1
|
Zetoune FS, Ward PA. THE IMMUNOPATHOGENESIS OF POLYMICROBIAL SEPSIS. Shock 2023; 59:311-317. [PMID: 36377404 PMCID: PMC9957923 DOI: 10.1097/shk.0000000000002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT This report deals with the advances made in the areas of complement and its role in sepsis, both in mice and in humans. The study relates to work over the past 25 years (late 1990s to October 2022). During this period, there has been very rapid progress in understanding the activation pathways of complement and the activation products of complement, especially the anaphylatoxin C5a and its receptors, C5aR1 and C5aR2. Much has also been learned about these pathways of activation that trigger activation of the innate immune system and the array of strong proinflammatory cytokines that can cause cell and organ dysfunction, as well as complement products that cause immunosuppression. The work in septic humans and mice, along with patients who develop lung dysfunction caused by COVID-19, has taught us that there are many strategies for treatment of humans who are septic or develop COVID-19-related lung dysfunction. To date, treatments in humans with these disorders suggest that we are in the midst of a new and exciting area related to the complement system.
Collapse
Affiliation(s)
- Firas S. Zetoune
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109
| | - Peter A. Ward
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Esen F, Orhun G, Ozcan PE, Senturk E, Kucukerden M, Giris M, Akcan U, Yilmaz CU, Orhan N, Arican N, Kaya M, Gazioglu SB, Tuzun E. Neuroprotective effects of intravenous immunoglobulin are mediated through inhibition of complement activation and apoptosis in a rat model of sepsis. Intensive Care Med Exp 2017; 5:1. [PMID: 28058672 PMCID: PMC5215999 DOI: 10.1186/s40635-016-0114-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Intravenous (IV) immunoglobulin (Ig) treatment is known to alleviate behavioral deficits and increase survival in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Methods Sepsis was induced by cecal ligation perforation (CLP) in rats. The animals were divided into five groups: sham, control, CLP + saline, CLP + immunoglobulin G (IgG) (250 mg/kg, iv), and CLP + immunoglobulins enriched with immunoglobulin M (IgGAM) (250 mg/kg, iv). Blood and brain samples were taken in two sets of experiments to see the early (24 h) and late (10 days) effects of treatment. Total complement activity, complement 3 (C3), and soluble complement C5b-9 levels were measured in the sera of rats using ELISA-based methods. Cerebral complement, complement receptor, NF-κB, Bax, and Bcl-2 expressions were analyzed by western blot and/or RT-PCR methods. Immune cell infiltration and gliosis were examined by immunohistochemistry using CD3, CD4, CD8, CD11b, CD19, and glial fibrillary acidic protein antibodies. Apoptotic neuronal death was investigated by TUNEL staining. Results IVIgG and IgGAM administration significantly reduced systemic complement activity and cerebral C5a and C5a receptor expression. Likewise, both treatment methods reduced proapoptotic NF-κB and Bax expressions in the brain. IVIgG and IgGAM treatment induced considerable amelioration in glial cell proliferation and neuronal apoptosis which were increased in non-treated septic rats. Conclusions We suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. In both treatment methods, these beneficial effects might be mediated through reduction of anaphylatoxic C5a activity and subsequent inhibition of inflammation and apoptosis pathways. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0114-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Figen Esen
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey
| | - Gunseli Orhun
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey
| | - Perihan Ergin Ozcan
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey.
| | - Evren Senturk
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey
| | - Melike Kucukerden
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Giris
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ugur Akcan
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ugur Yilmaz
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurcan Orhan
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nadir Arican
- Department of Forensic Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Kaya
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sema Bilgic Gazioglu
- Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Kalbitz M, Fattahi F, Herron TJ, Grailer JJ, Jajou L, Lu H, Huber-Lang M, Zetoune FS, Sarma JV, Day SM, Russell MW, Jalife J, Ward PA. Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. THE JOURNAL OF IMMUNOLOGY 2016; 197:2353-61. [PMID: 27521340 DOI: 10.4049/jimmunol.1600091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
Abstract
There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lawrence Jajou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hope Lu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Sharlene M Day
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mark W Russell
- Department of Pediatric Cardiology, University of Michigan Medical School, Ann Arbor, MI 48109; and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - José Jalife
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
4
|
Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A, Serghides L, Min-oo G, Gowda DC, Sarma JV, Rittirsch D, Ward PA, Liles WC, Gros P, Kain KC. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 2008; 205:1133-43. [PMID: 18426986 PMCID: PMC2373845 DOI: 10.1084/jem.20072248] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 04/02/2008] [Indexed: 12/13/2022] Open
Abstract
Experimental infection of mice with Plasmodium berghei ANKA (PbA) provides a powerful model to define genetic determinants that regulate the development of cerebral malaria (CM). Based on the hypothesis that excessive activation of the complement system may confer susceptibility to CM, we investigated the role of C5/C5a in the development of CM. We show a spectrum of susceptibility to PbA in a panel of inbred mice; all CM-susceptible mice examined were found to be C5 sufficient, whereas all C5-deficient strains were resistant to CM. Transfer of the C5-defective allele from an A/J (CM resistant) onto a C57BL/6 (CM-susceptible) genetic background in a congenic strain conferred increased resistance to CM; conversely, transfer of the C5-sufficient allele from the C57BL/6 onto the A/J background recapitulated the CM-susceptible phenotype. The role of C5 was further explored in B10.D2 mice, which are identical for all loci other than C5. C5-deficient B10.D2 mice were protected from CM, whereas C5-sufficient B10.D2 mice were susceptible. Antibody blockade of C5a or C5a receptor (C5aR) rescued susceptible mice from CM. In vitro studies showed that C5a-potentiated cytokine secretion induced by the malaria product P. falciparum glycosylphosphatidylinositol and C5aR blockade abrogated these amplified responses. These data provide evidence implicating C5/C5a in the pathogenesis of CM.
Collapse
Affiliation(s)
- Samir N Patel
- Tropical Disease Unit, Department of Medicine, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Sepsis is a state of disrupted inflammatory homeostasis that is often initiated by infection. The development and progression of sepsis is multi-factorial, and affects the cardiovascular, immunological and endocrine systems of the body. The complexity of sepsis makes the clinical study of sepsis and sepsis therapeutics difficult. Animal models have been developed in an effort to create reproducible systems for studying sepsis pathogenesis and preliminary testing of potential therapeutic agents. However, demonstrated benefit from a therapeutic agent in animal models has rarely been translated into success in human clinical trials. This review summarizes the common animal sepsis models and highlights how results of recent human clinical trials might affect their use.
Collapse
Affiliation(s)
- Jon A Buras
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
6
|
Harkin DW, Marron CD, Rother RP, Romaschin A, Rubin BB, Lindsay TF. C5 complement inhibition attenuates shock and acute lung injury in an experimental model of ruptured abdominal aortic aneurysm. Br J Surg 2005; 92:1227-34. [PMID: 16078298 DOI: 10.1002/bjs.4938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Ruptured abdominal aortic aneurysm (RAAA) is associated with a systemic inflammatory response syndrome and multiple organ dysfunction. The potential role of a novel C5 complement inhibitor in attenuation of pathological complement activation and tissue injury was explored in a model of RAAA. METHODS Anaesthetized rats were randomized to sham (control) or shock and clamp (SC) groups. Animals in the SC group underwent 1 h of haemorrhagic shock (mean arterial pressure 50 mmHg or less), 45 min of supramesenteric aortic clamping and 2 h of reperfusion. They were randomized to receive an intravenous bolus of a functionally blocking anti-C5 monoclonal antibody (C5 inhibitor), at a dose of 20 mg/kg, or saline. Lung injury was assessed by permeability to 125I-labelled albumin, tissue myeloperoxidase (MPO) activity, and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) for mRNAs encoding tumour necrosis factor (TNF) alpha and interleukin (IL) 6. RESULTS The lung permeability index was significantly increased in the SC compared with the sham group (P = 0.032); this was prevented by the C5 inhibitor (P = 0.015). Lung MPO activity was significantly increased in the SC compared with the sham group (P < 0.001), and this increase was attenuated by treatment with the C5 inhibitor (P < 0.001). Semiquantitative RT-PCR in SC group demonstrated downregulation of TNF-alpha mRNA (P = 0.050) and upregulation of IL-6 mRNA (P < 0.001), which were both prevented by the C5 inhibitor (P = 0.014 and P < 0.001 respectively). CONCLUSION These results indicated that C5 complement inhibition can reduce shock and acute lung injury in an experimental model of RAAA.
Collapse
Affiliation(s)
- D W Harkin
- Division of Vascular Surgery, Department of Surgery, Toronto Hospital (General Division), Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
7
|
Buras JA, Holzmann B, Sitkovsky M. Animal Models of sepsis: setting the stage. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1854 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Gao H, Neff TA, Guo RF, Speyer CL, Sarma JV, Tomlins S, Man Y, Riedemann NC, Hoesel LM, Younkin E, Zetoune FS, Ward PA. Evidence for a functional role of the second C5a receptor C5L2. FASEB J 2005; 19:1003-5. [PMID: 15784721 DOI: 10.1096/fj.04-3424fje] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During experimental sepsis in rodents after cecal ligation and puncture (CLP), excessive C5a is generated, leading to interactions with C5aR, loss of innate immune functions of neutrophils, and lethality. In the current study, we have analyzed the expression of the second C5a receptor C5L2, the putative "default" or nonsignaling receptor for C5a. Rat C5L2 was cloned, and antibody was developed to C5L2 protein. After CLP, blood neutrophils showed a reduction in C5aR followed by its restoration, while C5L2 levels gradually increased, accompanied by the appearance of mRNA for C5L2. mRNA for C5L2 increased in lung and liver during CLP. Substantially increased C5L2 protein (defined by binding of 125I-anti-C5L2 IgG) occurred in lung, liver, heart, and kidney after CLP. With the use of serum IL-6 as a marker for sepsis, infusion of anti-C5aR dramatically reduced serum IL-6 levels, while anti-C5L2 caused a nearly fourfold increase in IL-6 when compared with CLP controls treated with normal IgG. When normal blood neutrophils were stimulated in vitro with LPS and C5a, the antibodies had similar effects on release of IL-6. These data provide the first evidence for a role for C5L2 in balancing the biological responses to C5a.
Collapse
Affiliation(s)
- Hongwei Gao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Baelder R, Fuchs B, Bautsch W, Zwirner J, Köhl J, Hoymann HG, Glaab T, Erpenbeck V, Krug N, Braun A. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 174:783-9. [PMID: 15634899 DOI: 10.4049/jimmunol.174.2.783] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airway hyperresponsiveness and airway inflammation are hallmarks of allergic asthma, the etiology of which is crucially linked to the presence of Th2 cytokines. A role for the complement anaphylatoxins C3a and C5a in allergic asthma was suggested, as deficiencies of the C3a receptor (C3aR) and of complement factor C5 modulate airway hyperresponsiveness, airway inflammation, and Th2 cytokine levels. However, such models do not allow differentiation of effects on the sensitization phase and the effector phase of the allergic response, respectively. In this study, we determined the role of the anaphylatoxins on the effector phase of asthma by pharmacological targeting of the anaphylatoxin receptors. C3aR and C5a receptor (C5aR) signaling was blocked using the nonpeptidic C3aR antagonist SB290157 and the neutralizing C5aR mAb 20/70 in a murine model of Aspergillus fumigatus extract induced pulmonary allergy. Airway hyperresponsiveness was substantially improved after C5aR blockade but not after C3aR blockade. Airway inflammation was significantly reduced in mice treated with the C3aR antagonist or the anti-C5aR mAb, as demonstrated by reduced numbers of neutrophils and eosinophils in bronchoalveolar lavage fluid. Of note, C5aR but not C3aR inhibition reduced lymphocyte numbers in bronchoalveolar lavage fluid. Cytokine levels of IL-5 and IL-13 in bronchoalveolar lavage fluid were not altered by C3aR or C5aR blockade. However, blockade of both anaphylatoxin receptors markedly reduced IL-4 levels. These data suggest an important and exclusive role for C5aR signaling on the development of airway hyperresponsiveness during pulmonary allergen challenge, whereas both anaphylatoxins contribute to airway inflammation and IL-4 production.
Collapse
Affiliation(s)
- Ralf Baelder
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tsai HR, Yang LM, Tsai WJ, Chiou WF. Andrographolide acts through inhibition of ERK1/2 and Akt phosphorylation to suppress chemotactic migration. Eur J Pharmacol 2005; 498:45-52. [PMID: 15363974 DOI: 10.1016/j.ejphar.2004.07.077] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 07/13/2004] [Indexed: 12/22/2022]
Abstract
We now evaluated the anti-inflammatory mechanisms of andrographolide on complement 5a (C5a)-induced macrophage recruitment in vitro. Andrographolide concentration dependently inhibited cell migration toward C5a with an IC50 of 5.6+/-0.7 microM. With relatively specific kinase inhibitors (PD98059, SB203580, SP600125, wortmannin and LY294002, respectively) the results showed that extracellular signal-regulated kinase1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol-3-kinase (PI3K) were necessary for C5a-induced migration, whereas c-Jun N-terminal kinase (JNK) was nonessential. Andrographolide significantly attenuated C5a-stimulated phosphorylation of ERK1/2, and of its upstream activator, MAP kinase-ERK kinase (MEK1/2). C5a-activated ERK1/2 phosphorylation was 86+/-9% inhibited by 30 microM andrographolide. Under the same conditions, however, andrographolide failed to affect C5a-stimulated p38 MAPK and JNK phosphorylation. Andrographolide also strongly abolished C5a-stimulated Akt phosphorylation, a downstream target protein for PI3K. These results indicate that inhibition of cell migration by interfering with ERK1/2 and PI3K/Akt signal pathways may contribute to the anti-inflammatory activity of andrographolide.
Collapse
Affiliation(s)
- Hwei-Ru Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, NO.155, Li-Nung Street, Section 2, Shih-Pai Taipei 112, Taiwan, ROC
| | | | | | | |
Collapse
|