1
|
Cheon S, Kim JS, Woo MR, Ji SH, Park S, Ud Din F, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Chung JE, Choi HG. Establishment of nanoparticle screening technique: A pivotal role of sodium carboxymethylcellulose in enhancing oral bioavailability of poorly water-soluble aceclofenac. Int J Biol Macromol 2024; 277:134246. [PMID: 39098461 DOI: 10.1016/j.ijbiomac.2024.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.
Collapse
Affiliation(s)
- Seunghyun Cheon
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan 38541, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, South Korea.
| | - Jee-Eun Chung
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
2
|
Zheng K, Zhao J, Wang Q, Zhao Y, Yang H, Yang X, He L. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-nanoemulsifying. AAPS PharmSciTech 2023; 25:7. [PMID: 38147267 DOI: 10.1208/s12249-023-02717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Ginkgolides are receptor antagonist of platelet activating factor with great clinical prospect, but its application is limited by its low solubility, short half-life and poor alkaline environment stability. It is difficult to solve these problems with a single drug delivery system. In this study, supersaturated self-nanoemulsifying gastric floating tablets of ginkgolides were developed through the combination of solid supersaturated self-nanoemulsifying drug delivery system (solid S-SNEDDS) and gastric retentive floating drug delivery system (GFDDS) to solve these problems of ginkgolides. Solid S-SNEDDS was prepared by D-optimal mixture design, normalization method and single factor experiment. The properties of solid-S-SNEDDS were studied by TEM, PXRD, FT-IR, SEM and in vitro drug release profile. Then, the optimal formulation of stomach floating tablet was obtained through single factor experiment and center composite design, followed by the study of in vitro release, model and mechanism of release, in vitro buoyancy and kinetics of erosion and swelling. PXRD and FT-IR showed that the drug in solid S-SNEDDS existed in an amorphous manner and formed hydrogen bond with excipients. The results showed that the cumulative release of GA and GB in the optimal tablets was 96.12% and 92.57% higher than the simple tablets within 12 h. The release mechanism of the tablet was skeleton erosion and drug diffusion. In 12 h, the optimal tablets can float stably in vitro and release the drug at a constant rate, with a cumulative release of more than 80%. In summary, the combination of SNEDDS and GFDDS is a promising means to solve the problems of ginkgolides.
Collapse
Affiliation(s)
- Kai Zheng
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Jing Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Qiuli Wang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Yuyang Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Husheng Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China.
| | - Lian He
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
- Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
| |
Collapse
|
3
|
Baral KC, Lee SH, Song JG, Jeong SH, Han HK. Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice. Pharmaceutics 2023; 15:2720. [PMID: 38140061 PMCID: PMC10747691 DOI: 10.3390/pharmaceutics15122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to enhance its oral efficacy in treating ulcerative colitis. Solubility assessment in different oils, surfactants, and cosurfactants led to a SMEDDS formulation of MT-102 using Capmul MCM, Tween 80, and propylene glycol. Based on a pseudoternary phase diagram, the optimal SMEDDS composition was selected, which consisted of 15% Capmul MCM, 42.5% Tween 80, and 42.5% propylene glycol. The resulting optimized SMEDDS (SMEDDS-F1) exhibited a narrow size distribution (177.5 ± 2.80 nm) and high indirubin content (275 ± 5.58 µg/g, a biomarker). Across an acidic to neutral pH range, SMEDDS-F1 showed rapid and extensive indirubin release, with dissolution rates approximately 15-fold higher than pure MT-102. Furthermore, oral administration of SMEDDS-F1 effectively mitigated inflammatory progression and symptoms in a mouse model of ulcerative colitis, whereas pure MT-102 was ineffective. SMEDDS-F1 minimized body weight loss (less than 5%) without any significant change in colon length and the morphology of colonic tissues, compared to those of the healthy control group. In addition, oral administration of SMEDDS-F1 significantly inhibited the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. In conclusion, the SMEDDS-F1 formulation employing Capmul MCM, Tween 80, and propylene glycol (15:42.5:42.5, w/w) enhances the solubility and therapeutic efficacy of MT-102.
Collapse
Affiliation(s)
| | | | | | | | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Muhammed SA, Al-Kinani KK. Formulation and in vitro evaluation of meloxicam as a self-microemulsifying drug delivery system. F1000Res 2023; 12:315. [PMID: 37359788 PMCID: PMC10285354 DOI: 10.12688/f1000research.130749.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Background: The nonsteroidal anti-inflammatory medication meloxicam (MLX) belongs to the oxicam family and is used to reduce inflammation and pain. The aim of this study was to improve MLX's dispersibility and stability by producing it as a liquid self-microemulsifying drug delivery system since it is practically insoluble in water. Methods: Five different formulations were made by adjusting the amounts of propylene glycol, Transcutol P, Tween 80, and oleic acid oil and establishing a pseudo-ternary diagram in ratios of 1:1, 1:2, 1:3, 1:4, and 3:4, respectively. All of the prepared formulations were tested for a variety of properties, including thermodynamic stability, polydispersity index, particle size distributions, dilution resistance, drug contents, dispersibility, in vitro solubility of the drug, and emulsification time. Results: F5 was chosen as the optimal MLX liquid self-microemulsion due to its higher drug content (99.8%), greater in vitro release (100% at 40 min), smaller droplet size (63 nm), lower polydispersity index (PDI) value (0.3), and higher stability (a zeta potential of -81 mV). Conclusions: According to the data provided here, the self-microemulsifying drug delivery system is the most practical method for improving the dispersibility and stability of MLX.
Collapse
Affiliation(s)
- Saja Abdulkareem Muhammed
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | - Khalid Kadhem Al-Kinani
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| |
Collapse
|
5
|
DoE-Based Solid Self-microemulsifying Drug Delivery System (S-SMEDDS) Approach for Improving the Dissolution Properties of Raltegravir Potassium. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09621-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Kim JS, Choi YJ, Woo MR, Cheon S, Ji SH, Im D, Ud Din F, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Choi HG. New potential application of hydroxypropyl-β-cyclodextrin in solid self-nanoemulsifying drug delivery system and solid dispersion. Carbohydr Polym 2021; 271:118433. [PMID: 34364573 DOI: 10.1016/j.carbpol.2021.118433] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to use hydroxypropyl-β-cyclodextrin (HP-β-CD) as a novel carrier in solid SNEDDS and solid dispersions to enhance the solubility and oral bioavailability of poorly water-soluble dexibuprofen. The novel dexibuprofen-loaded solid SNEDDS was composed of dexibuprofen, corn oil, polysorbate 80, Cremophor® EL, and HP-β-CD at a weight ratio of 45/35/50/15/100. This solid SNEDDS spontaneously formed a nano-emulsion with a size of approximately 120 nm. Unlike the conventional solid SNEDDS prepared with colloidal silica as a carrier, this dexibuprofen-loaded solid SNEDDS exhibited a spherical structure. Similar to the dexibuprofen-loaded solid dispersion prepared with HP-β-CD, the transformation of the crystalline drug to an amorphous state with no molecular interactions were observed in the solid SNEDDS. Compared to the solid dispersion and dexibuprofen powder, solid SNEDDS significantly enhanced drug solubility and AUC. Therefore, HP-β-CD is a novel potential carrier in SNEDDS for improving the oral bioavailability of dexibuprofen.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yoo Jin Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Daseul Im
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Gunja-Dong, Seoul 143-747, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
7
|
Abou Assi R, M. Abdulbaqi I, Seok Ming T, Siok Yee C, A. Wahab H, Asif SM, Darwis Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment. Pharmaceutics 2020; 12:E1052. [PMID: 33158058 PMCID: PMC7693798 DOI: 10.3390/pharmaceutics12111052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.
Collapse
Affiliation(s)
- Reem Abou Assi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Ibrahim M. Abdulbaqi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Toh Seok Ming
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Chan Siok Yee
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Habibah A. Wahab
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Shaik Mohammed Asif
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- Pharma Research, Wockhardt Research Center, Aurangabad 431002, India
| | - Yusrida Darwis
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| |
Collapse
|