Phytother Res 2011; 26:758-63. [PMID: 22105846 DOI: 10.1002/ptr.3631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/19/2011] [Accepted: 07/09/2011] [Indexed: 12/31/2022]
Abstract
Bacopa monnieri (BM) has been used in Ayurvedic medicine as a nootropic, anxiolytic, antiepileptic and antidepressant. An n-butanol extract of the plant (nBt-ext BM) was analysed and found to contain Bacoside A (Bacoside A3, Bacopaside II and Bacopasaponin C). The effects of the BM extract were then studied on morphine-induced hyperactivity as well as dopamine and serotonin turnover in the striatum since these parameters have a role in opioid sensitivity and dependence. Mice were pretreated with saline or nBt-ext BM (5, 10 and 15 mg/kg, orally), 60 min before morphine administration and locomotor activity was subsequently recorded. Immediately after testing, striatal tissues were analysed for dopamine (DA), serotonin (5HT) and their metabolites using HPLC coupled with electrochemical detection. The results indicated that nBt-ext BM significantly (p < 0.001) decreased locomotor activity in both the saline and morphine treated groups. Additionally, nBt-ext BM significantly lowered morphine-induced dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-H1AA) upsurges in the striatum but failed to affect DA, 5-HT and their metabolites in the saline treated group. These findings suggest that nBt-ext BM has an antidopaminergic/serotonergic effect and may have potential beneficial effects in the treatment of morphine dependence.
Collapse
Affiliation(s)
- Khalid Rauf
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | | | | |
Collapse
|
12
|
Janani P, Sivakumari K, Geetha A, Ravisankar B, Parthasarathy C. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. J Cancer Res Clin Oncol 2010; 136:759-70. [PMID: 19916024 DOI: 10.1007/s00432-009-0715-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/19/2009] [Indexed: 01/12/2023]
Abstract
PURPOSE Chemoprevention is an effective approach to control hepatocarcinogenesis. Bacoside A, the active constituent of Bacopa monniera Linn., is anticipated to play a role in chemoprevention of liver cancer. METHODS In the present study, we investigated the chemopreventive effect of bacoside A against N-nitrosodiethylamine-induced hepatocarcinogenesis in an animal model. RESULTS Administration of carcinogen showed a significant elevation in the levels of lipid peroxidation, serum tumor marker enzymes and liver injury marker enzymes with subsequent decrease in the levels of both hemolysate and liver antioxidant status. Bacoside A co-treatment maintained the N-nitrosodiethylamine-induced alterations at near normal level. Histopathological and electron microscopic study of the liver tissue also supports the above biochemical observations. CONCLUSIONS From our findings we conclude that bacoside A is effective to prevent DEN-induced hepatocellular carcinoma by quenching lipid peroxidation and enhancing antioxidant status through free radical scavenging mechanism and having potential of protecting endogenous enzymatic and non-enzymatic antioxidant activity.
Collapse
|
13
|
Lohidasan S, Paradkar AR, Mahadik KR. Nootropic activity of lipid-based extract of Bacopa monniera Linn. compared with traditional preparation and extracts. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.11.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The aim was to design an alternative solvent-free extraction method using the hydrophilic lipid Gelucire (polyethylene glycol glycerides) for herbal extraction and to confirm the efficacy of extraction using biological screening.
Methods
Bacopa monniera Linn. (BM) was selected for the study. Conventional methanolic extract (MEBM), Ayurvedic ghrita (AGBM) and lipid extracts (LEBM) were prepared and standardised by high-performance thin-layer chromatography (HPTLC). Nootropic activity in rats was evaluated using the two-trial Y-maze test and the anterograde amnesia induced by scopolamine (1 mg/kg i.p.) determined by the conditioned avoidance response. The extracts were administered daily at doses of 100, 200 and 400 mg/kg orally. At the end of the conditioned avoidance response test, brain monoamine levels were estimated by HPLC.
Key findings
The LEBM, MEBM and AGBM contained 3.56%, 4.10% and 0.005% bacoside A, respectively. Significantly greater spatial recognition was observed with LEBM (P < 0.001 at 400 and 200 mg/kg) and MEBM (P < 0.001 at 400 mg/kg, P < 0.01 at 200 mg/kg) than AGBM. The conditioned avoidance response was significantly higher in the groups treated with high doses of LEBM and MEBM than AGBM. There were significant decreases in brain noradrenaline (P < 0.001) and 5-hydroxytryptamine (P < 0.01) levels and an increase in dopamine levels (P < 0.05) in the LEBM-treated groups compared with the stress control group.
Conclusions
The proposed LEBM is solvent free, does not have the shortcomings associated with conventional extraction, and had comparable nootropic activity to the MEBM.
Collapse
Affiliation(s)
- Sathiyanarayanan Lohidasan
- Department of Quality Assurance Technique, Bharati Vidyapeeth University – Poona College of Pharmacy, Maharashtra, India
| | - Anant R Paradkar
- Department of Pharmaceutical Engineering Science, Institute of Pharmaceutical Innovation, and IRC in Polymer Science and Technology, University of Bradford, UK
| | - Kakasaheb R Mahadik
- Department of Quality Assurance Technique, Bharati Vidyapeeth University – Poona College of Pharmacy, Maharashtra, India
| |
Collapse
|
14
|
Janani P, Sivakumari K, Parthasarathy C. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol Toxicol 2008; 25:425-34. [PMID: 18679812 DOI: 10.1007/s10565-008-9096-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.
Collapse
|
15
|
Abstract
Although very few drugs are currently approved by regulatory authorities for treating multi-factorial ailments and disorders of cognition such as Alzheimer's disease, certain plant-derived agents, including, for example, galantamine and rivastigmine (a semi-synthetic derivative of physostigmine) are finding an application in modern medicine. However, in Ayurveda, the Indian traditional system of medicine which is more than 5000 years old, selected plants have long been classified as 'medhya rasayanas', from the Sanskrit words 'medhya', meaning intellect or cognition, and 'rasayana', meaning 'rejuvenation'. These plants are used both in herbal and conventional medicine and offer benefits that pharmaceutical drugs lack. In the present article, an attempt has been made to review the most important medicinal plants, including Ginkgo biloba, St John's wort, Kava-kava, Valerian, Bacopa monniera and Convolvulus pluricaulis, which are widely used for their reputed effectiveness in CNS disorders.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, Texas Tech University, Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, USA.
| |
Collapse
|
16
|
Deb DD, Kapoor P, Dighe RP, Padmaja R, Anand MS, D'Souza P, Deepak M, Murali B, Agarwal A. In vitro safety evaluation and anticlastogenic effect of BacoMind on human lymphocytes. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:7-23. [PMID: 18478974 DOI: 10.1016/s0895-3988(08)60002-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE BacoMind (BM) is a standardized extract of Bacopa monnieri, which belongs to the family Scrophulariaceae and is a creeping annual plant found throughout the Indian subcontinent. It has been used by Ayurvedic medicinal practitioners in India for almost 3000 years and is classified as a medharasayana, a substance which improves memory and intellect. With the widespread traditional use as well as scientific validation of Bacopa monnieri for nootropic activity, a bioactive-rich unique phytochemical composition-BacoMind was developed from B. monnieri for use as a cognition and memory enhancing agent. The present study aimed to investigate the in vitro toxicity of this formulation of BacoMind on human lymphocytes and to rule out its possible contribution to mutagenicity. METHODS In the present investigation the active ingredients present in BM were identified and quantified by high performance liquid chromatography (HPLC) and high performance thin-layer chromatography (HPTLC). Antioxidant and anticlastogenic properties of BM were studied in vitro with and without metabolic activation. Doses of BM were chosen on the basis of mitotic index (MI) and cytokinesis-block proliferation index (CBPI). Clastogenicity assays were performed at 31.2 microg/mL, 62.5 microg/mL, and 125 microg/mL, while the Salmonella reverse mutation assay (Ames test) was performed at doses of 61.72, 185.18, 555.55, 1666.67, and 5000.00 microg/plate. RESULTS HPLC and HPTLC analysis of BM revealed the presence of bacoside A3, bacopaside I, bacopaside II, jujubogenin isomer of bacopasaponin C, bacosine, luteolin, apigenin, bacosine, and beta-sitosterol D glucoside. BM demonstrated significant antioxidant activity. The number of chromosomal aberrations and the frequency of micronuclei induced by BM were not statistically significant up to a dose of 62.5 microg/mL. A subsequent dose of 125 microg/mL prior to metabolic activation induced mild clastogenicity, but it was found to be biologically insignificant as this effect was not seen post metabolic activation. BM also demonstrated a dose-dependent protection against the clastogens used in this study using the above tests for clastogenicity. Maximum protection was observed in presence of metabolic activation. Moreover, BM demonstrated no mutagenic effect on the tested strains, as observed in the Ames test. CONCLUSION BM protected human lymphocytes against various clastogens. BM also exhibited high antioxidant activity which might be responsible for the observed protective effects against the clastogens since the used clastogens are known to induce their clastogenic effects via production of oxidative radicals.
Collapse
Affiliation(s)
- Dlpanwita Dutta Deb
- Natural Remedies Pvt. Ltd, 19 K. M. Stone, Hosur Road, Plot No. 5B Veerasandra Indl. Area Bangalore 560100, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Despite years of experience with Helicobacter pylori treatment, the ideal regimen for treating the infection has not been found. The most effective eradication treatment is the combination of a proton pump inhibitor with antibiotics, but 10-20% of the patients fail to obtain eradication of the infection. Antibiotic resistance is a major factor affecting the outcome of treatment. Non-antibiotic therapies, including phytomedicines, probiotics, and antioxidants, have been increasingly investigated as potential alternatives for the treatment of H. pylori. In this article, we review the non-antibiotic therapies for H. pylori infection.
Collapse
Affiliation(s)
- Mayra M Kamiji
- Departamento de Clinica Medica, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto-SP, Brazil.
| | | |
Collapse
|
18
|
Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2005; 12:305-17. [PMID: 15898709 DOI: 10.1016/j.phymed.2003.12.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bacopa monniera (BM), a traditional Ayurvedic medicine, used for centuries as a memory enhancing, anti-inflammatory, analgesic, antipyretic, sedative and antiepileptic agent. The plant, plant extract and isolated bacosides (the major active principles) have been extensively investigated in several laboratories for their neuropharmacological effects and a number of reports are available confirming their nootropic action. In addition, researchers have evaluated the anti-inflammatory, cardiotonic and other pharmacological effects of BM preparations/extracts. Therefore, in view of the important activities performed by this plant, investigation must be continued in the recently observed actions described in this paper. Moreover, other clinical studies have to be encouraged, also to evidence any side effects and possible interactions between this herbal medicine and synthetic drugs.
Collapse
Affiliation(s)
- A Russo
- Department of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania, Catania, Italy.
| | | |
Collapse
|