1
|
Koike H, Kanda M, Yoshikawa S, Hayashi H, Matsushima Y, Ohba Y, Hayashi M, Nagano C, Otsuka K, Kamiie J, Sasamoto T. Proteomic identification and quantification of Clostridium perfringens enterotoxin using a stable isotope-labelled peptide via liquid chromatography-tandem mass spectrometry. Forensic Toxicol 2023; 41:249-259. [PMID: 36773219 DOI: 10.1007/s11419-023-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Detection of Clostridium perfringens enterotoxin (CPE) in human stool is critical evidence of food poisoning. However, processing patient-derived samples is difficult and very few methods exist to confirm the presence of CPE. In this study, a technique was developed using proteomic analysis to identify and quantify CPE in artificial gut fluid as an alternative. METHODS The standard CPE was spiked into artificial gut fluids, and effective methods were developed by employing both a stable isotope-labelled internal standard peptide and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Proteotypic peptide EILDLAAATER formed by tryptic digestion was selected for quantitation of CPE. The peptide was identified using product ion spectra. Although the nontoxic peptides originating from CPE showed very low detectability in extraction and tryptic digestion, they could be detected with sufficient sensitivity using the method we developed. Based on a spiked recovery test at two concentrations (50 and 200 µg/kg), the recovery values were 85 and 78%, respectively. The relative standard deviations of repeatability and within-laboratory reproducibility were less than 8 and 11%, respectively. These standard deviations satisfied the criteria of the Japanese validation guidelines for residues (MHLW 2010, Director Notice, Syoku-An No. 1224-1). The limit of quantification (LOQ) was estimated to be 50 µg/kg. The combination of the product ion spectra and relative ion ratio supported CPE identification at the LOQ level. CONCLUSIONS To the best of our knowledge, this is the first report of proteomic analysis of CPE using LC-MS/MS. The method would greatly help in assessing CPE reliably.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan.
| | - Maki Kanda
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Souichi Yoshikawa
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Hiroshi Hayashi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Yoko Matsushima
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Yumi Ohba
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Momoka Hayashi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Chieko Nagano
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Kenji Otsuka
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Takeo Sasamoto
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| |
Collapse
|
2
|
Raj J, Vasiljević M, Tassis P, Farkaš H, Bošnjak-Neumüller J, Männer K. Effects of a modified clinoptilolite zeolite on growth performance, health status and detoxification of aflatoxin B 1 and ochratoxin A in male broiler chickens. Br Poult Sci 2021; 62:601-610. [PMID: 33595390 DOI: 10.1080/00071668.2021.1891522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The aim of the present study was to test the ability of an in-feed modified clinoptilolite zeolite-based mycotoxin binding substance (Minazel® Plus, Patent Co, Misicevo, Serbia; MP) to prevent gastrointestinal absorption of aflatoxin B1 (AFB1) and ochratoxin A (OTA) and its effects on health status and performance parameters of broilers.2. A total of 375, 1 d old male broiler chickens (Cobb 500) were used for a total trial period of 42 d (from hatch to 42 d of age). Animals were randomly allocated to five treatment groups (T1-T5), in 25 pens (15 male broilers per pen, five pens per treatment). T1 was the control maize-based diet without the addition of mycotoxins, or the test product. T2 and T3 groups received contaminated maize in the diet containing 0.02 mg AFB1/kg feed and 0.1 mg OTA/kg feed, whereas T4 and T5 groups received 0.05 mg AFB1/kg feed and 0.5 mg OTA/kg feed. The MP was added to T3 (1 g/kg feed), and T5 (2 g/kg feed) groups.3. Results showed that exposure to AFB1 and OTA at low or moderate levels, as used in this study, did not markedly affect growth performance, blood profile or organ weights. Improvements in feed conversion ratio (FCR) were observed in birds receiving MP, whereby FCR of T3 group was improved in comparison with T2 group, although there was no significant difference between T5 and T4 groups. However, average body weight gain (ABWG) was improved in the T5 group compared to T4, but not in the T3 versus T2 group comparison.4. For serum biochemical parameters, glutamate-dehydrogenase (GLDH) was significantly improved in T5 birds in comparison with T4. The addition of MP significantly decreased residue levels of AFB1 in liver and OTA in the spleen of the treated groups.5. The improvements in productive performance and reduction of mycotoxin residue levels in tissues demonstrated a beneficial effect of MP in cases of concurrent AFB1 and OTA ingestion by broilers.
Collapse
Affiliation(s)
- J Raj
- Patent Co, DOO., Vlade Ćetkovića 1A, Mišićevo, Serbia
| | - M Vasiljević
- Patent Co, DOO., Vlade Ćetkovića 1A, Mišićevo, Serbia
| | - P Tassis
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - H Farkaš
- Patent Co, DOO., Vlade Ćetkovića 1A, Mišićevo, Serbia
| | | | - K Männer
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Bhatti SA, Khan MZ, Saleemi MK, Hassan ZU, Khan A. Ameliorative role of dietary activated carbon against ochratoxin-A induced oxidative damage, suppressed performance and toxicological effects. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1848870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Zargham Khan
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Zahoor Ul Hassan
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| |
Collapse
|
4
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
5
|
Antidotal Potency of the Novel, Structurally Different Adsorbents in Rats Acutely Intoxicated with the T-2 Toxin. Toxins (Basel) 2020; 12:toxins12100643. [PMID: 33028026 PMCID: PMC7600379 DOI: 10.3390/toxins12100643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/21/2022] Open
Abstract
In this paper, the potential antidote efficacy of commercially available formulations of various feed additives such as Minazel-Plus®, Mycosorb®, and Mycofix® was considered by recording their incidence on general health, body weight, and food and water intake, as well as through histopathology and semiquantitative analysis of gastric alterations in Wistar rats treated with the T-2 toxin in a single-dose regimen of 1.67 mg/kg p.o. (1 LD50) for 4 weeks. As an organic adsorbent, Mycosorb® successfully antagonized acute lethal incidence of the T-2 toxin (protective index (PI) = 2.25; p < 0.05 vs. T-2 toxin), and had adverse effects on body weight gain as well as food and water intake during the research (p < 0.001). However, the protective efficacy of the other two food additives was significantly lower (p < 0.05). Treatment with Mycosorb® significantly reduced the severity of gastric damage, which was not the case when the other two adsorbents were used. Our results suggest that Mycosorb® is a much better adsorbent for preventing the adverse impact of the T-2 toxin as well as its toxic metabolites compared with Minazel-plus® or Mycofix-plus®, and it almost completely suppresses its acute toxic effects and cytotoxic potential on the gastric epithelial, glandular, and vascular endothelial cells.
Collapse
|
6
|
Mitrović B, Stojanović M, Sekulić Ž, Andrić V, Vićentijević M, Vranješ B. Toxicity of high uranium doses in broilers and protection with mineral adsorbents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:385-391. [PMID: 30972493 DOI: 10.1007/s00411-019-00790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to determine the uranium distribution and histopathological changes in broiler organs (kidney, liver, and brain) and muscle after 7 days of contamination with high doses of uranyl nitrate hexahydrate (UN), and the protective efficiency of three different mineral adsorbents (organobentonite, organozeolite, and sepiolite). During the 7 days, the UN administration was 50 mg per day, and administration of adsorbents was 2 g per day immediately after UN. In control group where broilers received only UN, histopathological changes such as necrosis of intestinal villi, oedema, vacuolisation and abruption of epithelial cells in renal tubules, oedema and vacuolisation of the cytoplasm of hepatocytes, and dystrophic changes in the neurons of the medulla oblongata were observed. In contrast, when the adsorbents organobentonite, organozeolite, and sepiolite were administered, no histopathological changes were observed in liver and brain. The investigated adsorbents showed the highest protective effects in liver (80-92%), compared to the kidney (77-86%), brain (37-64%), and meat (31-63%).
Collapse
Affiliation(s)
- Branislava Mitrović
- Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, Belgrade, 11000, Serbia.
| | - Mirjana Stojanović
- Institute for Technology of Nuclear and Other Mineral Row Materials, University of Belgrade, Bulevar Franše d'Eperea 86, Belgrade, 11000, Serbia
| | - Živko Sekulić
- Institute for Technology of Nuclear and Other Mineral Row Materials, University of Belgrade, Bulevar Franše d'Eperea 86, Belgrade, 11000, Serbia
| | - Velibor Andrić
- Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, Belgrade, 11000, Serbia
| | - Mihajlo Vićentijević
- Science Institute of Veterinary Medicine of Serbia, Vojvode Toze 14, Belgrade, 11000, Serbia
| | - Borjana Vranješ
- Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, Belgrade, 11000, Serbia
| |
Collapse
|
7
|
Abstract
Abstract
Although mycotoxins occur worldwide and represent a global public health threat, their prevalence and quantities in food and feed may vary due to geographic and climatic differences. Also, in accordance with climate change, outside temperatures that are anticipated to rise and rainfall patterns modify the usual mycotoxicological scheme transforms and unexpectedly extreme events happen in practice more often. Such weather conditions increase fungal occurrence and mycotoxin concentrations in crops. Consequently, the risk to human and animal health grows, and strategies to alleviate adverse effects become more complex. This also elevates economic losses. Therefore, the task of mycotoxin prediction has been put in front of the multidisciplinary scientific community recently, and a targeted prevention has become more important. This paper is a review of the latest achievements in this field prepared with the aim to summarize and integrate available data.
Collapse
|
8
|
Qu D, Huang X, Han J, Man N. Efficacy of mixed adsorbent in ameliorating ochratoxicosis in broilers fed ochratoxin A contaminated diets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1302822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaolin Huang
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, China
| | - Nana Man
- Hangzhou Seed Station, Hangzhou, China
| |
Collapse
|
9
|
Wielogórska E, MacDonald S, Elliott C. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1919] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the recent years, mycotoxins have undoubtedly gained a keen interest of the scientific community studying food safety. The main reason is their profound impact on both human and animal health. International surveys reveal a low percentage of feed samples being contaminated above permitted/guideline levels, developed to protect consumers of animal derived products. However, the deleterious impact of feed co-contaminated at low levels with numerous both known and regulated as well as novel mycotoxins on producing animals has been described. Associated effects on agro-economics world-wide include substantial pecuniary losses which are borne by the society as a whole. Even though good agronomic practice is thought to be the most effective way of preventing animal feed contamination, the EC have recognised the need to introduce an additional means of management of feed already contaminated with low-levels of mycotoxins to alleviate detrimental effects on agricultural production efficiency. This review discusses types of feed detoxifying agents described in scientific literature, their reported efficacy in both in vitro and in vivo systems, and comparison with available commercial formulations in the light of increasing knowledge regarding mycotoxin prevalence in the changing global environment.
Collapse
Affiliation(s)
- E. Wielogórska
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| | - S. MacDonald
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - C.T. Elliott
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| |
Collapse
|
10
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
11
|
Nedeljković-Trailović J, Trailović S, Resanović R, Milićević D, Jovanovic M, Vasiljevic M. Comparative investigation of the efficacy of three different adsorbents against OTA-induced toxicity in broiler chickens. Toxins (Basel) 2015; 7:1174-91. [PMID: 25855130 PMCID: PMC4417962 DOI: 10.3390/toxins7041174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 12/03/2022] Open
Abstract
The aim of our study was to determine the efficacy of three different adsorbents, inorganic (modified zeolite), organic (esterified glucomannans) and mixed (inorganic and organic components, with the addition of enzymes), in protecting broilers from the toxic effects of ochratoxin A in feed. Broilers were fed diets containing 2 mg/kg of ochratoxin A (OTA) and supplemented with adsorbents at the recommended concentration of 2 g/kg for 21 days. The presence of OTA led to a notable reduction in body weight, lower weight gain, increased feed conversion and induced histopathological changes in the liver and kidneys. The presence of inorganic, organic and mixed adsorbents in contaminated feed only partially reduced the negative effects of OTA on the broiler performances. Broilers that were fed with adsorbent-supplemented feed reached higher body weight (17.96%, 19.09% and 13.59%), compared to the group that received only OTA. The presence of adsorbents partially alleviated the reduction in feed consumption (22.68%, 12.91% and 10.59%), and a similar effect was observed with feed conversion. The applied adsorbents have also reduced the intensity of histopathological changes caused by OTA; however, they were not able to prevent their onset. After the withdrawal of the toxin and adsorbents from the feed (21-42 days), all previously observed disturbances in broilers were reduced, but more remarkably in broilers fed with adsorbents.
Collapse
Affiliation(s)
| | - Saša Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Radmila Resanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Dragan Milićević
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia.
| | - Milijan Jovanovic
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia.
| | | |
Collapse
|
12
|
Di Gregorio MC, Neeff DVD, Jager AV, Corassin CH, Carão ÁCDP, Albuquerque RD, Azevedo ACD, Oliveira CAF. Mineral adsorbents for prevention of mycotoxins in animal feeds. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.905604] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|