1
|
Mohamed E, Zarak I, Vereecke N, Theuns S, Laval K, Nauwynck H. Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains. Vet Res 2025; 56:12. [PMID: 39806433 PMCID: PMC11731145 DOI: 10.1186/s13567-024-01434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 01/16/2025] Open
Abstract
Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century. The genomic sequences of five isolates associated with the fatal neurological outbreak in Valencia, Spain, in 2021 were analyzed and documented. The genome and replication kinetics of the Belgian EHM isolate 21P40, associated with the Valencia outbreak, and the well-characterized abortigenic strain 97P70 were compared. Both strains exhibited a nucleotide identity of 99.96%, with only seven genetic mutations in ORFs 13, 24, 30, 32, 40, 65, and 71. Isoleucine and asparagine at loci 291 and 207 of ORF30 (DNA polymerase) and ORF65 (ICP22), respectively, were unique to isolates from the Valencia outbreak. The replication kinetics of these two genetically closely related strains were determined in rabbit kidney (RK-13), equine respiratory, and vaginal mucosal explant cells, as well as equine blood monocytes (CD172a+). Both strains replicated equally well in RK-13 cells. The neuropathogenic isolate 21P40 exhibited a more extensive infection in respiratory explants and blood monocytes, as demonstrated by more plaques and single infected leukocytes, and a higher percentage of infected monocytes. In contrast, vaginal explants infected with the abortigenic strain 97P70 demonstrated more plaques and single infected leukocytes. In conclusion, 21P40 replicated significantly different compared to 97P70 but shared similarities with the Belgian well-studied neuropathogenic EHV-1 strain 03P37.
Collapse
Affiliation(s)
- Eslam Mohamed
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Egypt.
| | - Ines Zarak
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
- PathoSense BV, Pastoriestraat 10, 2500, Lier, Belgium
| | | | - Kathlyn Laval
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
2
|
Houben RMAC, van Maanen C, Newton JR, van den Broek J, Sloet van Oldruitenborgh-Oosterbaan MM, Heesterbeek JAP. A model-based approach to evaluate the effect of vaccination of the herd on transmission of equine herpesvirus 1 in naturally occurring outbreaks. Prev Vet Med 2025; 236:106418. [PMID: 39798166 DOI: 10.1016/j.prevetmed.2025.106418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Equine herpesvirus 1 (EHV-1) infection is the cause of high impact disease syndromes, affecting the global horse industry. The effect of vaccination on transmission dynamics of EHV-1 in naturally occurring outbreaks is not quantified. Our aims were to estimate R0 for EHV-1 in equine populations from outbreak data, and evaluate the effect of vaccination status of the herd on R through a systematic review, model-based estimations and meta-analysis. A literature search for outbreak reports was carried out. Depending on available data, the early epidemic growth rate (GR) or final attack rate (AR) approach was used to estimate the basic reproduction number for that outbreak. Herd vaccination status, as well as virus genotype and use of antivirals were recorded. Only outbreaks in herds where either none or all of the horses had been vaccinated were included. An overall estimate for R0 (non-vaccinated herds) and Rv (vaccinated herds) was computed by meta-analysis and the two groups were compared using a random effects model. Twelve outbreaks, in herds of 16-135 horses, met the inclusion criteria, of which six occurred in non-vaccinated herds and six in vaccinated herds. One R0 calculation from a report describing empirical determination of a herd immunity threshold was also included. We found no evidence for a significant difference between estimates of R0 and RV in outbreaks: Rˆ0=3.3(2.6-4.0) and RˆV=2.7(2.1-3.2), p = 0.15. Our main limitations were our inability to investigate the influence of genotype or antivirals on results. Sensitivity analyses gave volatile p-values. In conclusion, we found no robust evidence for a significant reduction on transmission of EHV-1 in herds where all horses were vaccinated vs non-vaccinated herds. Rˆ in herds where all horses were vaccinated was substantially > 1 and vaccination as a sole mitigating measure may have limited effect on transmission of EHV-1.
Collapse
Affiliation(s)
- R M A C Houben
- Department of Clinical Sciences, faculty of Veterinary medicine, Utrecht University, the Netherlands.
| | | | - J R Newton
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, Cambridge, UK
| | - J van den Broek
- Department of Population Health Sciences, faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | - J A P Heesterbeek
- Department of Population Health Sciences, faculty of Veterinary Medicine, Utrecht University, the Netherlands
| |
Collapse
|
3
|
Pusterla N, Dorman DC, Burgess BA, Goehring L, Gross M, Osterrieder K, Soboll Hussey G, Lunn DP. Viremia and nasal shedding for the diagnosis of equine herpesvirus-1 infection in domesticated horses. J Vet Intern Med 2024; 38:1765-1791. [PMID: 38069548 PMCID: PMC11099742 DOI: 10.1111/jvim.16958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/16/2023] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Equine herpesvirus type 1 (EHV-1) infection is associated with upper respiratory disease, EHM, abortions, and neonatal death. RESEARCH QUESTIONS Are nasal secretions a more sensitive biological sample compared to blood for the detection of EHV-1 infection? How long is EHV-1 detectable after primary infection by PCR? METHODS MedLine and Web of Science searches identified original peer-reviewed reports evaluating nasal shedding and viremia using virus isolation methods or PCR published in English before October 9, 2023. RESULTS Sixty experimental and 20 observational studies met inclusion criteria. EHV-1 detection frequency by qPCR in nasal secretions and blood from naturally-infected horses with fever and respiratory signs were 15% and 9%, respectively; qPCR detection rates in nasal secretions and blood from horses with suspected EHM were 94% and 70%, respectively. In experimental studies the sensitivity of qPCR matched or exceeded that seen for virus isolation from either nasal secretions or blood. Detection of nasal shedding typically occurred within 2 days after EHV-1 inoculation with a detection period of 3 to 7 days. Viremia lasted 2 to 7 days and was usually detected ≥1 days after positive identification of EHV-1 in nasal secretions. Nasal shedding and viremia decreased over time and remained detectable in some horses for several weeks after inoculation. CONCLUSIONS AND CLINICAL IMPORTANCE Under experimental conditions, blood and nasal secretions have similar sensitivity for the detection of EHV-1 when horses are sampled on multiple consecutive days. In contrast, in observational studies detection of EHV-1 in nasal secretions was consistently more successful.
Collapse
Affiliation(s)
- Nicola Pusterla
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - David C. Dorman
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Lutz Goehring
- College of Agriculture, Food and Environment, Maxwell H. Gluck Equine Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Margaret Gross
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Gisela Soboll Hussey
- College of Veterinary MedicineMichigan State University, Veterinary Medical CenterEast LansingMichiganUSA
| | - David P. Lunn
- School of Veterinary ScienceUniversity of Liverpool, Leahurst CampusNestonUK
| |
Collapse
|
4
|
Couroucé A, Normand C, Tessier C, Pomares R, Thévenot J, Marcillaud-Pitel C, Legrand L, Pitel PH, Pronost S, Lupo C. Equine Herpesvirus-1 Outbreak During a Show-Jumping Competition: A Clinical and Epidemiological Study. J Equine Vet Sci 2023; 128:104869. [PMID: 37339699 DOI: 10.1016/j.jevs.2023.104869] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
A total of 752 horses were involved in the CES Valencia Spring Tour 2021. Due to an equine herpesvirus-1 (EHV-1) outbreak, the competition was cancelled and the site was locked down. The objective of this study was to describe epidemiological, clinical, diagnostic, and outcome data of the 160 horses remaining in Valencia. Clinical and quantitative polymerase chain reaction (qPCR) data were analysed for 60 horses in a retrospective case-control observational study. The risk of developing clinical manifestations was explored using a logistic regression approach. EHV-1 was detected by qPCR, genotyped as A2254 (ORF30) and isolated on cell culture. From the 60 horses, 50 (83.3%) showed fever, 30 horses (50%) showed no further signs and 20 (40%) showed neurological signs, with eight horses (16%) hospitalised, of which two died (3%). Stallions and geldings were six times more likely to develop EHV-1 infection compared to mares. Horses older than 9 years, or housed in the middle of the tent were more likely to develop EHV-1 myeloencephalopathy (EHM). These data show that for EHV-1 infection, the risk factor was male sex. For EHM the risk factors were age > 9-year old and location in the middle of the tent. These data highlight the crucial role of stable design, position, and ventilation in EHV-outbreaks. It also showed that PCR testing of the horses was important to manage the quarantine.
Collapse
Affiliation(s)
- Anne Couroucé
- BIOTARGEN UR7450, Université de Caen Normandie, Caen, France; RESPE, 3 rue Nelson Mandela, Saint Contest, France; ONIRIS, CISCO-ONIRIS, Route de Gachet, Nantes, Cedex, France.
| | - Camille Normand
- BIOTARGEN UR7450, Université de Caen Normandie, Caen, France; LABÉO, 1 route de Rosel, Saint Contest, France
| | | | - Rita Pomares
- Clinique vétérinaire, LD Le Tremoulet, Legeuvin, France
| | | | | | - Loïc Legrand
- BIOTARGEN UR7450, Université de Caen Normandie, Caen, France; LABÉO, 1 route de Rosel, Saint Contest, France
| | | | - Stéphane Pronost
- BIOTARGEN UR7450, Université de Caen Normandie, Caen, France; LABÉO, 1 route de Rosel, Saint Contest, France
| | - Coralie Lupo
- RESPE, 3 rue Nelson Mandela, Saint Contest, France
| |
Collapse
|
5
|
Li Z, He Y, Ge L, Quan R, Chen J, Hu Y, Sa R, Liu J, Ran D, Fu Q, Shi H. Berbamine, a bioactive alkaloid, suppresses equine herpesvirus type 1 in vitro and in vivo. Front Vet Sci 2023; 10:1163780. [PMID: 37303732 PMCID: PMC10247970 DOI: 10.3389/fvets.2023.1163780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) poses a global threat to equines. The anticancer agent berbamine (BBM), a bioactive alkaloid, has been shown to inhibit viral infection. However, whether BBM can inhibit EHV-1 infection remains unclear. This study investigated the effect of BBM treatment on EHV-1 infection. Quantitative PCR (qPCR), immunoblotting, the Reed-Muench method, and pathological examination were employed to study the ability of BBM to inhibit EHV-1 infection, viral DNA replication, viral protein production, virion secretion, and cytopathogenesis in vitro and in vivo. The in vitro studies revealed that 10 μM BBM effectively suppressed EHV-1 viral entry into cells, viral DNA replication, and virion secretion, while the in vivo studies verified the ability of BBM to suppress EHV-1-induced damage of brain and lung tissues and animal mortality. These findings strongly suggest that BBM could be a serious contender in the therapeutic control of EHV-1 infection of equines.
Collapse
|
6
|
Spann K, Barnum S, Pusterla N. Investigation of the Systemic Antibody Response and Antigen Detection Following Intranasal Administration of Two Commercial Equine Herpesvirus-1 Vaccines to Adult Horses. J Equine Vet Sci 2023; 122:104229. [PMID: 36657628 DOI: 10.1016/j.jevs.2023.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
EHV-1 vaccines are often administered intranasally during emergency situation such as outbreaks of equine herpesvirus myeloencephalopathy. However, there is currently no data available on the efficacy of such protocols, nor the diagnostic challenge when recently vaccinated horses become clinically infected and nasal secretions are collected to support a diagnosis of EHV-1 infection. Therefore, the objective of this study was to determine if two commercially available EHV-1 vaccines, a killed-adjuvanted (Calvenza) and a modified-live (Rhinomune) EHV-1 vaccine, could induce a measurable systemic antibody response postintranasal administration. A second objective was to determine the detection time of EHV-1 in nasal secretions by qPCR following the intranasal administration of the respective EHV-1 vaccines. Thirty healthy adult horses, with no recent EHV-1 vaccine administration, were randomly assigned to one of three groups: Rhinomune group, Calvenza group, and unvaccinated control group. Total Ig and isotype-specific IgG4/7 against EHV-1 measured pre- and 30-days post-vaccination were not different amongst the three study groups. Vaccine-derived EHV-1 was only detected in the two EHV-1 vaccine groups with 9/10 horses in the Rhinomune group and 8/10 horses in the Calvenza group testing qPCR-positive for EHV-1 for 1 to 3 days. There was no significant difference in number of horses testing qPCR-positive for EHV-1 and absolute quantitation of EHV-1 in nasal secretions by qPCR between the two vaccine groups. The intranasal administration of two commercial EHV-1 vaccines did not elicit a systemic immune response. Further, vaccine derived EHV-1 could be detected in the majority of the intranasally vaccinated horses, potentially impacting diagnostic interpretation of EHV-1 during outbreak situations.
Collapse
Affiliation(s)
- Kennedy Spann
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA.
| |
Collapse
|
7
|
Barbosa JD, Lins ADMC, Bomjardim HDA, Silveira NDSES, Barbosa CC, Beuttemmuller EA, Brito MF, Salvarani FM. Equine Herpesvirus Type 1 Myeloencephalitis in the Brazilian Amazon. Animals (Basel) 2022; 13:ani13010059. [PMID: 36611668 PMCID: PMC9817990 DOI: 10.3390/ani13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/28/2022] Open
Abstract
An investigative and epidemiological study was carried out for equine herpesvirus type 1 (HVE-1) in 10 outbreaks of neurological disease from different farms in the state of Pará, Brazil. 25 horses were studied: six male and 19 females, aged between one and 13 years. A necropsy of six horses was performed, and the others recovered either with or without treatment (T1-vitamin B1 + dexamentasone; T2-vitamin B1 + flunixim meglumine). Animals that received treatment recovered after eight days. The main clinical signs observed were motor incoordination, progressive paresis, thoracic and/or pelvic limbs abducted after induction of clinical examination, knuckling of the hind fetlocks, sagging and swaying of the hindquarters while standing or walking and paresis. All animals were positive: 88% (22/25) in nested PCR and 72% (18/25) in serum neutralization (including three negatives in serology). Focal brownish areas compatible with hemorrhage were found in the white and gray matter of the spinal cord of two animals. On histological analysis, there were perivasculitis and neutrophilic vasculitis in the gray matter of the spinal cord and brain. Based on the evidence, this work proves the circulation of HVE-1 in the Amazon biome, mainly in the state of Pará, Brazil.
Collapse
Affiliation(s)
- José Diomedes Barbosa
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal 68740-970, PA, Brazil
| | | | - Henrique dos Anjos Bomjardim
- Instituto de Estudos do Trópico Úmido (IETU), Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Xinguara 68557-335, PA, Brazil
| | | | - Camila Cordeiro Barbosa
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal 68740-970, PA, Brazil
| | - Edsel Alves Beuttemmuller
- Centro de Ciências Agrárias, Universidade Estadual de Londrina (UEL), Londrina 86057-070, PR, Brazil
| | - Marilene Farias Brito
- Departamento de Epidemiologia e Saúde Pública (DESP), Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica 23890-000, RJ, Brazil
| | - Felipe Masiero Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal 68740-970, PA, Brazil
- Correspondence:
| |
Collapse
|
8
|
Abstract
Although equine herpesvirus myeloencephalopathy (EHM) is a relatively uncommon manifestation of equine herpesvirus-1 (EHV-1) infection, it can cause devastating losses during outbreaks. Antemortem diagnosis of EHM relies mainly on the molecular detection of EHV-1 in nasal secretions and blood. Management of horses affected by EHM is aimed at supportive nursing and nutritional care, at reducing central nervous system inflammation and preventing thromboembolic sequelae. Horses exhibiting sudden and severe neurologic signs consistent with a diagnosis of EHM pose a definite risk to the surrounding horse population. Consequently, early intervention to prevent the spread of infection is required.
Collapse
|
9
|
Price D, Barnum S, Mize J, Pusterla N. Investigation of the Use of Non-Invasive Samples for the Molecular Detection of EHV-1 in Horses with and without Clinical Infection. Pathogens 2022; 11:pathogens11050574. [PMID: 35631095 PMCID: PMC9144909 DOI: 10.3390/pathogens11050574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to explore sampling options for a reliable and logistically more feasible protocol during a large EHV-1 outbreak. Seventeen horses with clinical infection as well as nineteen healthy herdmates, all part of an EHM outbreak, were enrolled in the study. Each horse was sampled two–four times at intervals of 2–6 days during the outbreak. All samples were collected using 6′′ rayon-tipped swabs. Nasal secretions were used as the diagnostic sample of choice. Additional samples, including swabs from the muzzle/nares, swabs from the front limbs, rectal swabs, swabs of the feed bin, and swabs of the water troughs were collected as well. All swabs were tested for the presence of EHV-1 by qPCR. With the exception of two EHV-1 qPCR-positive swabs from two different horses, all remaining swabs collected from healthy herdmates tested qPCR-negative for EHV-1. For horses with clinical infection, EHV-1 was detected in 31 nasal swabs, 30 muzzle/nares swabs, 7 front limb swabs, 7 feeders, 6 water troughs and 6 rectal swabs. Not all positive muzzle/nares swabs correlated with a positive nasal swab from the same set, however, and all other positive swabs did correlate with a positive nasal swab in their respective set. The agreement between nasal swabs and muzzle/nares swabs was 74%. The sampling of non-invasive swabs from the muzzle/nares should facilitate the identification of EHV-1 shedders during an outbreak, allowing for prompt isolation and implementation of biosecurity measures.
Collapse
Affiliation(s)
- Danielle Price
- Steinbeck Peninsula Equine Clinics, Menlo Park Clinic, Menlo Park, CA 94028, USA; (D.P.); (J.M.)
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Jenny Mize
- Steinbeck Peninsula Equine Clinics, Menlo Park Clinic, Menlo Park, CA 94028, USA; (D.P.); (J.M.)
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +530-752-1039
| |
Collapse
|
10
|
Carvelli A, Nielsen SS, Paillot R, Broglia A, Kohnle L. Clinical impact, diagnosis and control of Equine Herpesvirus-1 infection in Europe. EFSA J 2022; 20:e07230. [PMID: 35414834 PMCID: PMC8985062 DOI: 10.2903/j.efsa.2022.7230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) can affect the entire equine sector in EU, and the large outbreak reported in 2021 in Spain drew attention to the needs of the European Commission for scientific advice for the assessment of EHV-1 infection within the framework of Animal Health Law. EHV-1 is considered endemic in the EU; its main risk is linked to the characteristic of producing latent life-long infections. These can reactivate producing clinical disease, which can include respiratory, abortive and possibly fatal neurological forms. From the epidemiological and genomic viewpoint, there are no specific neuropathogenic EHV-1 strains; the respiratory, reproductive and neurological signs are not found to be strain-specific. This was also the case of the virus that caused the outbreak in Valencia (Spain) in 2021, which was genetically closely related to other viruses circulating before in Europe, and did not present the so-called neuropathogenic genotype. The outbreak reported in Valencia was followed by wide geographic spread of the virus possibly due to a delay in diagnosis and late application of biosecurity measures. The recommended and most sensitive diagnostic test for detecting EHV-1 is PCR performed on swabs collected according to the type of clinical signs. Serological assays on paired blood samples can help to detect a recent infection, while no diagnostic methods are available to detect EHV-1 latent infections. Safe movements of horses can be ensured at premovement phase by testing and issuing health certificates, and by isolating animals upon arrival at new premises with regular health monitoring. In case of suspicion, movements should be forbidden and EHV-1 infection early detected/confirmed by validated diagnostic tools. During outbreaks, no movements should be allowed until 21 days after the detection of the last case. In general, vaccination against EHV-1 should be promoted, although this offers limited protection against the neurological form of the disease.
Collapse
|
11
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Roberts HC, Padalino B, Pasquali P, Spoolder H, Ståhl K, Calvo AV, Viltrop A, Winckler C, Carvelli A, Paillot R, Broglia A, Kohnle L, Baldinelli F, Van der Stede Y. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): infection with Equine Herpesvirus-1. EFSA J 2022; 20:e07036. [PMID: 35035581 PMCID: PMC8753587 DOI: 10.2903/j.efsa.2022.7036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Equine Herpesvirus-1 infection has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of: Article 7 on disease profile and impacts, Article 5 on the eligibility of the disease to be listed, Article 9 for the categorisation of the disease according to disease prevention and control measures as in Annex IV and Article 8 on the list of animal species related to Equine Herpesvirus-1 infection. The assessment has been performed following a methodology composed of information collection and compilation, and expert judgement on each criterion at individual and collective level. The outcome is the median of the probability ranges provided by the experts, which indicates whether the criterion is fulfilled (66-100%) or not (0-33%), or whether there is uncertainty about fulfilment (33-66%). For the questions where no consensus was reached, the different supporting views are reported. According to the assessment performed, Equine Herpesvirus-1 infection can be considered eligible to be listed for Union intervention according to Article 5 of the Animal Health Law with 33-90% certainty. According to the criteria as in Annex IV of the AHL related to Article 9 of the AHL for the categorisation of diseases according to the level of prevention and control, it was assessed with less than 1% certainty that EHV-1 fulfils the criteria as in Section 1 (category A), 1-5% for the criteria as in Section 2 (category B), 10-66% for the criteria as in Section 3 (category C), 66-90% for the criteria as in Section 4 (category D) and 33-90% for the criteria as in Section 5 (category E). The animal species to be listed for EHV-1 infection according to Article 8(3) criteria are the species belonging to the families of Equidae, Bovidae, Camelidae, Caviidae, Cervidae, Cricetidae, Felidae, Giraffidae, Leporidae, Muridae, Rhinocerontidae, Tapiridae and Ursidae.
Collapse
|
12
|
Investigation of The Usefulness of Serum Amyloid A in Characterizing Selected Disease Forms of Equine Herpesvirus-1 Infection. J Equine Vet Sci 2021; 104:103699. [PMID: 34417000 DOI: 10.1016/j.jevs.2021.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
The objective of this study was to study the SAA response of horses with various forms of EHV-1 infection. Archived serum samples from 153 horses with various disease forms of EHV-1 infection (48 healthy non-infected horses, 48 subclinically infected horses, 40 horses with respiratory EHV-1 infection and 17 horses with neurological EHV-1 infection) were available for SAA testing. SAA values ranged from 0 to 31 µg/mL (median 0 µg/mL) in healthy horses, from 0 to 2,416 µg/mL (median 8.5 µg/mL) in subclinically infected horses, from 0 to 3,000 µg/mL (median 597 µg/mL) in horse with respiratory EHV-1 infection and from 0 to 1,640 µg/mL (median 58 µg/mL) in horse with neurological EHV-1 disease. Infected horses had significantly higher SAA values compared to healthy, non-infected horses. While SAA was elevated in the majority of horses with evidence of EHV-1 infection, a single point in time SAA test was unable to consistently support infection in horses with subclinical disease.
Collapse
|
13
|
Pusterla N, Barnum S, Miller J, Varnell S, Dallap-Schaer B, Aceto H, Simeone A. Investigation of an EHV-1 Outbreak in the United States Caused by a New H 752 Genotype. Pathogens 2021; 10:747. [PMID: 34199153 PMCID: PMC8231618 DOI: 10.3390/pathogens10060747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Here we report on an EHV-1 outbreak investigation caused by a novel genotype H752 (histidine in amino acid position 752 of the ORF 30 gene). The outbreak involved 31 performance horses. Horses were monitored over a period of 35 days for clinical signs, therapeutic outcome and qPCR results of EHV-1 in blood and nasal secretions. The morbidity of the EHV-1 outbreak was 84% with 26 clinically infected horses displaying fever and less frequently anorexia and distal limb edema. Four horses showed mild transient neurological deficits. Clinically diseased horses experienced high viral load of EHV-1 in blood and/or nasal secretions via qPCR, while subclinically infected horses had detectable EHV-1 mainly in nasal secretions. The majority of infected horses showed a rise in antibody titers to EHV-1 during the outbreak. All 31 horses were treated with valacyclovir, while clinically infected horses further received flunixin meglumine and sodium heparin. This investigation highlights various relevant aspects of an EHV-1 outbreak caused by a new H752 genotype: (i) importance of early detection of EHV-1 infection; (ii) diagnostic challenge to assess H752 genotype; (iii) apparent benefit of valacyclovir use in the early stage of the outbreak; and (iv) weekly testing of blood and nasal secretions by qPCR in order to monitor individual infection status and lift quarantine.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Samantha Barnum
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Julia Miller
- Alliance Equine Health Care, Glenmoore, PA 19343, USA; (J.M.); (S.V.)
| | - Sarah Varnell
- Alliance Equine Health Care, Glenmoore, PA 19343, USA; (J.M.); (S.V.)
| | - Barbara Dallap-Schaer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA; (B.D.-S.); (H.A.)
| | - Helen Aceto
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA; (B.D.-S.); (H.A.)
| | - Aliza Simeone
- Pennsylvania Department of Agriculture, Bureau of Animal Health, Collegeville, PA 17110, USA;
| |
Collapse
|
14
|
Larson EM, Wagner B. Viral infection and allergy - What equine immune responses can tell us about disease severity and protection. Mol Immunol 2021; 135:329-341. [PMID: 33975251 DOI: 10.1016/j.molimm.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022]
Abstract
Horses have many naturally occurring diseases that mimic similar conditions in humans. The ability to conduct environmentally controlled experiments and induced disease studies in a genetically diverse host makes the horse a valuable intermediate model between mouse studies and human clinical trials. This review highlights important similarities in the immune landscape between horses and humans using current research on two equine diseases as examples. First, equine herpesvirus type 1 (EHV-1) infection initiates a series of innate inflammatory signals at its mucosal entry site in the upper respiratory tract. These inflammatory markers are highly synchronized and predictable between individuals during viral respiratory infection and ultimately lead to adaptive immune induction and protection. The timing of early inflammatory signals, followed by specific adaptive immune markers correlating with immunity and protection, allow accurate outbreak tracking and also provide a foundation for understanding the importance of local mucosal immunity during other viral respiratory infections. Second, rare peripheral blood immune cells that promote allergic inflammation can be analyzed during Culicoides hypersensitivity, a naturally occurring type I IgE-mediated allergic disease of horses. Rare immune cells, such as IgE-binding monocytes or basophils, can be studied repeatedly in the horse model to unravel their larger mechanistic role in inflammation during allergic and other inflammatory diseases. We conclude with a survey of all other common equine inflammatory conditions. Together, this review serves as a reference and rationale for the horse as a non-rodent model for immunological research.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
15
|
Oladunni FS, Horohov DW, Chambers TM. EHV-1: A Constant Threat to the Horse Industry. Front Microbiol 2019; 10:2668. [PMID: 31849857 PMCID: PMC6901505 DOI: 10.3389/fmicb.2019.02668] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.
Collapse
Affiliation(s)
- Fatai S. Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Thomas M. Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Bueno I, Pearce P, Dunowska M. Frequency of latent equine herpesvirus type-1 infection among a sample of horses in the central North Island of New Zealand. N Z Vet J 2019; 68:23-30. [PMID: 31394974 DOI: 10.1080/00480169.2019.1653238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: To estimate the frequency of infection with equine herpesvirus type-1 (EHV-1) among horses from the central North Island of New Zealand, including the frequency of detection of the D752 genotype.Methods: Samples of retropharyngeal lymph nodes (RLN) and submandibular lymph nodes (SLN) were dissected from the heads of 63 horses that were humanely killed for various unrelated reasons between March and November 2015. DNA extracted from these tissues was subjected to enrichment for EHV-1 sequences by hybridisation with biotin-labelled EHV-1 specific probe, followed by recovery of EHV-1 sequences on streptavidin-coated magnetic beads. Enriched samples were tested for the presence of EHV-1 using nested quantitative real-time PCR. The EHV-1 amplicons were sequenced to determine the genotype of the virus.Results: The median age of the horses was 6 (min 2, max 30) years, and 47/63 (75%) were Thoroughbreds. EHV-1 DNA was detected in RLN samples from 6/63 (10%) horses, and three of these horses were also positive for EHV-1 DNA in SLN. The remaining horses were negative for EHV-1 DNA in both RLN and SLN samples. The N752 genotype was detected in all positive samples and the D752 genotype was not detected in any of the samples.Conclusions: EHV-1 continues to circulate among horses in New Zealand. The frequency of latent EHV-1 infection among sampled horses may have been underestimated due to the sensitivity limit of the assay or because of the limited anatomical sites sampled in the study. Lack of detection of the D752 genotype suggests that infection with this genotype is not common in horses in New Zealand.Clinical Relevance: If live animals are tested for EHV-1 using SLN biopsy it should be kept in mind that negative results do not rule out the presence of latent EHV-1 infection at other sites inaccessible for testing. The RLN appear to be the preferred sample for detection of EHV-1 DNA in horses following recent euthanasia.
Collapse
Affiliation(s)
- Imc Bueno
- Animal Health Laboratory, Ministry for Primary Industries, Wallaceville, Upper Hutt, New Zealand
| | - P Pearce
- New Zealand Equine Health Association, Marton, New Zealand
| | - M Dunowska
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Oladunni FS, Sarkar S, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. Absence of relationship between type-I interferon suppression and neuropathogenicity of EHV-1. Vet Immunol Immunopathol 2019; 197:24-30. [PMID: 29475503 DOI: 10.1016/j.vetimm.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/16/2017] [Accepted: 01/13/2018] [Indexed: 11/17/2022]
Abstract
Equine herpesvirus-1 (EHV-1) infection is an important and highly prevalent disease in equine populations worldwide. Previously we have demonstrated that a neuropathogenic strain of EHV-1, T953, suppresses the host cell's antiviral type-I interferon (IFN) response in vitro. Whether or not this is unique to EHV-1 strains possessing the neuropathogenic genotype has been undetermined. Here, we examined whether there is any direct relationship between neuropathogenic genotype and the induced IFN-β response in equine endothelial cells (EECs) infected with 10 different strains of EHV-1. The extent of virus cell-to-cell spread following infection in EECs was also compared between the neuropathogenic and the non-neuropathogenic genotype of EHV-1. We then compared IFN-β and the total type-I IFN protein suppression between T953, an EHV-1 strain that is neuropathogenic and T445, an EHV-4 strain mainly associated only with respiratory disease. Data from our study revealed no relationship between the neuropathogenic genotype of EHV-1 and the induced IFN-β mRNA by the host cell. Results also indicate no statistically significant difference in plaque sizes of both genotypes of EHV-1 produced in EECs. However, while the T953 strain of EHV-1 was able to suppress IFN-β mRNA and type-I IFN biological activity at 12 h post-infection (hpi), EHV-4 weakly induces both IFN-β mRNA and type-I IFN biological activity. This finding correlated with a statistically significant difference in the mean plaque sizes produced by the two EHV subtypes in EECs. Our data help illuminate how EHV-1, irrespective of its genotype, evades the host cell's innate immune response thereby enabling viral spread to susceptible cells.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA; Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria.
| | - Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
18
|
Molecular Characterisation of Equine Herpesvirus 1 Isolates from Cases of Abortion, Respiratory and Neurological Disease in Ireland between 1990 and 2017. Pathogens 2019; 8:pathogens8010007. [PMID: 30650561 PMCID: PMC6471309 DOI: 10.3390/pathogens8010007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple locus typing based on sequencing heterologous regions in 26 open reading frames (ORFs) of equine herpesvirus 1 (EHV-1) strains Ab4 and V592 was used to characterise 272 EHV-1 isolates from 238 outbreaks of abortion, respiratory or neurological disease over a 28-year period. The analysis grouped the 272 viruses into at least 10 of the 13 unique long region (UL) clades previously recognised. Viruses from the same outbreak had identical multi-locus profiles. Sequencing of the ORF68 region of EHV-1 isolates from 222 outbreaks established a divergence into seven groups and network analysis demonstrated that Irish genotypes were not geographically restricted but clustered with viruses from all over the world. Multi-locus analysis proved a more comprehensive method of strain typing than ORF68 sequencing. It was demonstrated that when interpreted in combination with epidemiological data, this type of analysis has a potential role in tracking virus between premises and therefore in the implementation of targeted control measures. Viruses from 31 of 238 outbreaks analysed had the proposed ORF30 G2254/D752 neuropathogenic marker. There was a statistically significant association between viruses of the G2254/D752 genotype and both neurological disease and hypervirulence as defined by outbreaks involving multiple abortion or neurological cases. The association of neurological disease in those with the G2254/D752 genotype was estimated as 27 times greater than in those with the A2254/N752 genotype.
Collapse
|
19
|
Matczuk AK, Skarbek M, Jackulak NA, Bażanów BA. Molecular characterisation of equid alphaherpesvirus 1 strains isolated from aborted fetuses in Poland. Virol J 2018; 15:186. [PMID: 30509297 PMCID: PMC6276253 DOI: 10.1186/s12985-018-1093-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 12/01/2022] Open
Abstract
Background Equid alphaherpesvirus 1 (EHV-1) is one of the main infectious causative agents of abortion in mares and can also be associated with stillbirth, neonatal foal death, rhinopneumonitis in young horses and a neurological disorder called equine herpesvirus myeloencephalopathy (EHM). The neuropathogenicity of the virus was shown to be significantly higher in EHV-1 strains that carry a single nucleotide point (SNP) mutation in the ORF30, which encodes a catalytic subunit of viral DNA polymerase (ORF30 D752). Another gene, ORF68 is frequently used for phylogenetic analysis of EHV-1. Methods 27 EHV-1 strains isolated from aborted equine fetuses in Poland, collected between 1993 and 2017, were subjected to PCR targeting the open reading frames (ORFs) 30 and 68 of the EHV-1 genome. PCR products obtained were sequenced and SNPs were analyzed and compared to sequences available in GenBank. Results None of the analyzed sequences belonged to the ORF30 D752neuropathogenic genotype: all EHV-1 belonged to the non-neuropathogenic variant N752. On the basis of ORF68 sequences, the majority of EHV-1 sequences (76.9%) cannot be assigned to any of the known groups; only six sequences (23.1%) clustered within groups II and IV. Conclusions EHV-1 strains obtained from abortion cases belong to the non-neuropathogenic genotype. Many EHV-1 ORF68 sequences have similar SNPs to those already described in Poland, but a clear geographical distribution was not observed. A single particular ORF68 sequence type was observed in strains isolated from 2001 onwards. Electronic supplementary material The online version of this article (10.1186/s12985-018-1093-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Karolina Matczuk
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, Wroclaw, 50-375, Poland.
| | - Małgorzata Skarbek
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, Wroclaw, 50-375, Poland
| | - Natalia Anna Jackulak
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, Wroclaw, 50-375, Poland
| | - Barbara Anna Bażanów
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, Wroclaw, 50-375, Poland
| |
Collapse
|