1
|
Lu Y, Liu D, Liang Z, Liu R, Chen P, Liu Y, Li J, Feng Z, Li LM, Sheng B, Jia W, Chen L, Li H, Wang Y. A pretrained transformer model for decoding individual glucose dynamics from continuous glucose monitoring data. Natl Sci Rev 2025; 12:nwaf039. [PMID: 40191259 PMCID: PMC11970253 DOI: 10.1093/nsr/nwaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 04/09/2025] Open
Abstract
Continuous glucose monitoring (CGM) technology has grown rapidly to track real-time blood glucose levels and trends with improved sensor accuracy. The ease of use and wide availability of CGM will facilitate safe and effective decision making for diabetes management. Here, we developed an attention-based deep learning model, CGMformer, pretrained on a well-controlled and diverse corpus of CGM data to represent individual's intrinsic metabolic state and enable clinical applications. During pretraining, CGMformer encodes glucose dynamics including glucose level, fluctuation, hyperglycemia, and hypoglycemia into latent space with self-supervised learning. It shows generalizability in imputing glucose value across five external datasets with different populations and metabolic states (MAE = 3.7 mg/dL). We then fine-tuned CGMformer towards a diverse panel of downstream tasks in the screening of diabetes and its complications using task-specific data, which demonstrated a consistently boosted predictive accuracy over direct fine-tuning on a single task (AUROC = 0.914 for type 2 diabetes (T2D) screening and 0.741 for complication screening). By learning an intrinsic representation of an individual's glucose dynamics, CGMformer classifies non-diabetic individuals into six clusters with elevated T2D risks, and identifies a specific cluster with lean body-shape but high risk of glucose metabolism disorders, which is overlooked by traditional glucose measurements. Furthermore, CGMformer achieves high accuracy in predicting an individual's postprandial glucose response with dietary modelling (Pearson correlation coefficient = 0.763) and helps personalized dietary recommendations. Overall, CGMformer pretrains a transformer neural network architecture to learn an intrinsic representation by borrowing information from a large amount of daily glucose profiles, and demonstrates predictive capabilities fine-tuned towards a broad range of downstream applications, holding promise for the early warning of T2D and recommendations for lifestyle modification in diabetes management.
Collapse
Affiliation(s)
- Yurun Lu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Hua Loo-Keng Center for Mathematical Sciences, Key Laboratory of Management, Decision and Information System, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Zhongming Liang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- BGI-Research, Hangzhou 310030, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Yitong Liu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Hua Loo-Keng Center for Mathematical Sciences, Key Laboratory of Management, Decision and Information System, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachen Li
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Hua Loo-Keng Center for Mathematical Sciences, Key Laboratory of Management, Decision and Information System, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanying Feng
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Hua Loo-Keng Center for Mathematical Sciences, Key Laboratory of Management, Decision and Information System, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford CA 94305, USA
| | - Lei M Li
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Hua Loo-Keng Center for Mathematical Sciences, Key Laboratory of Management, Decision and Information System, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai 519031, China
- Pazhou Laboratory (Huangpu), Guangzhou 510555, China
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Hua Loo-Keng Center for Mathematical Sciences, Key Laboratory of Management, Decision and Information System, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Jing S, Zhenhai C, Xiao H, Chunhan L, Wanlin W, Xuting S, Han Y, Xiaoyu Z, Meiying J. Jiedu Tongluo Tiaogan Formula Modulates Glycolipid Metabolism in Type 2 Diabetes via Pyroptosis: Network Pharmacology and In Vivo Analysis. Biomed Chromatogr 2025; 39:e70077. [PMID: 40219662 DOI: 10.1002/bmc.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by pancreatic β-cell dysfunction and insulin resistance, with pyroptosis emerging as a key contributor to β-cell loss. Jiedu Tongluo Tiaogan Formula (JTTF), a traditional Chinese medicine (TCM), has shown clinical efficacy in T2DM management, but its mechanism linking pyroptosis remains unexplored. This study integrates UPLC-MS/MS, network pharmacology, and in vivo experiments to elucidate JTTF's anti-diabetic mechanisms. UPLC-MS/MS identified 441 compounds in JTTF, predominantly alkaloids, flavonoids, phenols, and terpenoids. Network pharmacology revealed JTTF's multi-target effects on T2DM-associated pyroptosis, particularly via the NLRP3/Caspase-1/GSDMD pathway. In diabetic mice, JTTF dose-dependently reduced fasting blood glucose, insulin resistance, and dyslipidemia, while restoring pancreatic β-cell morphology. Mechanistically, JTTF suppressed NLRP3 inflammasome activation, downregulated Caspase-1 and GSDMD expression, and attenuated IL-1β/IL-18 release. Notably, this study provides the first evidence of JTTF's anti-pyroptotic effects in T2DM, highlighting its unique ability to modulate glycolipid metabolism and inflammatory cell death concurrently. These findings underscore JTTF's translational promise for preserving β-cell function and suggest future exploration of non-classical pyroptosis pathways. Our work bridges traditional medicine and molecular pharmacology, paving the way for clinical trials and integrative T2DM therapies.
Collapse
Affiliation(s)
- Su Jing
- Changchun University of Chinese Medicine, Changchun, China
| | - Cui Zhenhai
- Changchun University of Chinese Medicine, Changchun, China
| | - Han Xiao
- Changchun University of Chinese Medicine, Changchun, China
| | - Li Chunhan
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine, Jilin, China
| | - Wang Wanlin
- Changchun University of Chinese Medicine, Changchun, China
| | - Song Xuting
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu Han
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiaoyu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jin Meiying
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Datta D, Kundu R, Basu R, Chakrabarti P. Pathophysiological hallmarks in type 2 diabetes heterogeneity (review). Diabetol Int 2025; 16:201-222. [PMID: 40166449 PMCID: PMC11954762 DOI: 10.1007/s13340-024-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/21/2024] [Indexed: 01/03/2025]
Abstract
The mechanistic complexity in type 2 diabetes (T2DM) is primarily responsible for the degrees of heterogeneity and development of complications. A complex mode of interactions between different pathophysiological events and diabetogenic environmental factors support for the genesis of diabetes heterogeneity both in phenotypic and clinical contexts. The currently used diabetes classification strategies suffer from several inconsistencies that cannot fully capture the inherent heterogeneity among the diabetes patients. To effectively address this pathobiological and heterogeneity-related issue in diabetes research, the current review proposes nine pathophysiological hallmarks of T2DM that aims to mechanistically explain complexities of diabetes associated pathophysiological events and their underlying features. These pathophysiological hallmarks are pancreatic beta cell dysfunction, insulin sensitivity, insulin resistance, obesity, aging, subclinical inflammation, metabolic dysregulation, prothrombotic state induction and hypertension. Detail knowledge of these pathophysiological hallmarks with their key molecular mediators, influencing factors, clinical biomarkers and clinical assessment methodologies will greatly support precision medicine approaches in diabetes including patient stratification, subtype diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00783-w.
Collapse
Affiliation(s)
- Dipamoy Datta
- Computer Education Training Program, NICS Computer, Kolkata, 700032 India
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata, 700032 India
| | - Raja Kundu
- Computer Education Training Program, NICS Computer, Kolkata, 700032 India
| | - Rajdeep Basu
- Department of Endocrinology, Nil Ratan Sarkar Medical College, Kolkata, 700014 India
| | - Partha Chakrabarti
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata, 700032 India
| |
Collapse
|
4
|
Banjarnahor RL, Javadi Arjmand E, Onni AT, Thomassen LM, Perillo M, Balakrishna R, Sletten ISK, Lorenzini A, Plastina P, Fadnes LT. Umbrella Review of Systematic Reviews and Meta-Analyses on Consumption of Different Food Groups and Risk of Type 2 Diabetes Mellitus and Metabolic Syndrome. J Nutr 2025:S0022-3166(25)00173-7. [PMID: 40122387 DOI: 10.1016/j.tjnut.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Type 2 diabetes is a major contributor to the burden of chronic diseases globally. Most cases of type 2 diabetes are preventable through healthy lifestyle modifications in diet and physical activity. This systematic umbrella review presents a comprehensive overview of the evidence about the associations between risk of type 2 diabetes and metabolic syndrome with 13 food groups, including refined and whole grains, fruits, vegetables, nuts, legumes, fish and fish products, eggs, dairy/milk, sugar-sweetened beverages, processed meat, and unprocessed red and white meat. We present these relationships in per-serving and with high-versus-low comparisons. After doing a systematic search in MEDLINE, Embase, Web of Science, and Epistemonikos (registered with PROSPERO: CRD42024547606), we screened 5074 references published until May 15, 2024, and included 67 articles. This included 46 meta-analyses on risk of type 2 diabetes with half a million participants, 17 meta-analyses on risk of metabolic syndrome, and 4 meta-analyses on risk of diabetes-related mortality. Based on quality assessments using AMSTAR-2, 25 of the 67 studies were classified as high-quality studies, 8 as moderate, 12 as low, and 22 as critically low quality. Our results showed that a high intake of whole grains was associated with a lower risk of type 2 diabetes (metaevidence: moderate) and metabolic syndrome (metaevidence: low), with a similar tendency also for a high intake of fruits and vegetables (metaevidence: moderate). In contrast, the high intakes of processed meat (metaevidence: high), red meat (metaevidence: moderate), and sugar-sweetened beverages (metaevidence: moderate) were associated with a higher risk of type 2 diabetes. For the other food groups, the associations were generally neutral and not statistically significant. The heterogeneity was high for most food groups except fruits, indicating potential differences within each of the food groups in association with type 2 diabetes.
Collapse
Affiliation(s)
- Rivana Lambani Banjarnahor
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Elaheh Javadi Arjmand
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Anindita Tasnim Onni
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise M Thomassen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| | - Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rajiv Balakrishna
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Biostructures and Biosystems National Institute (INBB), Roma, Italy
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Lars T Fadnes
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Jamil F, Mir U, Niazi AG, Kifayat S, Kifayat S, Shafiq S, Wali Z, Khan MAJ, Wali B, Kobra KT, Khan MS. A multi-level approach to reduce exploding type 2 diabetes in Pakistan. Front Public Health 2025; 13:1514090. [PMID: 40190761 PMCID: PMC11968735 DOI: 10.3389/fpubh.2025.1514090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Pakistan has the third-highest rate of type 2 diabetes globally, following China and India, making this a significant public health crisis. Despite the severity of the issue, efforts from health and policy practitioners to address it remain limited. With millions already diagnosed as pre-diabetic, the rising incidence of diabetes is rapidly becoming a public health emergency that demands immediate attention. This policy brief provides an accessible overview of diabetes, focusing on its types, mechanisms, and preventive measures. It also identifies key contributing factors, such as dietary habits, obesity, physical inactivity, and the influence of modern dietary trends, while proposing strategies for individuals, communities, and policymakers to combat this growing epidemic in Pakistan. The brief emphasizes the need for a multi-level approach that includes public awareness, education, behavioral and dietary changes, and policy interventions to reverse the trend. Strategies discussed include promoting healthy eating, increasing physical activity, managing obesity, and enhancing access to affordable, healthy food. Additionally, the brief highlights the importance of community and government support, such as public health campaigns, infrastructure improvements, and legislative efforts. By adopting this comprehensive approach, Pakistan can take meaningful steps to address the diabetes epidemic and improve public health outcomes.
Collapse
Affiliation(s)
- Fazal Jamil
- St. Elizabeth Youngstown Hospital, Youngstown, OH, United States
| | - Umaima Mir
- Lady Reading Hospital, Peshawar, Pakistan
| | - Anum G. Niazi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Shandana Kifayat
- Khyber Teaching Hospital, Khyber Medical University, Peshawar, Pakistan
| | | | | | | | - Muhammad Ali Jan Khan
- College of Physical Medicine and Rehabilitation Paraplegic Center, Khyber Medical University, Peshawar, Pakistan
| | | | | | | |
Collapse
|
6
|
Bahardoust M, Hadaegh F, Mehrabi Y, Delpisheh A, Khalili D. Medication time of metformin and sulfonylureas and incidence of cardiovascular diseases and mortality in type 2 diabetes: a pooled cohort analysis. Sci Rep 2025; 15:8401. [PMID: 40069233 PMCID: PMC11897161 DOI: 10.1038/s41598-025-89721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/07/2025] [Indexed: 03/15/2025] Open
Abstract
The effect of duration of medication with metformin and sulfonylurea (SUs) on cardiovascular diseases (CVD) and mortality events by duration of type 2 diabetes (DM) is unclear. This study aimed to investigate the effect of duration of treatment with metformin and SUs on CVD and mortality events based on DM duration in newly diagnosed DM patients. Data from three prospective cohorts of Tehran Lipid and Glucose Study (TLGS), Multi-Ethnic Study of Atherosclerosis (MESA), and Atherosclerosis Risk in Communities (ARIC) including 4108 newly diagnosed type 2 diabetes individuals (mean age, 59.4 ± 0.66 years) were pooled. Exposure was defined as the duration of metformin alone, SUs alone, and a combination of both since drug initiation. The Cox proportional hazards (CPH) model adjusted for confounders, including statin, aspirin, and anti-hypertensive, was used to estimate the hazard ratio (HR) (95% CI) for the outcomes. Cumulative exposure for metformin, SUs, aspirin, statin, and anti-hypertensive medication was calculated using the same method. The median follow-up was 20.33 ± 0.45 years. Cardiovascular events, all-cause mortality (ACM), and CVD mortality occurred in 767, 913, and 439 newly diagnosed DM patients, respectively. Metformin alone reduced the hazard of cardiovascular events, ACM, and CV-mortality by 7%, 4%, and 6%, respectively, for each year of use, respectively (p < 0.05); the corresponding values for SUs alone were 4%, 3%, and 4%, respectively (p < 0.05). The effect of metformin on reducing cardiovascular events, ACM, and CVD mortality continued until approximately 8, 10, and 5 years after the start of treatment, respectively, and then reached Plato. The effect of SUs on cardiovascular events, ACM, and CVD mortality continued to decline or reach Plato until approximately 6, 5, and 8 years after initiation of therapy and then was ineffective or reversed. The effect of the combination therapy on the reduction of cardiovascular events continued until 11 years after therapy initiation. Among newly diagnosed DM patients, metformin, with and without SUs, was associated with a reduced risk of cardiovascular events, ACM, and CVD mortality for up to about one decade. The combined effect of metformin + sulfonylurea was superior to the single effect of metformin or sulfonylurea alone. The combination therapy of Metformin and SUs can still be used with good safety, especially in the first years of diabetes diagnosis.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Mehrabi
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Delpisheh
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Lown Scholar in Cardiovascular Health, Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston,MA, US.
| |
Collapse
|
7
|
Katz LS, Visser EJ, Plitzko KF, Pennings MAM, Cossar PJ, Tse IL, Kaiser M, Brunsveld L, Ottmann C, Scott DK. Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity. Nat Commun 2025; 16:2110. [PMID: 40025013 PMCID: PMC11873037 DOI: 10.1038/s41467-025-57241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a 'molecular glue' compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult to target TFs.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kathrin F Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Isabelle L Tse
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Lin Y, McCrimmon RJ, Pearson ER. Exploring the potential role of C-peptide in type 2 diabetes management. Diabet Med 2025; 42:e15469. [PMID: 39797595 PMCID: PMC11823364 DOI: 10.1111/dme.15469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 01/13/2025]
Abstract
Type 2 diabetes (T2D) is a complex condition characterised by the interaction between insulin resistance and beta cell dysfunction. C-peptide, a key biomarker of endogenous insulin secretion, has a role in diagnosing type 1 diabetes (T1D). However, its utility in T2D has not been extensively studied. This review provides an overview of the progression of C-peptide levels over time in T2D and discuss its interpretation in clinical settings. We reviewed current evidence on the relationship between C-peptide levels and response to antidiabetic drugs, as well as the utility of C-peptide testing in T2D treatment strategies. We also reviewed available evidence for C-peptide in predicting future outcomes in T2D. In this review, we hoped to clarify the value of C-peptide testing in understanding and managing T2D and to highlight areas where further research is needed.
Collapse
Affiliation(s)
- YeunYi Lin
- School of MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeScotland
| | - Rory J. McCrimmon
- School of MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeScotland
| | - Ewan R. Pearson
- School of MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeScotland
| |
Collapse
|
9
|
Hu R, Yagan M, Wang Y, Tong X, Doss TD, Liu J, Xu Y, Simmons AJ, Lau KS, Stein R, Liu Q, Gu G. Myelin transcription factors 1 and 3 have overlapping but distinct roles in insulin secretion and survival of human β cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639737. [PMID: 40060649 PMCID: PMC11888307 DOI: 10.1101/2025.02.24.639737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Islet β-cell dysfunction, loss of identity, and death, together known as β-cell failure, lead to reduced inulin output and Type 2 diabetes (T2D). Understanding how β-cells avoid this failure holds the key to preventing or delaying the development of this disease. Here, we examine the roles of two members of the Myelin transcription factor family (including MYT1, 2, and 3) in human β-cells. We have reported that these factors together prevent β-cell failure by repressing the overactivation of stress response genes in mice and human β-cell lines. Single-nucleotide polymorphisms in MYT2 and MYT3 are associated with human T2D. These findings led us to examine the roles of these factors individually in primary human β-cells. By knocking down MYT1 or MYT3 separately in primary human donor islets, we show here that these TFs have distinct functions. Under normal physiological conditions, high MYT1 expression is required for β-cell survival, while high MYT3 expression is needed for glucose-stimulated insulin secretion. Under obesity-induced metabolic stress, MYT3 is also necessary for β-cell survival. Accordingly, these TFs regulate different genes, with MYT1-KD de-regulating several in protein translation and Ca2+ binding, while MYT3-KD de-regulating genes involved in mitochondria, ER, etc. These findings highlight not only the family member-specific functions of each TF but also the multilayered protective function of these factors in human β-cell survival under different levels of metabolic stress.
Collapse
Affiliation(s)
- Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mahircan Yagan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt Medical Center, Nashville, TN37232, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Teri D Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jinhua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt Medical Center, Nashville, TN37232, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
11
|
Guerrero-Becerra L, Morimoto S, Arrellano-Ordoñez E, Morales-Miranda A, Guevara-Gonzalez RG, Feregrino-Pérez AA, Lomas-Soria C. Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential. Pharmaceuticals (Basel) 2025; 18:69. [PMID: 39861134 PMCID: PMC11768933 DOI: 10.3390/ph18010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications. Other natural alternatives for DM treatment have been studied as adjunct therapies that could reduce or eliminate the need for antidiabetic medications. Several natural supplements may offer an alternative way to improve the quality of life for patients with DM, and they may have other nutraceutical applications. Due to their phenolic compound content, some leguminous substances have been proposed as these alternatives. Phenolic compounds, with their high antioxidant activity, have shown promising potential in insulin synthesis, secretion, and the functionality of the endocrine pancreas. This review provides valuable information on various leguminous plants with anti-diabetic properties, including antioxidant, hypoglycemic, anti-fat-induced damage, and anti-apoptotic properties in vitro and in vivo, attributed to the high content of phenolic compounds in their seeds. Natural products with antidiabetic and pharmacological treatment potential improve diabetes management by offering more effective and complementary alternatives. To integrate these herbal remedies into modern medicine, further research on phenolic compound type, doses, efficacy, and safety in the human population is needed.
Collapse
Affiliation(s)
- Lucia Guerrero-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Estefania Arrellano-Ordoñez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Angélica Morales-Miranda
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Ramón G. Guevara-Gonzalez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| |
Collapse
|
12
|
Huo L, Zhang H, Hou S, Li W, Meng Q, Li C, Ma X, Huang L, He J, Zhao B. Low-dose IL-2 restores metabolic dysfunction and immune dysregulation in mice with type 2 diabetes induced by a high-fat, high-sugar diet and streptozotocin. Int J Biol Macromol 2025; 286:138468. [PMID: 39647763 DOI: 10.1016/j.ijbiomac.2024.138468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Interleukin-2 (IL-2) is pivotal in immune regulation, particularly in the promotion of regulatory T (Treg) cells and the maintenance of immune tolerance. While its efficacy in autoimmune diseases is well established, its role in type 2 diabetes (T2D) remains largely unexplored. This study investigates the effects of low-dose IL-2 in a KM mouse model of T2D induced by streptozotocin (STZ) and a high-fat, high-sugar (HFHS) diet. We found that low-dose IL-2 administration significantly improved fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c) levels, and glucose tolerance, indicating better glycemic control. Additionally, IL-2 treatment improved insulin sensitivity, enhanced insulin secretion, and ameliorated lipid metabolism, as evidenced by reduced cholesterol and triglyceride levels. These metabolic improvements were associated with a modulation of inflammation, including a reduction in pro-inflammatory cytokines (TNF-α, IL-1β) and an increase in anti-inflammatory cytokines (IL-10). Importantly, IL-2 also altered the gut microbiome, reducing intestinal inflammation and endotoxin levels, which suggests a broader impact on metabolic health beyond immune regulation. These findings support the potential of low-dose IL-2 as an immunotherapeutic approach for improving metabolic dysfunction and inflammation in T2D.
Collapse
Affiliation(s)
- Lijing Huo
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Hairui Zhang
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Shiyu Hou
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Wenting Li
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Qingwen Meng
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Chenhui Li
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Xiaohan Ma
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Lijing Huang
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.
| |
Collapse
|
13
|
Klyosova E, Azarova I, Petrukhina I, Khabibulin R, Polonikov A. The rs2341471-G/G genotype of activating transcription factor 6 (ATF6) is the risk factor of type 2 diabetes in subjects with obesity or overweight. Int J Obes (Lond) 2024; 48:1638-1649. [PMID: 39134692 DOI: 10.1038/s41366-024-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Numerous studies have demonstrated that the onset of type 2 diabetes (T2D) is linked to the reduction in ß-cell mass caused by apoptosis, a process initiated by endoplasmic reticulum (ER) stress. The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the ATF6 gene (activating transcription factor 6), a key sensor of ER stress, and T2D susceptibility. METHODS The study involved 3229 unrelated individuals, including 1569 patients with T2D and 1660 healthy controls from Central Russia. Four functionally significant intronic SNPs, namely rs931778, rs90559, rs2341471, and rs7517862, were genotyped using the MassARRAY-4 system. RESULTS The rs2341471-G/G genotype of ATF6 was found to be associated with an increased risk of T2D (OR = 1.61, 95% CI 1.37-1.90, PFDR < 0.0001). However, a BMI-stratified analysis showed that this genotype and haplotypes CGGA and TAGA are associated with T2D risk exclusively in subjects with obesity or overweight (PFDR < 0.05). Despite these patients being found to have higher consumption of high-carbohydrate and high-calorie diets compared to normal-weight individuals (P < 0.0001), the influence of the rs7517862 polymorphism on T2D risk was observed independently of these dietary habits. Functional SNP annotation revealed the following: (1) the rs2341471-G allele is associated with increased ATF6 expression; (2) the SNP is located in a region exhibiting enhancer activity epigenetically regulated in pancreatic islets; (3) the rs2341471-G was predicted to create binding sites for 18 activating transcription factors that are part of gene-regulatory networks controlling glucose metabolism and maintaining proteostasis. CONCLUSIONS The present study revealed, for the first time, a strong association between the rs2341471-G/G ATF6 genotype and an increased risk of type 2 diabetes in people with obesity or overweight, regardless of known dietary risk factors. Further research is needed to support the potential of silencing the ATF6 gene as a means for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Irina Petrukhina
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Ramis Khabibulin
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia.
| |
Collapse
|
14
|
Lee SH, Lin TA, Yan YH, Chien CC, Cheng TJ. Hepatic and metabolic outcomes induced by sub-chronic exposure to polystyrene microplastics in mice. Arch Toxicol 2024; 98:3811-3823. [PMID: 39183192 DOI: 10.1007/s00204-024-03847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Microplastics (MPs) have attracted significant attention due to their global distribution in living environments. Although some studies have reported MP-induced hepatotoxicity in mouse models, a systematic approach to MP-mediated liver toxicity was still lacking. Therefore, we used a mouse model to study the sub-chronic effects of MP exposure on the liver. Female C57BL/6 mice, aged 6 weeks, received an oral administration of 0.3 mg of Nile Red-labeled polystyrene (PS) microplastics, with particle sizes of 0.5 µm (submicron) and 5 µm (micron), via gavage, while control mice received vehicle only. Each mouse was exposed to MPs twice a week for 12 weeks. After sacrifice, the levels of MP accumulation, oxidative stress, inflammation, and pathological changes were measured in the mouse liver, and blood samples were collected for serum biochemistry analysis. Our results demonstrated that 0.5 µm PS-MPs were accumulated in mouse livers post-MP exposure, but not in the 5 µm MP exposure group. Simultaneously, increased levels of glucose, triglyceride, alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase, 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), interleukin-6, and lipid droplets were found in the 0.5 µm MP exposure group, while the fewer responses, including elevated liver weight index, glucose, high-density lipoprotein, AST, and decreased HNE-MA were observed in 5 µm MP exposure group. These results indicate that sub-chronic exposure to submicron MPs causes MP deposition in mouse livers, which further induces oxidative stress, increases inflammatory cytokines and perturbs glucose and lipid homeostasis, which might trigger more severe metabolic dysfunction or non-alcoholic steatohepatitis-like hepatotoxicity.
Collapse
Affiliation(s)
- Sheng-Han Lee
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ting-An Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Yuan-Horng Yan
- Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
| |
Collapse
|
15
|
Kosmas CE, Sourlas A, Oikonomakis K, Zoumi EA, Papadimitriou A, Kostara CE. Biomarkers of insulin sensitivity/resistance. J Int Med Res 2024; 52:03000605241285550. [PMCID: PMC11475114 DOI: 10.1177/03000605241285550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, remarkable advancements in elucidating the intricate molecular underpinnings of type 2 diabetes mellitus (T2D) have been achieved. Insulin resistance (IR) has been unequivocally acknowledged as the driving pathogenetic mechanism of T2D, preceding disease onset by several years. Nonetheless, diagnostic tools for ascertaining IR are lacking in current clinical practice, representing a critical unmet need; use of the hyperinsulinemic-euglycemic glucose clamp, widely accepted as the gold standard method for evaluating IR at present, is cumbersome in a clinical setting. Thus, the development of well-validated, reliable, and affordable biomarkers of IR has attracted considerable attention from the research community. The biomarkers under investigation can be divided into two major categories: (1) indices or ratios, comprising parameters obtained from a basic or comprehensive metabolic panel and/or derived from anthropometric measurements, and (2) circulating molecules implicated in pathophysiological processes associated with IR. Furthermore, numerous novel biomarkers, including markers of β-cell dysfunction, radiographic quantification of excess visceral adipose tissue, T2D prediction models, certain microRNAs and metabolomic biomarkers, have also provided promising preliminary results. This narrative review aims to present current evidence pertaining to the most notable and exciting biomarkers of IR that are under rigorous evaluation.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Second Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | - Christina E Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
16
|
Tong X, Yagan M, Hu R, Nevills S, Doss TD, Stein RW, Balamurugan AN, Gu G. Metabolic Stress Levels Influence the Ability of Myelin Transcription Factors to Regulate β-Cell Identity and Survival. Diabetes 2024; 73:1662-1672. [PMID: 39058602 PMCID: PMC11417441 DOI: 10.2337/db23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
A hallmark of type 2 diabetes (T2D) is endocrine islet β-cell failure, which can occur via cell dysfunction, loss of identity, and/or death. How each is induced remains largely unknown. We used mouse β-cells deficient for myelin transcription factors (Myt TFs; including Myt1, -2, and -3) to address this question. We previously reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) caused β-cell failure and late-onset diabetes in mice. Their lower expression in human β-cells is correlated with β-cell dysfunction, and single nucleotide polymorphisms in MYT2 and MYT3 are associated with a higher risk of T2D. We now show that these Myt TF-deficient postnatal β-cells also dedifferentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet β-cells did not result in overt diabetes, but this created a condition where Myt TF-deficient β-cells remained alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers and hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed β-cell defects in T2D depend not only on their inherent genetic/epigenetic defects but also on the metabolic load. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mahircan Yagan
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruiying Hu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Simone Nevills
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Teri D. Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Guoqiang Gu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
17
|
Oota M. Preserving insulin function in diabetes: a case report. J Med Case Rep 2024; 18:416. [PMID: 39242549 PMCID: PMC11380200 DOI: 10.1186/s13256-024-04714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/20/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND This case report explores the long-term dynamics of insulin secretion and glycemic control in two patients with diabetes mellitus type 2 over 20 years. The observations underscore the impact of lifestyle interventions, including weight loss and calorie restriction, on insulin secretion patterns and glucose levels during 75 g oral glucose tolerance tests. Additionally, the role of hemoglobin A1c fluctuations, influenced by various factors such as body weight, exercise, and pharmacological interventions, is investigated. CASE PRESENTATION Case 1 involves a Japanese woman now in her late 70s who successfully maintained her hemoglobin A1c below 7% for over two decades through sustained weight loss and lifestyle changes. Despite a gradual decline in the homeostasis model assessment of β cell function, the patient exhibited remarkable preservation of insulin secretion patterns over the 20-year follow-up. In case 2, a Japanese woman, now in her early 70s, experienced an improvement in hemoglobin A1c to 6.3% after a period of calorie limitation due to a wrist fracture in 2018. This incident seemed to trigger a temporary rescue of pancreatic β cell function, emphasizing the dynamic nature of insulin secretion. Both cases highlight the potential for pancreatic β cell rescue and underscore the persistence of insulin secretion over the 20-year follow-up. Additionally, we have briefly discussed three additional cases with follow-ups ranging from 10 to 17 years, demonstrating similar trends in glucose and insulin ratios. CONCLUSIONS Long-term lifestyle interventions, such as weight loss and calorie restriction, can preserve pancreatic β cell function and maintain glycemic control in type 2 diabetes patients over 20 years. Two patients showed stable or improved insulin secretion and favorable hemoglobin A1c levels, challenging the traditional view of irreversible β cell decline. The findings highlight the importance of personalized, nonpharmacological approaches, suggesting that sustained lifestyle changes can significantly impact diabetes management and potentially rescue β cell function.
Collapse
Affiliation(s)
- Masaru Oota
- Oota Internal Medicine and Dental Clinic, 13-3, Hassamu, Nishi Ku, Sapporo, 063-0833, Japan.
| |
Collapse
|
18
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
19
|
Ahmadieh-Yazdi A, Karimi M, Afkhami E, Hajizadeh-Tafti F, Kuchakzadeh F, Yang P, Sheykhhasan M. Unveiling therapeutic potential: Adipose tissue-derived mesenchymal stem cells and their exosomes in the management of diabetes mellitus, wound healing, and chronic ulcers. Biochem Pharmacol 2024; 226:116399. [PMID: 38944396 DOI: 10.1016/j.bcp.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus (DM) is a pervasive global health issue with substantial morbidity and mortality, often resulting in secondary complications, including diabetic wounds (DWs). These wounds, arising from hyperglycemia, diabetic neuropathy, anemia, and ischemia, afflict approximately 15% of diabetic patients, with a considerable 25% at risk of lower limb amputations. The conventional approaches for chronic and diabetic wounds management involves utilizing various therapeutic substances and techniques, encompassing growth factors, skin substitutes and wound dressings. In parallel, emerging cell therapy approaches, notably involving adipose tissue-derived mesenchymal stem cells (ADMSCs), have demonstrated significant promise in addressing diabetes mellitus and its complications. ADMSCs play a pivotal role in wound repair, and their derived exosomes have garnered attention for their therapeutic potential. This review aimed to unravel the potential mechanisms and provide an updated overview of the role of ADMSCs and their exosomes in diabetes mellitus and its associated complications, with a specific focus on wound healing.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Afkhami
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kuchakzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
20
|
Zhao K, Mao R, Yi W, Ren Z, Liu Y, Yang H, Wang S, Feng Z. Integrated Transcriptomics and Proteomics Identified CMPK1 as a Potential Biomarker for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:2923-2934. [PMID: 39104597 PMCID: PMC11299646 DOI: 10.2147/dmso.s467950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Aim/Introduction Type 2 diabetes mellitus (T2DM) is one of the most frequent and widespread disease in the world.Obesity is the most significant predictor of T2DM, but the exact mechanism how obesity promotes T2DM remains unknown. Finding specific biomarkers to assist in diagnosing and treating patients with obese and T2DM is critical. Materials and Methods We collected liver tissues from obesity patients with and without T2DM for proteomic sequencing and immunohistochemistry assay. Analysis Gene Ontology(GO) enrichment, Kyoto Encyclopedia of Genes and Genomes(KEGG), and protein interaction network (PPI) were performed on the parameters and data derived from the Tandem Mass Tags(TMT)-based proteomics analysis of liver tissues. Transcriptome data were downloaded from the Gene Expression Omnibus(GEO)website and genes that are deferentially expressed in both transcriptome and proteome were selected. Results We identified 140 deferentially expressed proteins from proteomic sequencing. Six biomarkers were deferentially expressed in both proteome and transcriptome with consistent changes in direction. The protein-protein interaction (PPI) analysis suggested CMPK1, the expression with greatest difference, was the core protein among the six biomarkers. Immunohistochemistry validated CMPK1 was upregulated significantly in the liver tissues of T2DM patients. The correlation analysis revealed that the expression of CMPK1 was significantly associated with key molecules in T2DM-related pathways at both protein and transcriptome levels. Conclusion and Novelty Our study showed CMPK1 was upregulated in the liver of T2DM patients and provides a possible new target for screening and diagnosing T2DM in patients with obese and a novel theoretical basis for the pathophysiological mechanism of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Kang Zhao
- Section for Day Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Yi
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
| | - Zhengyun Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
| | - Yanjun Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
| | - Huawu Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
| | - Senlin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
| | - Zhonghui Feng
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, 610031, People’s Republic of China
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
21
|
Ma J, Li X, Wan X, Deng J, Cheng Y, Liu B, Liu L, Xu L, Xiao H, Li Y. Single-Cell RNA-seq Analysis Reveals a Positive Correlation between Ferroptosis and Beta-Cell Dedifferentiation in Type 2 Diabetes. Biomedicines 2024; 12:1687. [PMID: 39200152 PMCID: PMC11351120 DOI: 10.3390/biomedicines12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Insulin deficiency in patients with type 2 diabetes mellitus (T2D) is associated with beta-cell dysfunction, a condition increasingly recognized to involve processes such as dedifferentiation and apoptosis. Moreover, emerging research points to a potential role for ferroptosis in the pathogenesis of T2D. In this study, we aimed to investigate the potential involvement of ferroptosis in the dedifferentiation of beta cells in T2D. We performed single-cell RNA sequencing analysis of six public datasets. Differential expression and gene set enrichment analyses were carried out to investigate the role of ferroptosis. Gene set variation and pseudo-time trajectory analyses were subsequently used to verify ferroptosis-related beta clusters. After cells were categorized according to their ferroptosis and dedifferentiation scores, we constructed transcriptional and competitive endogenous RNA networks, and validated the hub genes via machine learning and immunohistochemistry. We found that ferroptosis was enriched in T2D beta cells and that there was a positive correlation between ferroptosis and the process of dedifferentiation. Upon further analysis, we identified two beta clusters that presented pronounced features associated with ferroptosis and dedifferentiation. Several key transcription factors and 2 long noncoding RNAs (MALAT1 and MEG3) were identified. Finally, we confirmed that ferroptosis occurred in the pancreas of high-fat diet-fed mice and identified 4 proteins (NFE2L2, CHMP5, PTEN, and STAT3) that may participate in the effect of ferroptosis on dedifferentiation. This study helps to elucidate the interplay between ferroptosis and beta-cell health and opens new avenues for developing therapeutic strategies to treat diabetes.
Collapse
Affiliation(s)
- Jiajing Ma
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Xuhui Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Xuesi Wan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Jinmei Deng
- Internal Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China;
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Boyuan Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Lijuan Xu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| |
Collapse
|
22
|
Pocevičiūtė D, Roth B, Ohlsson B, Wennström M. Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients. Int J Mol Sci 2024; 25:7665. [PMID: 39062913 PMCID: PMC11276895 DOI: 10.3390/ijms25147665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreas-derived islet amyloid polypeptide (IAPP) aggregates and deposits in the pancreas and periphery of Type 2 Diabetes (T2D) patients, contributing to diabetic complications. The excess IAPP can be removed by autoantibodies, and increased levels of immunoglobulin (Ig) G against IAPP have been reported in T2D patients. However, whether other Ig classes are also affected and if the levels can be managed is less known. This pre-post study examines IgA levels against IAPP oligomers (IAPPO-IgA) in T2D patients and assesses the impact of the Okinawa-based Nordic (O-BN) diet-a low-carbohydrate, high-fiber diet-on these levels after following the diet for 3 months. IAPP, IAPPO-IgA, and total IgA levels were measured in plasma and fecal samples from n = 30 T2D patients collected at baseline, after 3 months of diet, and after additional 4 months of unrestricted diets (a clinical follow-up). The IAPP and IAPPO-IgA levels were significantly lower after 3 months, with the latter also being significantly reduced at the clinical follow-up. The reduction in plasma IAPP and IAPPO-IgA levels correlated with reductions in plasma levels of metabolic and inflammatory markers. Hence, following the O-BN diet for at least 3 months is sufficient to reduce circulating IAPP and IAPPO-IgA levels, which may be principal in managing T2D.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, 205 02 Malmö, Sweden; (B.R.); (B.O.)
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, 205 02 Malmö, Sweden; (B.R.); (B.O.)
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| |
Collapse
|
23
|
Johansen CG, Holcomb K, Sela A, Morrall S, Park D, Farnsworth NL. Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca 2+ dynamics. Matrix Biol Plus 2024; 22:100148. [PMID: 38803329 PMCID: PMC11128509 DOI: 10.1016/j.mbplus.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca2+ dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca2+ influx and altered Ca2+ dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the peri-islet ECM leads to increased tissue stiffness and islet dysfunction.
Collapse
Affiliation(s)
- Chelsea G Johansen
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Keifer Holcomb
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Amit Sela
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Stephanie Morrall
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nikki L Farnsworth
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
24
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
25
|
Bayoumi R, Farooqi M, Alawadi F, Hassanein M, Osama A, Mukhopadhyay D, Abdul F, Sulaiman F, Dsouza S, Mulla F, Ahmed F, AlSharhan M, Khamis A. Etiologies underlying subtypes of long-standing type 2 diabetes. PLoS One 2024; 19:e0304036. [PMID: 38805513 PMCID: PMC11132508 DOI: 10.1371/journal.pone.0304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Attempts to subtype, type 2 diabetes (T2D) have mostly focused on newly diagnosed European patients. In this study, our aim was to subtype T2D in a non-white Emirati ethnic population with long-standing disease, using unsupervised soft clustering, based on etiological determinants. METHODS The Auto Cluster model in the IBM SPSS Modeler was used to cluster data from 348 Emirati patients with long-standing T2D. Five predictor variables (fasting blood glucose (FBG), fasting serum insulin (FSI), body mass index (BMI), hemoglobin A1c (HbA1c) and age at diagnosis) were used to determine the appropriate number of clusters and their clinical characteristics. Multinomial logistic regression was used to validate clustering results. RESULTS Five clusters were identified; the first four matched Ahlqvist et al subgroups: severe insulin-resistant diabetes (SIRD), severe insulin-deficient diabetes (SIDD), mild age-related diabetes (MARD), mild obesity-related diabetes (MOD), and a fifth new subtype of mild early onset diabetes (MEOD). The Modeler algorithm allows for soft assignments, in which a data point can be assigned to multiple clusters with different probabilities. There were 151 patients (43%) with membership in cluster peaks with no overlap. The remaining 197 patients (57%) showed extensive overlap between clusters at the base of distributions. CONCLUSIONS Despite the complex picture of long-standing T2D with comorbidities and complications, our study demonstrates the feasibility of identifying subtypes and their underlying causes. While clustering provides valuable insights into the architecture of T2D subtypes, its application to individual patient management would remain limited due to overlapping characteristics. Therefore, integrating simplified, personalized metabolic profiles with clustering holds greater promise for guiding clinical decisions than subtyping alone.
Collapse
Affiliation(s)
- Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | | | - Fatheya Alawadi
- Endocrinology Department, Dubai Hospital, Dubai Health, Dubai, UAE
| | | | - Aya Osama
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Debasmita Mukhopadhyay
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Fatima Abdul
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Fatima Sulaiman
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Stafny Dsouza
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Fahad Mulla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Fayha Ahmed
- Pathology Department, Dubai Hospital, Dubai Health, Dubai, UAE
| | - Mouza AlSharhan
- Pathology Department, Dubai Hospital, Dubai Health, Dubai, UAE
| | - Amar Khamis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
26
|
Kumah NE, Agbeno EK, Derkyi-Kwarteng L, Aniakwaa-Bonsu E, Djonor SK, Acquah S. Gestational glucose intolerance among pregnant women at the Cape Coast Teaching Hospital. BMC Pregnancy Childbirth 2024; 24:356. [PMID: 38745311 PMCID: PMC11092027 DOI: 10.1186/s12884-024-06568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Malaria in pregnancy can have adverse outcomes if untreated. Both malaria and pregnancy are associated with insulin resistance and diabetes. Although malaria is treated prophylactically with gestational diabetes mellitus (GDM) screened for in pregnancy as part a routine antenatal care, their impacts have not been examined in terms of other forms of dysglycaemia. This cross-sectional study examined insulin resistance and its relationship with dysglycaemia and malaria among pregnant women in the Cape Coast Teaching Hospital (CCTH). METHODS Using a structured questionnaire, demographic and clinical information were obtained from 252 pregnant women aged 18-42 years. Weight and height were measured for computation of body mass index (BMI). Measurement of insulin, lipid profile and glucose were taken under fasting conditions followed by oral glucose tolerant test. Insulin resistance and beta-cell function were assessed by the homeostatic model as malaria was diagnosed by microscopy. RESULTS The respective prevalence of GDM, gestational glucose intolerance (GGI) and insulin resistance were 0.8% (2/252), 19.44% (49/252) and 56.75% (143/252). No malaria parasite or dyslipidaemia was detected in any of the participants. Apart from BMI that increased across trimesters, no other measured parameter differed among the participants. Junior High School (JHS) education compared with no formal education increased the odds (AOR: 2.53; CI: 1.12-5.71; P = 0.03) but 2nd trimester of pregnancy compared to the 1st decreased the odds (AOR: 0.32; CI: 0.12-0.81; P = 0.02) of having insulin resistance in the entire sample. In a sub-group analysis across trimesters, pregnant women with JHS education in their 3rd trimester had increased odds (AOR: 4.41; CI: 1.25-15.62; P = 0.02) of having insulin resistance. CONCLUSION Prevalence of GDM and GGI were 0.8% and 19.44% respectively. The odds of insulin resistance increased in pregnant women with JHS education in the 3rd trimester. Appropriate measures are needed to assuage the diabetogenic risk posed by GGI in our setting.
Collapse
Affiliation(s)
- Nelson Ekow Kumah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Evans Kofi Agbeno
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Leonard Derkyi-Kwarteng
- Department of Pathology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ebenezer Aniakwaa-Bonsu
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sampson Kafui Djonor
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Samuel Acquah
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
27
|
Hu YW, Yeh CM, Liu CJ, Chen TJ, Huang N, Chou YJ. Severity of Complications and Duration of Type 2 Diabetes and the Risk of Cancer: A Population-Based Study. Cancer Epidemiol Biomarkers Prev 2024; 33:739-748. [PMID: 38412010 DOI: 10.1158/1055-9965.epi-23-1600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The literature on the association between diabetes severity and cancer risk is limited and inconclusive. The study aimed to evaluate the association between the adapted Diabetes Complications Severity Index (aDCSI) and the duration of type 2 diabetes and cancer risk. METHODS Patients ages 20 years or older with newly diagnosed type 2 diabetes between January 1, 2007, and December 31, 2011, were identified from Taiwan National Health Insurance claims data. Standardized incidence ratios (SIR) were calculated to compare cancer incidence in people with diabetes with that in the general population. Poisson regression was used to examine whether SIRs differed by age, sex, aDSCI, and duration of diabetes. RESULTS A total of 756,547 patients were included, with a median follow-up of 8.8 years. Excluding the first year after diagnosis, the SIR for overall cancer was 1.18 [95% confidence interval (CI) 1.17-1.19]. Higher aDCSI was associated with increased SIRs for overall [SIR ratio 1.03 (1.02-1.03) per point increase], head and neck (1.03; 1.01-1.04), liver (1.04; 1.03-1.05), pancreas (1.03; 1.00-1.05), kidney (1.13; 1.10-1.15), and leukemia (1.09; 1.06-1.13). There was no association between aDCSI and colorectal, extrahepatic biliary tract, uterus and thyroid cancer, and a negative association with breast cancer (0.97; 0.95-0.98). Type 2 diabetes duration was associated with increased SIRs for overall [1.01 (1.00-1.02) per year increase], head and neck (1.03; 1.01-1.05), and liver cancer (1.04; 1.02-1.05). CONCLUSIONS The heterogeneity in the association between diabetes severity and diabetes-related cancers suggests diverse underlying connections. IMPACT Adopting distinct approaches in further research and prevention strategies for different kinds of diabetes-related cancers is important.
Collapse
Affiliation(s)
- Yu-Wen Hu
- Department of Heavy Particles and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiu-Mei Yeh
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Jen Liu
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzeng-Ji Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Taipei, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nicole Huang
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yiing-Jenq Chou
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Office of the Deputy Superintendent, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| |
Collapse
|
28
|
Al-Qahtani FS, Alshaikh AA, Alfaifi SH. The Association Between Vitamin D Deficiency and the Level of Fasting C Peptide Among Patients With Uncontrolled Type 2 Diabetes Mellitus: A Retrospective Cohort Study. Cureus 2024; 16:e58133. [PMID: 38741878 PMCID: PMC11088964 DOI: 10.7759/cureus.58133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigates the relationship between vitamin D deficiency and uncontrolled type 2 diabetes mellitus (T2DM) indicated by elevated glycosylated hemoglobin (HbA1c) levels, alongside assessing the association between fasting C peptide levels and uncontrolled T2DM, considering their roles in β-cell function and insulin secretion. The study employs a cohort design, selecting individuals diagnosed with T2DM aged 18 years or older with baseline data on vitamin D, fasting C peptide, and HbA1c. Data were collected through electronic medical records and follow-up assessments at regular intervals. Binary logistic regression analyses were conducted to explore associations between exposure variables and uncontrolled T2DM. Significant associations were observed between vitamin D and C peptide levels with uncontrolled diabetes, with coefficients of -0.097 and -0.222, respectively. Higher vitamin D and C peptide levels are linked to a decreased likelihood of uncontrolled diabetes. In conclusion, there is a potential connection between vitamin D levels, C peptide levels, and uncontrolled diabetes mellitus (HbA1C > 7%), while higher levels of both vitamin D and C peptide appeared to correlate with a decreased likelihood of uncontrolled diabetes.
Collapse
Affiliation(s)
| | - Ayoub A Alshaikh
- Family and Community Medicine, King Khalid University, Abha, SAU
| | - Sami H Alfaifi
- Family Medicine, King Khalid University Medical City, King Khalid University, Abha, SAU
| |
Collapse
|
29
|
Muaddi MA. Exploring the Causal Relationship Between Modifiable Exposures and Diabetes Mellitus: A Two-Sample Mendelian Randomization Analysis. Cureus 2024; 16:e59034. [PMID: 38800249 PMCID: PMC11128034 DOI: 10.7759/cureus.59034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Observational studies link lifestyle factors to diabetes, but confounding limits causal inference. This study employed Mendelian randomization (MR) to investigate the potential causal effects of major dietary, obesity, smoking, and physical activity exposures on diabetes risk. Methods A two-sample MR framework integrated FinnGen and United Kingdom Biobank (UKB) data. Genetic instruments for diet (fruits, vegetables, cheese), smoking (initiation, intensity, maternal), body mass index (BMI), and physical activity came from various consortia (n=64, 949-632, 802). Associations with diabetes odds were assessed using inverse-variance weighted analysis. Results Fruit and cheese intake and physical activity per standard deviation increase causally reduced diabetes risk in both cohorts. Conversely, smoking initiation, maternal smoking around birth, and BMI per standard deviation increase causally increased diabetes risk in both cohorts. Coffee increased diabetes risk only in FinnGen, whereas smoking intensity increased diabetes risk only in UKB. Conclusion This study provides robust evidence that modifiable lifestyle factors may have causal effects on diabetes risk. Fruit, cheese, and physical activity may protect against diabetes, whereas smoking, maternal smoking, and higher BMI appear to increase risk. Findings support public health interventions targeting diet, physical activity, smoking cessation, and healthy weight to combat the global diabetes epidemic.
Collapse
Affiliation(s)
- Mohammed A Muaddi
- Family and Community Medicine Department, Jazan University, Jazan, SAU
| |
Collapse
|
30
|
Guo YY, Zhang JY, Sun JF, Gao H. A comprehensive review of small-molecule drugs for the treatment of type 2 diabetes mellitus: Synthetic approaches and clinical applications. Eur J Med Chem 2024; 267:116185. [PMID: 38295688 DOI: 10.1016/j.ejmech.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder characterized by the body's resistance to insulin and inadequate production of insulin. Small molecule drugs to treat T2DM mainly control blood sugar levels by improving insulin sensitivity, increasing insulin secretion, or reducing liver glycogen production. With the deepening of research on the pathogenesis of diabetes, many drugs with new targets and mechanisms of action have been discovered. The targets of the drugs for T2DM are mainly dipeptidyl peptidase IV inhibitors (DPP4), sodium/glucose cotransporter 2 inhibitors (SGLT2), sulfonylurea receptor modulators (SUR), peroxisome proliferator-activated receptor γ agonists (PPARγ), etc. We are of the opinion that acquiring a comprehensive comprehension of the synthetic procedures employed in drug molecule production will serve as a source of inventive and pragmatic inspiration for the advancement of novel, more potent, and feasible synthetic methodologies. This review aims to outline the clinical applications and synthetic routes of some representative drugs to treat T2DM, which will drive the discovery of new, more effective T2DM drugs.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China; Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Arya P, Husain N, Kumar C, Shekhar R, Prakash V, Hameed S, Mohan L, Dikshit H. C-peptide Level in Patients With Uncontrolled Type 2 Diabetes Mellitus on Oral Anti-diabetic Drugs. Cureus 2024; 16:e56810. [PMID: 38654804 PMCID: PMC11036452 DOI: 10.7759/cureus.56810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND In the development and progression of type 2 diabetes mellitus, β-cell dysfunction occurs after insulin resistance. Despite poor glycaemic control, there is a practice of increasing the dose of oral anti-diabetics or adding more drugs to the regimen due to the common perception that low endogenous insulin secretion is related to type 1 diabetes mellitus only and patient's poor compliance to injectables. Keeping this perspective in mind, this study was conducted to assess the prevalence of beta cell dysfunction by low serum C-peptide levels and its correlation with poor glycaemic control. MATERIALS AND METHODS A total of 134 patients with type 2 diabetes mellitus for more than 10 years on oral anti-diabetic drugs fulfilling our eligibility criteria were enrolled in our study. Blood samples for fasting blood sugar and fasting C-peptide level were taken before breakfast and uptake of anti-diabetic drugs. Correlation analysis was performed to evaluate the relationship between fasting C-peptide and glycaemic control with respect to glycated haemoglobin (HbA1c). RESULTS Of the patients, 19.40% had insufficient beta cell reserve serum levels (C-peptide < 0.5 ng/ml), of which most of the patients (14/26 = 53.85%) had poor glycaemic control (HbA1c < 8.0%). Overall, there was a significant correlation between poor glycaemic control with respect to HbA1c and low serum C-peptide levels (p < 0.05). We found a significant association of beta cell dysfunction (low fasting C-peptide level) with the use of insulin secretagogue. The proportion of patients with C-peptide levels less than 0.5 ng/ml was lower in patients using sodium-glucose cotransporter-2 (SGLT-2) inhibitors as compared to insulin secretagogue. CONCLUSION SGLT-2 inhibitors should be preferred over other anti-diabetic drugs as an add-on to existing metformin therapy. Insulin requirement must be assessed in patients who have long-term type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Purnendu Arya
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Noor Husain
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Chakrapani Kumar
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Ravi Shekhar
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Ved Prakash
- Department of Endocrinology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Saajid Hameed
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Lalit Mohan
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Harihar Dikshit
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
32
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
33
|
Kowluru A. Regulatory roles of CARD9-BCL10-Rac1 (CBR) signalome in islet β-cell function in health and metabolic stress: Is there room for MALT1? Biochem Pharmacol 2023; 218:115889. [PMID: 37991197 PMCID: PMC10872519 DOI: 10.1016/j.bcp.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
It is widely accepted that pancreatic islet β-cell failure and the onset of type 2 diabetes (T2DM) constitute an intricate interplay between the genetic expression of the disease and a host of intracellular events including increased metabolic (oxidative, endoplasmic reticulum) stress under the duress of glucolipotoxicity. Emerging evidence implicates unique roles for Caspase Recruitment Domain containing protein 9 (CARD9) in the onset of metabolic diseases, including obesity and insulin resistance. Mechanistically, CARD9 has been implicated in the regulation of p38MAPK and NFkB signaling pathways culminating in cellular dysfunction. Several regulatory factors, including B-cell lymphoma/leukemia 10 (BCL10) have been identified as modulators of CARD9 function in multiple cell types. Despite this evidence on regulatory roles of CARD9-BCL10 signalome in the onset of various pathological states, putative roles of this signaling module in islet β-cell dysfunction in metabolic stress remain less understood. This brief review is aimed at highlighting roles for CARD9 in islet β-cell function under acute (physiological insulin secretion) and long-term (cell dysfunction) exposure to glucose. Emerging roles of other signaling proteins, such as Rac1, BCL10 and MALT1 as contributors to CARD9 signaling in the islet β-cells are also reviewed. Potential avenues for future research toward the development of novel therapeutics for the prevention CARD9-BCL10-Rac1 (CBR) signalome-induced β-cell defects under metabolic stress are discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
34
|
Khin PP, Lee JH, Jun HS. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Phyu Phyu Khin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Han Lee
- Department of Marine Bio-industry, Hanseo University, Seosan, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, 21, Namdong-daero 774, beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
35
|
Bungau SG, Vesa CM, Bustea C, Purza AL, Tit DM, Brisc MC, Radu AF. Antioxidant and Hypoglycemic Potential of Essential Oils in Diabetes Mellitus and Its Complications. Int J Mol Sci 2023; 24:16501. [PMID: 38003691 PMCID: PMC10671358 DOI: 10.3390/ijms242216501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Since the earliest times, essential oils (EOs) have been utilized for medicinal and traditional purposes. However, in recent decades, an increasing interest has developed due to the need to rediscover herbal remedies and adjuvant therapies for the management of various diseases, particularly chronic ones. The present narrative review examines the potential for EOs to exert hypoglycemic and antioxidant effects in diabetes mellitus, analyzing the main publications having evaluated plant species with potentially beneficial effects through their phytocompounds in diabetes mellitus and its complications. Numerous species have shown promising characteristics that can be used in diabetes management. The hypoglycemic effects of these EOs are attributed to their capacity to stimulate glucose uptake, suppress glucose production, and increase insulin sensitivity. Moreover, EOs can alleviate the oxidative stress by manifesting their antioxidant effects via a variety of mechanisms, including the scavenging of free radicals, the regulation of antioxidant enzymes, and the decreasing of lipid peroxidation, due to their diverse chemical composition. These findings demonstrate the possible benefits of EOs as adjuvant therapeutic agents in the management of diabetes and its complications. The use of EOs in the treatment of diabetes shows good potential for the development of natural and effective strategies to enhance the health outcomes of people with this chronic condition, but additional experimental endorsements are required.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Cristian Bustea
- Department of Surgery, Oradea County Emergency Clinical Hospital, 410169 Oradea, Romania
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
36
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
37
|
Franks PW, Cefalu WT, Dennis J, Florez JC, Mathieu C, Morton RW, Ridderstråle M, Sillesen HH, Stehouwer CDA. Precision medicine for cardiometabolic disease: a framework for clinical translation. Lancet Diabetes Endocrinol 2023; 11:822-835. [PMID: 37804856 DOI: 10.1016/s2213-8587(23)00165-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic disease is a major threat to global health. Precision medicine has great potential to help to reduce the burden of this common and complex disease cluster, and to enhance contemporary evidence-based medicine. Its key pillars are diagnostics; prediction (of the primary disease); prevention (of the primary disease); prognosis (prediction of complications of the primary disease); treatment (of the primary disease or its complications); and monitoring (of risk exposure, treatment response, and disease progression or remission). To contextualise precision medicine in both research and clinical settings, and to encourage the successful translation of discovery science into clinical practice, in this Series paper we outline a model (the EPPOS model) that builds on contemporary evidence-based approaches; includes precision medicine that improves disease-related predictions by stratifying a cohort into subgroups of similar characteristics, or using participants' characteristics to model treatment outcomes directly; includes personalised medicine with the use of a person's data to objectively gauge the efficacy, safety, and tolerability of therapeutics; and subjectively tailors medical decisions to the individual's preferences, circumstances, and capabilities. Precision medicine requires a well functioning system comprised of multiple stakeholders, including health-care recipients, health-care providers, scientists, health economists, funders, innovators of medicines and technologies, regulators, and policy makers. Powerful computing infrastructures supporting appropriate analysis of large-scale, well curated, and accessible health databases that contain high-quality, multidimensional, time-series data will be required; so too will prospective cohort studies in diverse populations designed to generate novel hypotheses, and clinical trials designed to test them. Here, we carefully consider these topics and describe a framework for the integration of precision medicine in cardiometabolic disease.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Translational Medicine, Medical Science, Novo Nordisk Foundation, Hellerup, Denmark; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Boston, MA, USA.
| | - William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Dennis
- Institute of Biomedical and Clinical Science, Royal Devon and Exeter Hospital, University of Exeter, Exeter, UK
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Robert W Morton
- Department of Translational Medicine, Medical Science, Novo Nordisk Foundation, Hellerup, Denmark
| | | | - Henrik H Sillesen
- Department of Clinical Medicine, Medical Science, Novo Nordisk Foundation, Hellerup, Denmark
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands; Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
38
|
Diao H, Li X, Xu Y, Xing X, Pang S. Asprosin, a novel glucogenic adipokine implicated in type 2 diabetes mellitus. J Diabetes Complications 2023; 37:108614. [PMID: 37769508 DOI: 10.1016/j.jdiacomp.2023.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Asprosin, encoded by penultimate two exons (exon 65 and exon 66) of the gene Fibrillin 1 (FBN1), has been recently discovered to be a novel hormone secreted by white adipose tissues during fasting. The glucose metabolism disorders are often accompanied by increased asprosin level. Previous research suggests that asprosin may contribute to the development of diabetes by regulating glucose homeostasis, appetite, insulin secretion, and insulin sensitivity. In this review, we summarize the recent findings from studies on asprosin and its association with Type 2 diabetes mellitus, and discusses its mechanisms from various aspects, so as to provide clinical diagnosis and treatment ideas for T2DM.
Collapse
Affiliation(s)
- Hongcui Diao
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xue Li
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yeqiu Xu
- Department of Eye, Oral & Plastic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuli Xing
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China; Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
39
|
Lin C, Li ZL, Cai XL, Hu SY, Lv F, Yang WJ, Ji LN. Indirect comparison of efficacy and safety of chiglitazar and thiazolidinedione in patients with type 2 diabetes: A meta-analysis. World J Diabetes 2023; 14:1573-1584. [PMID: 37970134 PMCID: PMC10642417 DOI: 10.4239/wjd.v14.i10.1573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Chiglitazar is an emerging pan-agonist of all peroxisome proliferator activated receptors (PPAR)-α, δ and γ, and has therapeutic potential for type 2 diabetes (T2D). However, to date, no clinical studies or meta-analyses have compared the efficacy and safety of chiglitazar and traditional PPAR-γ agonist thiazolidinediones (TZDs). A meta-analysis concerning this topic is therefore required. AIM To compare the efficacy and safety of chiglitazar and TZD in patients with T2D. METHODS PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials, Reference Citation Analysis and Clinicaltrial.gov websites were searched from August 1994 to March 2022. Randomized controlled trials (RCTs) of chiglitazar or TZD vs placebo in patients with T2D were included. Indirect comparisons and sensitivity analyses were implemented to evaluate multiple efficacy and safety endpoints of interest. RESULTS We included 93 RCTs that compared TZD with placebo and one that compared chiglitazar with placebo. For efficacy endpoints, the augmented dose of chig-litazar resulted in greater reductions in hemoglobin (Hb)A1c [weighted mean difference (WMD) = -0.15%, 95% confidence interval (CI): -0.27 to -0.04%], triglycerides (WMD = -0.17 mmol/L, 95%CI: -0.24 to -0.11 mmol/L) and alanine aminotransferase (WMD = -5.25 U/L, 95%CI: -8.50 to -1.99 U/L), and a greater increase in homeostasis model assessment-β (HOMA-β) (WMD = 17.75, 95%CI: 10.73-24.77) when compared with TZD treatment. For safety endpoints, the risks of hypoglycemia, edema, bone fractures, upper respiratory tract infection, urinary tract infection, and weight gain were all comparable between the augmented dose of chiglitazar and TZD. In patients with baseline HbA1c ≥ 8.5%, body mass index ≥ 30 kg/m2 or diabetes duration < 10 years, the HbA1c reduction and HOMA-β increase were more conspicuous for the augmented dose of chiglitazar compared with TZD. CONCLUSION Augmented dose of chiglitazar, a pan-activator of PPARs, may serve as an antidiabetic agent with preferable glycemic and lipid control, better β-cell function preserving capacity, and does not increase the risk of safety concerns when compared with TZD.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Zong-Lin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Ling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Sui-Yuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Wen-Jia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Li-Nong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
40
|
Kim J, Oh CM, Kim H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines 2023; 11:2589. [PMID: 37761031 PMCID: PMC10526203 DOI: 10.3390/biomedicines11092589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The interplay between adipokines and pancreatic beta cells, often referred to as the adipo-insular axis, plays a crucial role in regulating metabolic homeostasis. Adipokines are signaling molecules secreted by adipocytes that have profound effects on several physiological processes. Adipokines such as adiponectin, leptin, resistin, and visfatin influence the function of pancreatic beta cells. The reciprocal communication between adipocytes and beta cells is remarkable. Insulin secreted by beta cells affects adipose tissue metabolism, influencing lipid storage and lipolysis. Conversely, adipokines released from adipocytes can influence beta cell function and survival. Chronic obesity and insulin resistance can lead to the release of excess fatty acids and inflammatory molecules from the adipose tissue, contributing to beta cell dysfunction and apoptosis, which are key factors in developing type 2 diabetes. Understanding the complex interplay of the adipo-insular axis provides insights into the mechanisms underlying metabolic regulation and pathogenesis of metabolic disorders. By elucidating the molecular mediators involved in this interaction, new therapeutic targets and strategies may emerge to reduce the risk and progression of diseases, such as type 2 diabetes and its associated complications. This review summarizes the interactions between adipokines and pancreatic beta cells, and their roles in the pathogenesis of diabetes and metabolic diseases.
Collapse
Affiliation(s)
- Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hyeongseok Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
| |
Collapse
|
41
|
Martinez N, Smulan LJ, Jameson ML, Smith CM, Cavallo K, Bellerose M, Williams J, West K, Sassetti CM, Singhal A, Kornfeld H. Glycerol contributes to tuberculosis susceptibility in male mice with type 2 diabetes. Nat Commun 2023; 14:5840. [PMID: 37730757 PMCID: PMC10511404 DOI: 10.1038/s41467-023-41519-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Diabetes mellitus increases risk for tuberculosis disease and adverse outcomes. Most people with both conditions have type 2 diabetes, but it is unknown if type 1 and type 2 diabetes have identical effects on tuberculosis susceptibility. Here we show that male mice receiving a high-fat diet and streptozotocin to model type 2 diabetes, have higher mortality, more lung pathology, and higher bacterial burden following Mycobacterium tuberculosis infection compared to mice treated with streptozotocin or high-fat diet alone. Type 2 diabetes model mice have elevated plasma glycerol, which is a preferred carbon source for M. tuberculosis. Infection studies with glycerol kinase mutant M. tuberculosis reveal that glycerol utilization contributes to the susceptibility of the type 2 diabetes mice. Hyperglycemia impairs protective immunity against M. tuberculosis in both forms of diabetes, but our data show that elevated glycerol contributes to an additional adverse effect uniquely relevant to type 2 diabetes.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lorissa J Smulan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael L Jameson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly Cavallo
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michelle Bellerose
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kim West
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amit Singhal
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- A*STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Elangeeb ME, Elfaki I, Elkhalifa MA, Adam KM, Alameen AO, Elfadl AK, Albalawi IA, Almasoudi KS, Almotairi R, Alsaedi BSO, Alhelali MH, Mir MM, Amle D, Mir R. In Silico Investigation of AKT2 Gene and Protein Abnormalities Reveals Potential Association with Insulin Resistance and Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:7449-7475. [PMID: 37754255 PMCID: PMC10528407 DOI: 10.3390/cimb45090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Type 2 diabetes (T2D) develops from insulin resistance (IR) and the dysfunction of pancreatic beta cells. The AKT2 protein is very important for the protein signaling pathway, and the non-synonymous SNP (nsSNPs) in AKT2 gene may be associated with T2D. nsSNPs can result in alterations in protein stability, enzymatic activity, or binding specificity. The objective of this study was to investigate the effect of nsSNPs on the AKT2 protein structure and function that may result in the induction of IR and T2D. The study identified 20 variants that were considered to be the most deleterious based on a range of analytical tools included (SIFT, PolyPhen2, Mut-pred, SNAP2, PANTHER, PhD-SNP, SNP&Go, MUpro, Cosurf, and I-Mut). Two mutations, p.A179T and p.L183Q, were selected for further investigation based on their location within the protein as determined by PyMol. The results indicated that mutations, p.A179T and p.L183Q alter the protein stability and functional characteristics, which could potentially affect its function. In order to conduct a more in-depth analysis of these effects, a molecular dynamics simulation was performed for wildtype AKT2 and the two mutants (p.A179T and p.L183Q). The simulation evaluated various parameters, including temperature, pressure, density, RMSD, RMSF, SASA, and Region, over a period of 100 ps. According to the simulation results, the wildtype AKT2 protein demonstrated higher stability in comparison to the mutant variants. The mutations p.A179T and p.L183Q were found to cause a reduction in both protein stability and functionality. These findings underscore the significance of the effects of nsSNPs (mutations p.A179T and p.L183Q) on the structure and function of AKT2 that may lead to IR and T2D. Nevertheless, they require further verifications in future protein functional, protein-protein interaction, and large-scale case-control studies. When verified, these results will help in the identification and stratification of individuals who are at risk of IR and T2D for the purpose of prevention and treatment.
Collapse
Affiliation(s)
- M. E. Elangeeb
- Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - M. A. Elkhalifa
- Department of Anatomy, Faculty of Medicine and Health Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Khalid M. Adam
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - A. O. Alameen
- Department of Biomedical Science, Faculty of Veterinary Medicine, King Faisal University, Alahssa 31982, Saudi Arabia;
| | - Ahmed Kamaleldin Elfadl
- Veterinary Research Section, Ministry of Municipality, Doha P.O. Box 35081, Qatar;
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11115, Sudan
| | | | - Kholoud S. Almasoudi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (K.S.A.); (R.A.)
| | - Reema Almotairi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (K.S.A.); (R.A.)
| | - Basim S. O. Alsaedi
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (B.S.O.A.); (M.H.A.)
| | - Marwan H. Alhelali
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (B.S.O.A.); (M.H.A.)
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Dnyanesh Amle
- Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 441108, India;
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (K.S.A.); (R.A.)
| |
Collapse
|
43
|
de Oliveira E Silva Ullmann T, Ramalho BJ, Laurindo LF, Tofano RJ, Rubira CJ, Guiguer EL, Barbalho SM, Flato UAP, Sloan KP, Araujo AC. Effects of Vitamin D Supplementation in Diabetic Kidney Disease: A Systematic Review. J Ren Nutr 2023; 33:618-628. [PMID: 37302723 DOI: 10.1053/j.jrn.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes Mellitus is a highly prevalent condition in which Diabetes Mellitus type 2 is the most common. Diabetic Kidney Disease is one of the most relevant complications and affects approximately one-third of patients with Diabetes Mellitus. It is characterized by increased urinary protein excretion and a decrease in glomerular filtration rate, assessed by serum creatinine levels. Recent studies have shown that vitamin D levels are low in these patients. This study aimed to conduct a systematic review of the effects of vitamin D supplementation on proteinuria and creatinine, which are important markers for assessing the severity of kidney disease in patients with Diabetic Kidney Disease. PUBMED, EMBASE, and COCHRANE databases were consulted, Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were followed, and the COCHRANE toll for bias assessment was applied. Six papers were quantitative studies and fulfilled the inclusion criteria for this review. The results showed that vitamin D supplementation of 50,000 I.U./week for 8 weeks effectively reduced proteinuria and creatinine in patients with Diabetic Kidney Disease, particularly in patients with Diabetes Mellitus type 2. Vitamin D supplementation is beneficial for patients with Diabetic Kidney Disease by having essential effects on disease-related inflammatory markers, such as the reduction of proteinuria and creatinine. However, more clinical trials must be conducted to evaluate the intervention among more significant numbers of patients.
Collapse
Affiliation(s)
- Thais de Oliveira E Silva Ullmann
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | | | | | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | - Claudio José Rubira
- Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Department of Biochemistry, School of Food and Technology of Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Department of Biochemistry, School of Food and Technology of Marília, São Paulo, Brazil.
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | | | - Adriano Cressoni Araujo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil
| |
Collapse
|
44
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
45
|
Sorski L, Gidron Y. The Vagal Nerve, Inflammation, and Diabetes-A Holy Triangle. Cells 2023; 12:1632. [PMID: 37371102 DOI: 10.3390/cells12121632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetic mellitus (T2DM) is a common chronic disease and a substantial risk factor of other fatal illnesses. At its core is insulin resistance, where chronic low-level inflammation is among its main causes. Thus, it is crucial to modulate this inflammation. This review paper provides scientific neuroimmunological evidence on the protective roles of the vagal nerve in T2DM. First, the vagus inhibits inflammation in a reflexive manner via neuroendocrine and neuroimmunological routes. This may also occur at the level of brain networks. Second, studies have shown that vagal activity, as indexed by heart-rate variability (HRV), is inversely related to diabetes and that low HRV is a predictor of T2DM. Finally, some emerging evidence shows that vagal nerve activation may reduce biomarkers and processes related to diabetes. Future randomized controlled trials are needed to test the effects of vagal nerve activation on T2DM and its underlying anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yori Gidron
- Department of Nursing, Faculty of Social Welfare and Health Sciences, Haifa University, Haifa 3498838, Israel
| |
Collapse
|
46
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Metabolic-Associated Fatty Liver Disease and Insulin Resistance: A Review of Complex Interlinks. Metabolites 2023; 13:757. [PMID: 37367914 PMCID: PMC10304744 DOI: 10.3390/metabo13060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) has now surpassed alcohol excess as the most common cause of chronic liver disease globally, affecting one in four people. Given its prevalence, MAFLD is an important cause of cirrhosis, even though only a small proportion of patients with MAFLD ultimately progress to cirrhosis. MAFLD suffers as a clinical entity due to its insidious and often asymptomatic onset, lack of an accurate and reliable non-invasive diagnostic test, and lack of a bespoke therapy that has been designed and approved for use specifically in MAFLD. MAFLD sits at a crossroads between the gut and the periphery. The development of MAFLD (including activation of the inflammatory cascade) is influenced by gut-related factors that include the gut microbiota and intactness of the gut mucosal wall. The gut microbiota may interact directly with the liver parenchyma (through translocation via the portal vein), or indirectly through the release of metabolic metabolites that include secondary bile acids, trimethylamine, and short-chain fatty acids (such as propionate and acetate). In turn, the liver mediates the metabolic status of peripheral tissues (including insulin sensitivity) through a complex interplay of hepatokines, liver-secreted metabolites, and liver-derived micro RNAs. As such, the liver plays a key central role in influencing overall metabolic status. In this concise review, we provide an overview of the complex mechanisms whereby MAFLD influences the development of insulin resistance within the periphery, and gut-related factors impact on the development of MAFLD. We also discuss lifestyle strategies for optimising metabolic liver health.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
47
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Zhao JF, Li LH, Guo XJ, Zhang HX, Tang LL, Ding CH, Liu WS. Identification of natural product inhibitors of PTP1B based on high-throughput virtual screening strategy: In silico, in vitro and in vivo studies. Int J Biol Macromol 2023:125292. [PMID: 37302637 DOI: 10.1016/j.ijbiomac.2023.125292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathway, which is a potential therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). In this study, we identified several PTP1B inhibitors with high activity by using high-throughput virtual screening and in vitro enzyme inhibition activity verification strategies. Among them, baicalin was first reported as a selective mixed inhibitor of PTP1B, with IC50 value of 3.87 ± 0.45 μM, and its inhibitory activity against homologous proteins TCPTP, SHP2, and SHP1 exceeded 50 μM. Molecular docking study found that baicalin and PTP1B could bind stably, and revealed that baicalin had a dual inhibitory effect. Cell experiments showed that baicalin was almost non-toxic and could significantly enhance the phosphorylation of IRS-1 in C2C12 myotube cells. Animal experiments showed that baicalin could significantly reduce the blood sugar of STZ-induced diabetic mice models, and had a liver protective effect. In conclusion, this study can provide new ideas for the development of PTP1B selective inhibitors.
Collapse
Affiliation(s)
- Ji-Feng Zhao
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Li-Hua Li
- Eye Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Xiao-Jing Guo
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Hai-Xia Zhang
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Lin-Lin Tang
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Chuan-Hua Ding
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China.
| | - Wen-Shan Liu
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China.
| |
Collapse
|
49
|
Sokolov V, Yakovleva T, Stolbov L, Penland RC, Boulton D, Parkinson J, Tang W. A mechanistic modeling platform of SGLT2 inhibition: Implications for type 1 diabetes. CPT Pharmacometrics Syst Pharmacol 2023; 12:831-841. [PMID: 36912425 PMCID: PMC10272306 DOI: 10.1002/psp4.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by abnormally high blood glucose concentrations due to dysfunction of the insulin-producing beta-cells in the pancreas. Dapagliflozin, an inhibitor of renal glucose reabsorption, has the potential to improve often suboptimal glycemic control in patients with T1DM through insulin-independent mechanisms and to partially mitigate the adverse effects associated with long-term insulin administration. In this work, we have adapted a systems pharmacology model of type 2 diabetes mellitus to describe the T1DM condition and characterize the effect of dapagliflozin on short- and long-term glycemic markers under various treatment scenarios. The developed platform serves as a quantitative tool for the in silico evaluation of the insulin-glucose-dapagliflozin crosstalk, optimization of the treatment regimens, and it can be further expanded to include additional therapies or other aspects of the disease.
Collapse
Affiliation(s)
| | | | | | - Robert C. Penland
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaWalthamMassachusettsUSA
| | - David Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| | - Joanna Parkinson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| |
Collapse
|
50
|
Tseng HJ, Chen WC, Kuo TF, Yang G, Feng CS, Chen HM, Chen TY, Lee TH, Yang WC, Tsai KC, Huang WJ. Pharmacological and mechanistic study of PS1, a Pdia4 inhibitor, in β-cell pathogenesis and diabetes in db/db mice. Cell Mol Life Sci 2023; 80:101. [PMID: 36935456 PMCID: PMC10025235 DOI: 10.1007/s00018-022-04677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 03/21/2023]
Abstract
Pdia4 has been characterized as a key protein that positively regulates β-cell failure and diabetes via ROS regulation. Here, we investigated the function and mechanism of PS1, a Pdia4 inhibitor, in β-cells and diabetes. We found that PS1 had an IC50 of 4 μM for Pdia4. Furthermore, PS1 alone and in combination with metformin significantly reversed diabetes in db/db mice, 6 to 7 mice per group, as evidenced by blood glucose, glycosylated hemoglobin A1c (HbA1c), glucose tolerance test, diabetic incidence, survival and longevity (P < 0.05 or less). Accordingly, PS1 reduced cell death and dysfunction in the pancreatic β-islets of db/db mice as exemplified by serum insulin, serum c-peptide, reactive oxygen species (ROS), islet atrophy, and homeostatic model assessment (HOMA) indices (P < 0.05 or less). Moreover, PS1 decreased cell death in the β-islets of db/db mice. Mechanistic studies showed that PS1 significantly increased cell survival and insulin secretion in Min6 cells in response to high glucose (P < 0.05 or less). This increase could be attributed to a reduction in ROS production and the activity of electron transport chain complex 1 (ETC C1) and Nox in Min6 cells by PS1. Further, we found that PS1 inhibited the enzymatic activity of Pdia4 and mitigated the interaction between Pdia4 and Ndufs3 or p22 in Min6 cells (P < 0.01 or less). Taken together, this work demonstrates that PS1 negatively regulated β-cell pathogenesis and diabetes via reduction of ROS production involving the Pdia4/Ndufs3 and Pdia4/p22 cascades.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan
| | - Wen-Chu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Hui-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Tzung-Yan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
- Translational Biomedical Research Center, Academia Sinica, Taipei City, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
- Translational Biomedical Research Center, Academia Sinica, Taipei City, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Program for the Clinical Drug Discovery From Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- School of Pharmacy, National Defense Medical Center, Taipei City, Taiwan.
| |
Collapse
|