1
|
Cao B, Dong J, Wang Z, Wang L. Large-Scale Non-Adiabatic Dynamics Simulation Based on Machine Learning Hamiltonian and Force Field: The Case of Charge Transport in Monolayer MoS 2. J Phys Chem Lett 2025:4907-4920. [PMID: 40346030 DOI: 10.1021/acs.jpclett.5c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
We present an efficient and reliable large-scale non-adiabatic dynamics simulation method based on machine learning Hamiltonian and force field. The quasi-diabatic Hamiltonian network (DHNet) is trained in the Wannier basis based on well-designed translation and rotation invariant structural descriptors, which can effectively capture both local and nonlocal environmental information. Using the representative two-dimensional transition metal dichalcogenide MoS2 as an illustration, we show that density functional theory (DFT) calculations of only ten structures are sufficient to generate the training set for DHNet due to the high efficiency of Wannier analysis and orbital classification in sampling the interorbital couplings. DHNet demonstrates good transferability, thus enabling direct construction of the electronic Hamiltonian matrices for large systems. Compared with direct DFT calculations, DHNet significantly reduces the computational cost by about 5 orders of magnitude. By combining DHNet with the DeePMD machine learning force field, we successfully simulate electron transport in monolayer MoS2 with up to 3675 atoms and 13475 electronic levels by using a state-of-the-art surface hopping method. The electron mobility is calculated to be 110 cm2/(V s), which is in good agreement with the extensive experimental results in the range of 3-200 cm2/(V s) during 2013-2023. Due to the high performance, the proposed DHNet and large-scale non-adiabatic dynamics methods have great potential to be applied to study charge carrier dynamics in a wide range of material systems.
Collapse
Affiliation(s)
- Bichuan Cao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Dong
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zedong Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Lu D, Shu Y, Lendvay G, Truhlar DG, Guo H. Electronically Nonadiabatic Quenching of Excited States of O 2 by Collisions with O Atoms. J Phys Chem A 2025; 129:1659-1664. [PMID: 39879144 DOI: 10.1021/acs.jpca.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The kinetics of electronically inelastic quenching of O2(a1Δg) and O2(b1Σg+) by collisions with O(3P) have been investigated using mixed quantum-classical trajectories governed by adiabatic potential energy surfaces and state couplings generated from a recently developed diabatic potential energy matrix (DPEM) for the 14 lowest-energy 3A' states of O3. Using the coherent switching with decay of mixing (CSDM) method, dynamics calculations were performed both with 14 coupled electronic states and with 8 coupled electronical states, and similar results were obtained. The calculated thermal quenching rate coefficients are generally small, but they increase with temperature. The positive temperature dependence is attributed to high-energy locally avoided crossings that can only be easily accessed by high collision energies. We find that, depending on the temperature, 86-97% of the b state quenches are into the a state with the remainder into the ground electronic state of O2. The calculated rate coefficients for quenching of O2(b1Σg+) and O2(a1Δg) by O(3P), coupled with the assumption that electronically nonadiabatic probabilities for collisions on the 3A' surfaces are similar to those on 3A″ surfaces, are compared with the available experimental results.
Collapse
Affiliation(s)
- Dandan Lu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., Budapest H-1117, Hungary
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
3
|
Zhang L, Zhao J, Wang Y, Song Y, Liu D. State-to-State Time-Dependent Quantum Dynamics Studies of the Si( 3P) + OH(X 2Π) → OSi(X 1Σ g+) + H( 2S) Reaction Based on a New HOSi(X 2A') Potential Energy Surface. J Phys Chem A 2024; 128:10837-10850. [PMID: 39632355 DOI: 10.1021/acs.jpca.4c06439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quantum and quasi-classical dynamics calculations were conducted for the reaction of Si with OH on the latest potential energy surface (PES), which is obtained by fitting tens of thousands of ab initio energy points by using the many-body expansion formula. To obtain an accurate PES, all energy points calculated with aug-cc-pVQZ and aug-cc-pV5Z basis sets were extrapolated to the complete basis set limit. The accuracy of our new PES was verified by comparing the topographic characteristics and contour maps of potential energy with other works. In addition, the anharmonic vibrational frequencies of HOSi and HSiO based on the present ab initio and PES by means of quantum dynamics methods were calculated. Dynamics information such as reaction probability, integral cross sections (ICS), product distribution, and rate constants was obtained on the new HOSi(X2A') PES. The dynamic information calculated using the quasi-classical trajectory method and time-dependent wave packet method is generally in good agreement, except for the vibrational state-resolved ICSs of product. The calculated differential cross section and capture time reveal that the reaction is primarily governed by the complex formation mechanism.
Collapse
Affiliation(s)
- Lulu Zhang
- School of Science, Shandong Jiaotong University, 250357 Jinan, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, 250357 Jinan, China
| | - Yiran Wang
- School of Science, Shandong Jiaotong University, 250357 Jinan, China
| | - Yuzhi Song
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China
| | - Dong Liu
- School of Science, Shandong Jiaotong University, 250357 Jinan, China
| |
Collapse
|
4
|
Geng X, Wang J, Liu Y, Yan W, Xu Z, Chen J, Zhao L. Theoretical Investigation on the Reversible Photoswitch Mechanism of Benzylidene-Oxazolone System. Chemphyschem 2024; 25:e202400250. [PMID: 38820005 DOI: 10.1002/cphc.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
The design and application of molecular photoswitches have attracted much attention. Herein, we performed a detailed computational study on the photoswitch benzylidene-oxazolone system based on static electronic structure calculations and on-the-fly excited-state dynamic simulations. For the Z and E isomer, we located six and four minimum energy conical intersections (MECIs) between the first excited state (S1) and the ground state (S0), respectively. Among them, the relaxation pathway driven by ring-puckering motion is the most competitive channel with the photoisomeization process, leading to the low photoisomerization quantum yield. In the dynamic simulations, about 88 % and 66 % trajectories decay from S1 to S0 for Z and E isomer, respectively, within the total simulation time of ~2 ps. The photoisomeization quantum yields obtained in our study (0.20 for Z→E and 0.12 for E→Z) agree well with the experimental measured values (0.25 and 0.11), even though the number of trajectories is limited to 50. Our study sheds light on the complexity of the benzylidene-oxazolone system 's deactivation process and the competitive mechanisms among different reaction channels, which provides theoretical guidance for further design and development of benzylidene-oxazolone based molecular photoswitches.
Collapse
Affiliation(s)
- Xuehui Geng
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Jiangyue Wang
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuxuan Liu
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenhui Yan
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Zhijie Xu
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100, KøbenhavnØ, Denmark
| | - Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| |
Collapse
|
5
|
Song H, Guo H. Theoretical Insights into the Dynamics of Gas-Phase Bimolecular Reactions with Submerged Barriers. ACS PHYSICAL CHEMISTRY AU 2023; 3:406-418. [PMID: 37780541 PMCID: PMC10540288 DOI: 10.1021/acsphyschemau.3c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 10/03/2023]
Abstract
Much attention has been paid to the dynamics of both activated gas-phase bimolecular reactions, which feature monotonically increasing integral cross sections and Arrhenius kinetics, and their barrierless capture counterparts, which manifest monotonically decreasing integral cross sections and negative temperature dependence of the rate coefficients. In this Perspective, we focus on the dynamics of gas-phase bimolecular reactions with submerged barriers, which often involve radicals or ions and are prevalent in combustion, atmospheric chemistry, astrochemistry, and plasma chemistry. The temperature dependence of the rate coefficients for such reactions is often non-Arrhenius and complex, and the corresponding dynamics may also be quite different from those with significant barriers or those completely dominated by capture. Recent experimental and theoretical studies of such reactions, particularly at relatively low temperatures or collision energies, have revealed interesting dynamical behaviors, which are discussed here. The new knowledge enriches our understanding of the dynamics of these unusual reactions.
Collapse
Affiliation(s)
- Hongwei Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
6
|
Lu D, Galvão BRL, Varandas AJC, Guo H. Quantum and semiclassical studies of nonadiabatic electronic transitions between N( 4S) and N( 2D) by collisions with N 2. Phys Chem Chem Phys 2023; 25:15656-15665. [PMID: 37278325 DOI: 10.1039/d3cp01429k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The dynamics and kinetics of spin-forbidden transitions between N(2D) and N(4S) via collisions with N2 molecules are investigated using a quantum wave packet (WP) method and the semi-classical coherent switches with decay of mixing (CSDM) method. These electronic transition processes are competing with exchange reaction channels on both the doublet and quartet potential energy surfaces. The WP and CSDM quenching rate coefficients are found in reasonable agreement with each other, and both reproduce the previous theoretical results. For the excitation process, the agreement between the two approaches is dependent on the treatment of the zero-point energy (ZPE) in the product, because the high endoergicity of this process leads to severe violation of the vibrational ZPE. The Gaussian-binning (GB) method is found to improve the agreement with the quantum result. The excitation rate coefficients are found to be two orders of magnitude smaller than that of the adiabatic exchange reaction, underscoring the inefficient intersystem crossing due to the weak spin-orbit coupling between the two spin manifolds of the N3 system.
Collapse
Affiliation(s)
- Dandan Lu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, 87131, New Mexico, USA.
| | - Breno R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, (30421-169), Belo Horizonte, Minas Gerais, Brazil
| | - Antonio J C Varandas
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória, Brazil
- Coimbra Chemistry Centre and Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, 87131, New Mexico, USA.
| |
Collapse
|
7
|
Shu Y, Truhlar DG. Decoherence and Its Role in Electronically Nonadiabatic Dynamics. J Chem Theory Comput 2023; 19:380-395. [PMID: 36622843 PMCID: PMC9878713 DOI: 10.1021/acs.jctc.2c00988] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/10/2023]
Abstract
Decoherence is the tendency of a time-evolved reduced density matrix for a subsystem to assume a form corresponding to a statistical ensemble of states rather than a coherent combination of pure-state wave functions. When a molecular process involves changes in the electronic state and the coordinates of the nuclei, as in ultraviolet or visible light photochemistry or electronically inelastic collisions, the reduced density matrix of the electronic subsystem suffers decoherence, due to its interaction with the nuclear subsystem. We present the background necessary to conceptualize this decoherence; in particular, we discuss the density matrix description of pure states and mixed states, and we discuss pointer states and decoherence time. We then discuss how decoherence is treated in the coherent switching with decay of mixing algorithm and the trajectory surface hopping method for semiclassical calculations of electronically nonadiabatic processes.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry,
Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry,
Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota55455-0431, United States
| |
Collapse
|
8
|
Wang H, Zhang C, Chen J, Lü Y, Guo Q, Li Y. Accurate time-dependent wave packet calculation for the reaction of Al(2P) + H2 X1∑g+ on the AlH2(12A′) surface. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhao J, Zhang L, Yue D, Liu D, Gao S, Wang L, Meng Q. Effect of the reactant vibration on quantum dynamics of the reaction H + CH(v = 0,1,2, j = 0) → H2 + C based on a new CH2(X3A″) potential energy surface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Lü Y, Zhang C, Wang H, Guo Q, Li Y. An accurate many-body expansion potential energy surface for AlH 2 (2 2A') and quantum dynamics in Al( 3P) + H 2 ( v0 = 0-3, j0 = 0, 2, 4, 6) collisions. Phys Chem Chem Phys 2022; 24:16637-16646. [PMID: 35766326 DOI: 10.1039/d2cp01802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An accurate potential energy surface is constructed for the excited state of AlH2 by fitting extensive ab initio points calculated at the multi-reference configuration interaction level based on aug-cc-pV(Q+d)Z and aug-cc-pV(5+d)Z basis sets. All the calculated energies are corrected via the many-body expansion method and extrapolated to the complete basis set limit. The various topographic features of the new potential energy surface are investigated to demonstrate the correct behavior of Al(3P) + H2(X1Σg+) and AlH(a3Π) + H(2S) dissociation limits. By employing the time-dependent wave packet approach, the integral scattering cross-sections obtained from the Coriolis coupling calculation and the centrifugal sudden approximation, respectively, are compared in detail and show that the former has a higher effect on the reaction. Moreover, the thermal rate constants for Al(3P) + H2 (v0 = 0-3, j0 = 0, 2, 4, 6) in the temperature range of 0-5000 K are calculated, thereby providing insights into the influence of ro-vibrational quantum numbers on the thermal rate constants.
Collapse
Affiliation(s)
- Yanling Lü
- Department of Physics, Liaoning University, Shenyang 110036, China.
| | - ChengYuan Zhang
- Department of Physics, Liaoning University, Shenyang 110036, China.
| | - Hainan Wang
- Department of Physics, Liaoning University, Shenyang 110036, China.
| | - Qiang Guo
- Department of Physics, Liaoning University, Shenyang 110036, China. .,Lvyuan Institute of Energy & Environmental Science and Technology, Liaoning University, Shenyang, 110036, China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, China. .,Lvyuan Institute of Energy & Environmental Science and Technology, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
11
|
Yang B, Zhao G, Liu J, Chu T, Zhang D, Yang X. Memorial Viewpoint for Keli Han. J Phys Chem A 2022. [DOI: 10.1021/acs.jpca.2c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P.R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
| | - Tianshu Chu
- School of Physics Science, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
12
|
Qiu J, Lu Y, Wang L. Multilayer Subsystem Surface Hopping Method for Large-Scale Nonadiabatic Dynamics Simulation with Hundreds of Thousands of States. J Chem Theory Comput 2022; 18:2803-2815. [PMID: 35380833 DOI: 10.1021/acs.jctc.2c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a multilayer subsystem surface hopping (MSSH) method to deal with nonadiabatic dynamics in large-scale systems. A small subsystem instead of the full system is adopted for surface hopping and is updated on-the-fly to achieve a reliable description of important adiabatic states and the wave function evolution. Additional subsystems for molecular dynamics and statistical description are introduced to further improve the simulation reliability. The global flux hopping probabilities with optimal state assignments are utilized to treat the complex surface crossings. As demonstrated in a series of one- and two-dimensional Holstein models with up to hundreds of thousands of states, MSSH shows weak parameter dependence in all investigated systems. Especially, the computational costs are reduced by 2-6 orders of magnitude compared to traditional surface hopping simulations in full systems, and size-independent results are achieved with a large time-step size of 2-5 fs. The new method is compatible with different decoherence correction strategies and achieves a much better balance between efficiency and reliability, thus promising for applications in general charge and exciton dynamics simulations.
Collapse
Affiliation(s)
- Jing Qiu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yao Lu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Effect of femtosecond pulse profile on excitation and dissociation of the nonadiabatic coupling molecule. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Shu Y, Zhang L, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J Chem Theory Comput 2022; 18:1320-1328. [PMID: 35104136 DOI: 10.1021/acs.jctc.1c01080] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct dynamics by mixed quantum-classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive time steps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature-driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computation time and accuracy as compared to previous mixed quantum-classical nonadiabatic dynamics algorithms. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
15
|
Dynamic study of the D + DAu reaction based on a new ground potential energy surface. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Wang Z, Dong J, Qiu J, Wang L. All-Atom Nonadiabatic Dynamics Simulation of Hybrid Graphene Nanoribbons Based on Wannier Analysis and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22929-22940. [PMID: 35100503 DOI: 10.1021/acsami.1c22181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trajectory surface hopping combined with ab initio electronic structure calculations is a popular and powerful approach for on-the-fly nonadiabatic dynamics simulations. For large systems, however, this remains a significant challenge because of the unaffordable computational cost of large-scale electronic structure calculations. Here, we present an efficient divide-and-conquer approach to construct the system Hamiltonian based on Wannier analysis and machine learning. In detail, the large system under investigation is first decomposed into small building blocks, and then all possible segments formed by building blocks within a cutoff distance are found out. Ab initio molecular dynamics is carried out to generate a sequence of geometries for each equivalent segment with periodicity. The Hamiltonian matrices in the maximum localized Wannier function (MLWF) basis are obtained for all geometries and utilized to train artificial neural networks (ANNs) for the structure-dependent Hamiltonian elements. Taking advantage of the orthogonality and spatial locality of MLWFs, the one-electron Hamiltonian of a large system at arbitrary geometry can be directly constructed by the trained ANNs. As demonstrations, we study charge transport in a zigzag graphene nanoribbon (GNR), a coved GNR, and a series of hybrid GNRs with a state-of-the-art surface hopping method. The interplay between delocalized and localized states is found to determine the electron dynamics in hybrid GNRs. Our approach has successfully studied GNRs with >10 000 atoms, paving the way for efficient and reliable all-atom nonadiabatic dynamics simulation of general systems.
Collapse
Affiliation(s)
- Zedong Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiawei Dong
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jing Qiu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Zhang L, Zhao J, Liu D, Wang W, Yue D, Song Y, Meng Q. A new global analytical ab initio potential energy surface for the dynamics of the C +( 2P) + SH(X 2Π) reaction. Phys Chem Chem Phys 2022; 24:1007-1015. [PMID: 34927636 DOI: 10.1039/d1cp04948h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The global potential energy surface (PES) of HCS+(X1Σ+) is constructed using many-body expansion (MBE) methodology. The obtained analytical function is found by fitting the 7907 ab initio energy points computed at the Davidson-corrected multi-reference configuration interaction level with the aug-cc-pV(5+d)Z basis set. The final root mean square error is 0.0419 eV, and the maximum deviation is 0.2039 eV, showing that the analytical formula agrees well with the energy points. The topological features are calculated and discussed based upon the analytical PES of HCS+(X1Σ+). The reaction probability, integral cross sections and other details of the C+(2P) + SH(X2Π) → H(2S) + CS+(X2Σ+) reaction are investigated using the quasi-classical trajectory and time-dependent quantum wave packet methods.
Collapse
Affiliation(s)
- Lulu Zhang
- School of Science, Shandong Jiaotong University, 250357, Jinan, China.
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, 250357, Jinan, China.
| | - Dong Liu
- School of Science, Shandong Jiaotong University, 250357, Jinan, China.
| | - Wei Wang
- School of Science, Shandong Jiaotong University, 250357, Jinan, China.
| | - Daguang Yue
- School of Science, Shandong Jiaotong University, 250357, Jinan, China.
| | - Yuzhi Song
- School of Physics and Electronics, Shandong Normal University, 250358, Jinan, China.
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, 250358, Jinan, China.
| |
Collapse
|
18
|
The time-dependent quantum wave packet calculation for reaction S ‒( 2P)+H 2( 1Σ g+)→SH ‒( 1Σ)+H( 2S)
on a new ab initio potential energy surface. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Wang H, Lv Y, Chen J, Song Y, Zhang C, Li Y. Accurate many-body expansion potential energy surface for SiH2 (1 1 A′) using a switching function formalism. Phys Chem Chem Phys 2022; 24:7759-7767. [DOI: 10.1039/d1cp05432e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An accurate many-body expansion potential energy surface for the ground state of SiH2 is reported. To warrant the correct behavior at the Si (1D) + H2 (X1Σ+g) dissociation channels...
Collapse
|
20
|
Kim J, Woo KC, Kim KK, Kang M, Kim SK. Tunneling dynamics dictated by the multidimensional conical intersection seam in the πσ*‐mediated photochemistry of heteroaromatic molecules. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST Daejeon Republic of Korea
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Kuk Ki Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Minseok Kang
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| |
Collapse
|
21
|
Zhang AJ, Ma XQ, Jia JF, Wu HS, Li WT. Dynamic study of the H + AuH reaction based on a new ground potential energy surface. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Buren B, Chen M, Sun Z, Guo H. Quantum Wave Packet Treatment of Cold Nonadiabatic Reactive Scattering at the State-To-State Level. J Phys Chem A 2021; 125:10111-10120. [PMID: 34767377 DOI: 10.1021/acs.jpca.1c08105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cold and ultracold collisions are dominated by quantum effects, such as resonances, tunneling, and nonadiabatic transitions between different electronic states. Due to the extremely long de Broglie wavelength in such processes, quantum reactive scattering is most conveniently characterized using the time-independent close-coupling (TICC) methods. However, the TICC approach is difficult for systems with a large number of channels because of its steep numerical scaling laws. Here, a recently proposed quantum wave packet (WP) approach for solving adiabatic reactive scattering problems at low collision energies is extended to include nonadiabatic transitions. To impose the outgoing boundary conditions, the total scattering wavefunction is split into three parts, the interaction, the asymptotic, and the long-range regions. Each region is associated with a different set of basis functions, which could be optimized separately. In this way, an extremely long grid can be used to accommodate the characteristic long de Broglie wavelengths in the scattering coordinate. The better numerical scaling laws of the WP approach have the potential for handling larger nonadiabatic reactive systems at low temperatures in the future.
Collapse
Affiliation(s)
- Bayaer Buren
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
23
|
Guan Y, Xie C, Yarkony DR, Guo H. High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Phys Chem Chem Phys 2021; 23:24962-24983. [PMID: 34473156 DOI: 10.1039/d1cp03008f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nonadiabatic dynamics, which goes beyond the Born-Oppenheimer approximation, has increasingly been shown to play an important role in chemical processes, particularly those involving electronically excited states. Understanding multistate dynamics requires rigorous quantum characterization of both electronic and nuclear motion. However, such first principles treatments of multi-dimensional systems have so far been rather limited due to the lack of accurate coupled potential energy surfaces and difficulties associated with quantum dynamics. In this Perspective, we review recent advances in developing high-fidelity analytical diabatic potential energy matrices for quantum dynamical investigations of polyatomic uni- and bi-molecular nonadiabatic processes, by machine learning of high-level ab initio data. Special attention is paid to methods of diabatization, high fidelity construction of multi-state coupled potential energy surfaces and property surfaces, as well as quantum mechanical characterization of nonadiabatic nuclear dynamics. To illustrate the tremendous progress made by these new developments, several examples are discussed, in which direct comparison with quantum state resolved measurements led to either confirmation of the observation or sometimes reinterpretation of the experimental data. The insights gained in these prototypical systems greatly advance our understanding of nonadiabatic dynamics in chemical systems.
Collapse
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Changjian Xie
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China.
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
24
|
Peng L, Ma H, Lü Y, Zhang C, Gao S, Liu S, Li Y. Time-dependent wave packet investigation for N( 2D) + H 2(X 1Σ+ g) reaction on the NH 2(1 2A′) surface. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1928313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Linkang Peng
- Department of Physics, Liaoning University, Shenyang, People’s Republic of China
| | - Hongyu Ma
- Department of Physics, Liaoning University, Shenyang, People’s Republic of China
| | - Yanling Lü
- Department of Physics, Liaoning University, Shenyang, People’s Republic of China
| | - Chengyuan Zhang
- Department of Physics, Liaoning University, Shenyang, People’s Republic of China
| | - Shoubao Gao
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan, People’s Republic of China
| | - Shixing Liu
- Department of Physics, Liaoning University, Shenyang, People’s Republic of China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang, People’s Republic of China
| |
Collapse
|
25
|
Takatsuka K. Electron Dynamics in Molecular Elementary Processes and Chemical Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
26
|
Zhang W, Meng Q, Gao S, Song Y. Theoretical insight into the vibrational excitation effect of the S+(4S) + H2(X1∑+g) reaction. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Fan JG, Miao XY, Jia XF. Control of the high-order harmonic generation by sculpting waveforms with chirp in solids. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Luo J, Zhou G, Zheng H, Zhan K, Liu B, Zhao L. Tracking of the molecular geometrical changes in the primary event of photoinduced ring-opening reactions of a spiropyran model in gas phase. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1814971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jianhui Luo
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing, People’s Republic of China
| | - Guocui Zhou
- College of Science, China University of Petroleum (East China), Qingdao, People’s Republic of China
| | - Haixia Zheng
- College of Science, China University of Petroleum (East China), Qingdao, People’s Republic of China
| | - Kaiyun Zhan
- College of Science, China University of Petroleum (East China), Qingdao, People’s Republic of China
| | - Bing Liu
- College of Science, China University of Petroleum (East China), Qingdao, People’s Republic of China
| | - Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao, People’s Republic of China
| |
Collapse
|
29
|
Gao H, Song X, Yang X, Yang D. Revealing and comparing different excited‐state intramolecular proton transfer processes for 3‐(
4‐dimethylamino
‐phenyl)‐1‐(4‐fluoro‐2‐hydroxy‐phenyl)‐propenone and 3‐(
4‐dimethylamino
‐phenyl)‐1‐(4‐fluoro‐2‐hydroxy‐phenyl)‐3‐hydroxy‐propenon. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haiyan Gao
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
| | - Xiaoyan Song
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
| | - Xiaohui Yang
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
| | - Dapeng Yang
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian PR China
| |
Collapse
|
30
|
Liu D, Zhao J, Wang L, Song Y, Meng Q, Zhang L. Exploring reaction mechanism and vibrational excitation effect in H + CH( v,j = 0) reaction. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Zhang AJ, Ma XQ, Jia JF, Wu HS, Yuan JC. A time-dependent quantum dynamical study of H + AuH reaction. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Ma J, Zhang C, Cui H, Ma Z, Miao X. Theoretical investigation of the electron dynamics in high-order harmonic generation process from the doped periodic potential. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Li YM, Lei Y. H(D)+LiH+→H2(HD)+Li+ reaction dynamics on its ground electronic state X1A1 and vector correlations. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dynamics of the [Formula: see text] reaction has been investigated by means of quasi-classical trajectory (QCT) calculations on the ground state X1A1 potential energy surface. The H2 (HD) product rotational alignment parameters as well as the angular distributions show that the reaction is dominated by fast abstraction reaction mechanism. The reaction evolving scenario is proposed so that the product rotational angular moment tends to be perpendicular to the reactant velocity vector. The rupture time is inferred near to or less than within one rotational period. We predicted that the increasing collision energy cannot be channeled into the product vibrational excitation effectively. This can help for further experimental tests.
Collapse
Affiliation(s)
- Ya-Min Li
- College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China
| | - Ya Lei
- College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China
| |
Collapse
|
34
|
Effects of rovibrational excitation of LiH on the LiH depletion and H exchange channels for the reaction H ( 2S) + LiH (X 1Σ+) on a new potential energy surface. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
|
36
|
Zhen Q, Zhang HD, Zhang SQ, Ji L, Han T, Liu XS. Generation of electron vortices in photoionization by counter-rotating circularly polarized attosecond pulses. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Yang G, Jin X, Chen K, Yang D. Uncovering the excited state trends and ESIPT mechanism for 2-(hydroxy-3-dimethyl-phenyl)-benzooxazole-6-carboxylicacid. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Liang T, Xia CL, Miao XY. The inhomogeneous field effect on quantum path control of H2+ driven by PG scheme. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Selective enhancement of single-order and two-order harmonics from He atom via two-color and three-color laser fields. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Wang D, Shi G, Fu L, Yin R, Ji Y. Accurate Potential Energy Surfaces for the Three Lowest Electronic States of N( 2D) + H 2(X 1∑ g +) Scattering Reaction. ACS OMEGA 2019; 4:12167-12174. [PMID: 31460331 PMCID: PMC6682084 DOI: 10.1021/acsomega.9b01395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/27/2019] [Indexed: 05/31/2023]
Abstract
The three lowest full three-dimensional adiabatic and three diabatic global potential energy surfaces are reported for the title system. The accurate ab initio method (MCSCF/MRCI) with larger basis sets (aug-cc-pVQZ) is used to reduce the adiabatic potential energies, and the global adiabatic potential energy surfaces are deduced by a three-dimensional B-spline fitting method. The conical intersections and the mixing angles between the lowest three adiabatic potential energy surfaces are precisely studied. The most possible nonadiabatic reaction pathways are predicted, i.e., N(2D) + H2(X1∑g +) → NH2(22A') → CI (12A'-22A') → NH2(12A') → CI (12A″-12A') → NH2(12A″) → NH(X3∑-) + H(2S). The products of the first excited state (NH(a1Δ) + H(2S)) and the second excited state (NH(b1∑g +) + H(2S)) can be generated in these nonadiabatic reaction pathways too.
Collapse
Affiliation(s)
- Dequan Wang
- Laboratory
of Theoretical and Computational Chemistry, Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Guang Shi
- Hematology and Oncology Department and Pain Department, The Second Hospital, Jilin University, Changchun 130041, People’s Republic of China
| | - Liwei Fu
- Laboratory
of Theoretical and Computational Chemistry, Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Ruilin Yin
- Laboratory
of Theoretical and Computational Chemistry, Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Youbo Ji
- Hematology and Oncology Department and Pain Department, The Second Hospital, Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
41
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
42
|
|
43
|
Zhao L, Liu J, Zhou P. Does the wavelength dependent photoisomerization process of the p‑coumaric acid come out from the electronic state dependent pathways? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:203-211. [PMID: 30544011 DOI: 10.1016/j.saa.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Similar to the anion photoactive yellow protein (PYP) chromophore, the neutral form of the PYP chromophore was also found to exhibit a the wavelength-dependent photoisomerization quantum yield. The isomerization quantum yield increases with the increasing excitation energy on the S1 state, while decreases when being excited to the S2 state. Does this wavelength dependent product yield come out from the specific reaction pathways of the S1 and S2 states? This would mean that, the relaxation pathway of the S2 state is distinct from that of the S1 state and does not involve twisting motion. Does it break Kasha's rule by exhibiting a direct transition from the S2 state to the ground state? The underlying mechanism needs further in. In this article, we employed the on-the-fly dynamics simulations and static electronic structure calculations to reveal the deactivation mechanism of the neutral form of the PYP chromophore. Our results indicated that the CC twisting motion dominates the S1 state decay process. In contrast, for the decay process of the S2 state, an ultrafast transition from the S2 to the S1 state through a planar conical intersection is observed, and the excess energy activates a new reaction channel to the ground state characterized by a puckering distortion of the ring. This pathway competes with the photoisomerization channel. No direct transition from S2 to S0 is observed, hence Kasha's rule is valid for this process. Our calcualtions can provide a reasonable explanation of the wavelength-dependent isomerization quantum yield of neutral PYP chromophore, and we hope it can provide theoretical foundations for comparing the effect of protonation state on the dynamcal behaviors of PYP chromophore.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
44
|
He X, Li W, Meng H, Li C, Guo G, Qiu X, Wei J. Quantum state-to-state study for (H−(D−),HD) collisions on two potential energy surfaces. Phys Chem Chem Phys 2019; 21:7196-7207. [DOI: 10.1039/c8cp07824f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Revealing the reaction mechanisms of the H−/D− + HD reaction – an exact quantum dynamics study on two potential energy surfaces.
Collapse
Affiliation(s)
- Xiaohu He
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Wenliang Li
- Department of Physics
- Xinjiang Institute of Engineering
- Urumqi
- China
| | - Huiyan Meng
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Chuanliang Li
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Guqing Guo
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Xuanbing Qiu
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Jilin Wei
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan
- China
| |
Collapse
|
45
|
Han YC. Quasiclassical trajectory calculations of CD3CHO dissociation to CD2H + DCO on a global potential energy surface. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a quasiclassical trajectory study of the photodissociation of CD3CHO based on a global ab initio-based potential energy surface. Calculations are performed at the total energy corresponding to the photolysis wavelength of 280[Formula: see text]nm. In addition to the major radical and molecular products, CD[Formula: see text] and CD3H [Formula: see text] CO, respectively, this paper focuses on the unusual radical channel CD2H [Formula: see text] DCO, which requires a D/H exchange process before the conventional C–C bond cleavage. Five D/H exchange mechanisms are reported, which are related to the isomerizations from acetaldehyde to vinyl alcohol and back, to oxirane and back, and to the intermediate (CD–CHD–OD) and back. These D/H exchange mechanisms are in good agreement with the experimental findings [Heazlewood BR, Maccarone AT, Andrews DU, Osborn DL, Harding LB, Klippenstein SJ, Jordan MJT, Kable SH, Nat Chem 3:443, 2011].
Collapse
Affiliation(s)
- Yong-Chang Han
- Department of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
46
|
Xu T, Wu H, Zhang LL, Wang XL, Zhao J, Meng QT. State-to-state quantum dynamics of F(2P)+HO(2Π)→O(3P)+HF(1Σ+) reaction on 13A′ and 23A′′ surfaces. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1512719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ting Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Hui Wu
- College of Science, Jiangnan University, Wuxi, People’s Republic of China
| | - Lu-Lu Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Xian-Long Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Juan Zhao
- College of Science, Shandong Jiaotong University, Jinan, People’s Republic of China
| | - Qing-Tian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| |
Collapse
|
47
|
Zhao L, Liu J, Zhou P. The photoinduced isomerization mechanism of the 2-(1-(methylimino)methyl)-6-chlorophenol (SMAC): Nonadiabatic surface hopping dynamics simulations. J Chem Phys 2018; 149:034309. [PMID: 30037240 DOI: 10.1063/1.5034379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photophysical properties of the Schiff base family are crucial for their applications such as molecular switches and molecular memories. However, it was found that the photophysical behavior is not uniform for all Schiff base molecules, which shows a significant substituent dependent property. In this article, we studied the photoisomerization mechanism of one Schiff base chlorosubstituted derivative 2-(1-(methylimino)methyl)-6-chlorophenol by employing geometrical optimization, energy profiles scanning, and on-the-fly dynamical simulations. Three types of minimum energy conical intersections were located on the S1/S0 crossing seam, with two characterized by twisting motion of the C=N bond and one featured with the excited state intramolecular proton transfer process and then twisting motion around the C=C bond [excited-state intramolecular proton transfer process (ESIPT)-then-twisting]. By a combination of the dynamics simulation results with the energy profiles scanned along with the ESIPT coordinate, it was found that the photophysical property of the targeted molecule is different from that of most Schiff base members, which prefer to decay by a twisting motion around the C=N bridge bond rather than the ESIPT-then-twisting channel. The minor ESIPT channel is probably governed by a tunneling mechanism. The proposed deactivation mechanism can provide a reasonable explanation for the observations in the experiment and would provide fundamental indications for further design of new and efficient photochromic products.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum, Qingdao 266580, Shandong, China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
48
|
Generations of even-order harmonics from vibrating H2+ and T2+ in the rising and falling parts of the laser field. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Yuan YN, Wang GY, Zhang XX, Nie YX, Geng ZY. A theoretical mechanistic study for C H and C C bond activations of cyclohexane catalyzed by NiAl + in the gas phase. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Lü R. Low-energy stereodynamics in the ion–molecule reactions D+ + D2/HD and H+ + H2/HD: reagent vibrational excitation effect and mass factor effect. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|