1
|
Jacques LS, Pereira JPC, Santos BM, Barrioni BR, Del Bianco Borges B. Flaxseed and mulberry extract improve trabecular bone quality in estrogen-deficient rats. Climacteric 2025; 28:175-183. [PMID: 39937165 DOI: 10.1080/13697137.2025.2457988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Many hormones, including estrogens, modulate bone metabolism, which plays a crucial role in maintaining bone health. Estrogen depletion, as occurs in menopause, leads to increased bone resorption and decreased formation, resulting in osteopenia/osteoporosis. This study investigates the effects of flaxseed (Linum usitatissimum) and mulberry (Morus nigra L.) extracts, known for their phenolic compounds and antioxidant properties, against estrogen deficiency-induced bone loss in female Wistar rats. These extracts were administered to ovariectomized rats for 60 days. High-performance liquid chromatography analysis revealed the presence of some phenolic compounds in the extracts, including trigonelline, gallic acid, theobromine, chlorogenic acid, syringic acid and p-coumaric acid. The extracts improved bone microstructure with higher trabecular bone, bone mineral density, calcium, phosphorus and magnesium levels, and lower porosity and intertrabecular space in bone tissue. Furthermore, plasma alkaline phosphatase activity was elevated in extract-treated animals, indicating enhanced bone tissue formation. Although serum carboxy-terminal fragment levels showed no significant change, the data suggest that flaxseed and mulberry extracts may protect against trabecular bone loss and support bone formation in estrogen-deficient conditions. These results suggest that supplementing these natural extracts holds promise in preventing or alleviating the signs and symptoms associated with estrogenic deficiency.
Collapse
Affiliation(s)
- Larissa Sampaio Jacques
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA, Lavras, Brazil
| | | | - Beatriz Menegate Santos
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA, Lavras, Brazil
| | - Breno Rocha Barrioni
- Postgraduate Program in Metallurgical Engineering, Mines and Materials, Minas Gerais Federal University- UFMG, Belo Horizonte, Brazil
| | - Bruno Del Bianco Borges
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA, Lavras, Brazil
| |
Collapse
|
2
|
Chowdhury R, Bhuia MS, Wilairatana P, Afroz M, Hasan R, Ferdous J, Rakib AI, Sheikh S, Mubarak MS, Islam MT. An insight into the anticancer potentials of lignan arctiin: A comprehensive review of molecular mechanisms. Heliyon 2024; 10:e32899. [PMID: 38988539 PMCID: PMC11234030 DOI: 10.1016/j.heliyon.2024.e32899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Natural products are being developed as possible treatment options due to the rising prevalence of cancer and the harmful side effects of synthetic medications. Arctiin is a naturally occurring lignan found in numerous plants and exhibits different pharmacological activities, along with cancer. To elucidate the anticancer properties and underlying mechanisms of action, a comprehensive search of various electronic databases was conducted using appropriate keywords to identify relevant publications. The findings suggest that arctiin exhibits anticancer properties against tumor formation and various cancers such as cervical, myeloma, prostate, endothelial, gastric, and colon cancers in several preclinical pharmacological investigations. This naturally occurring compound exerts its anticancer effect through different cellular mechanisms, including mitochondrial dysfunction, cell cycle at different phases (G2/M), inhibition of cell proliferation, apoptotic cell death, and cytotoxic effects, as well as inhibition of migration and invasion of various malignant cells. Moreover, the study also revealed that, among the various cellular pathways, arctiin was shown to be more potent in terms of the PI3K/AKT and JAK/STAT signaling pathways. However, pharmacokinetic investigation indicated the compound's poor oral bioavailability. Because of these findings, arctiin might be considered a promising chemotherapeutic drug candidate.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
3
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
4
|
van Die MD, Bone KM, Visvanathan K, Kyrø C, Aune D, Ee C, Paller CJ. Phytonutrients and outcomes following breast cancer: a systematic review and meta-analysis of observational studies. JNCI Cancer Spectr 2024; 8:pkad104. [PMID: 38070485 PMCID: PMC10868383 DOI: 10.1093/jncics/pkad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Phytonutrient intakes may improve outcomes following breast cancer, but the impact of postdiagnosis introduction vs established prediagnostic exposure as well as optimum doses has not been established. Evidence from observational studies for key exposures was evaluated, including dosage and intake time frames. METHODS MEDLINE, EMBASE, CINAHL, Cochrane Library, ClinicalTrials.gov, and the ISRCTN registry were searched for prospective and retrospective observational studies investigating the impact of soybean, lignans, cruciferous (cabbage-family) vegetables, green tea, or their phytonutrients on breast cancer survival outcomes. A random-effects model was used to calculate summary hazard ratios (HRs) and 95% confidence intervals (CIs). Nonlinear dose-response analyses were conducted using restricted cubic splines. RESULTS Thirty-two articles were included. Soy isoflavones were associated with a 26% reduced risk of recurrence (HR = 0.74, 95% CI = 0.60 to 0.92), particularly among postmenopausal (HR = 0.72, 95% CI = 0.55 to 0.94) and estrogen receptor-positive survivors (HR = 0.82, 95% CI = 0.70 to 0.97), with the greatest risk reduction at 60 mg/day. In mortality outcomes, the reduction was mostly at 20 to 40 mg/day. Soy protein and products were inversely associated with cancer-specific mortality for estrogen receptor-positive disease (HR = 0.75, 95% CI = 0.60 to 0.92). An inverse association was observed for serum or plasma enterolactone, measured prediagnosis and early postdiagnosis, with cancer-specific mortality (HR = 0.72, 95% CI = 0.58 to 0.90) and all-cause mortality (HR = 0.69, 95% CI = 0.57 to 0.83). No effects were observed for cruciferous vegetables. There was a 44% reduced risk of recurrence with prediagnostic green tea for stage I and II breast cancer (HR = 0.56, 95% CI = 0.38 to 0.83). CONCLUSIONS Soy, enterolactone, and green tea demonstrated significant risk reductions in outcomes following breast cancer. Evidence is needed regarding the impact of postdiagnostic introduction or substantial increase of these exposures.
Collapse
Affiliation(s)
- M Diana van Die
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kerry M Bone
- Integria (MediHerb), Warwick, QLD, Australia
- Northeast College of Health Sciences, Seneca Falls, NY, USA
| | - Kala Visvanathan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cecile Kyrø
- Department of Diet, Cancer and Health, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Oslo New University College, Oslo, Norway
- Department of Research, The Cancer Registry of Norway, Oslo, Norway
| | - Carolyn Ee
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Channing J Paller
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Merkher Y, Kontareva E, Alexandrova A, Javaraiah R, Pustovalova M, Leonov S. Anti-Cancer Properties of Flaxseed Proteome. Proteomes 2023; 11:37. [PMID: 37987317 PMCID: PMC10661269 DOI: 10.3390/proteomes11040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Flaxseed has been recognized as a valuable source of nutrients and bioactive compounds, including proteins that possess various health benefits. In recent years, studies have shown that flaxseed proteins, including albumins, globulins, glutelin, and prolamins, possess anti-cancer properties. These properties are attributed to their ability to inhibit cancer cell proliferation, induce apoptosis, and interfere with cancer cell signaling pathways, ultimately leading to the inhibition of metastasis. Moreover, flaxseed proteins have been reported to modulate cancer cell mechanobiology, leading to changes in cell behavior and reduced cancer cell migration and invasion. This review provides an overview of the anti-cancer properties of flaxseed proteins, with a focus on their potential use in cancer treatment. Additionally, it highlights the need for further research to fully establish the potential of flaxseed proteins in cancer therapy.
Collapse
Affiliation(s)
- Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
- Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
| | - Anastasia Alexandrova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
| | - Rajesha Javaraiah
- Department of Biochemistry, Yuvaraja’s College, University of Mysore Mysuru, Karnataka 570005, India
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
6
|
Musazadeh V, Nazari A, Natami M, Hajhashemy Z, Kazemi KS, Torabi F, Moridpour AH, Vajdi M, Askari G. The effect of flaxseed supplementation on sex hormone profile in adults: a systematic review and meta-analysis. Front Nutr 2023; 10:1222584. [PMID: 37927501 PMCID: PMC10623424 DOI: 10.3389/fnut.2023.1222584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Inconsistent data suggest that flaxseed supplementation may have a role in sex hormones. We aimed to carry out a systematic review and meta-analysis of randomized controlled trials (RCTs) investigating effects of flaxseed supplementation on sex hormone profile. PubMed, Scopus, Embase, Cochrane Library, Web of Science databases, and Google Scholar were searched up to March 2023. Standardized mean difference (SMD) was pooled using a random-effects model. Sensitivity analysis, heterogeneity, and publication bias were reported using standard methods. The quality of each study was evaluated with the revised Cochrane risk-of-bias tool for randomized trials, known as RoB 2. Finding from ten RCTs revealed that flaxseed supplementation had no significant alteration in follicle-stimulating hormone (FSH) (SMD: -0.11; 95% CI: -0.87, 0.66: p = 0.783), sex hormone-binding globulin (SHBG) (SMD: 0.35; 95% CI: -0.02, 0.72; p = 0.063), total testosterone (TT) levels (SMD: 0.17; 95% CI: -0.07, 0.41; p = 0.165), free androgen index (FAI) (SMD = 0.11, 95% CI: -0.61, 0.83; p = 0.759), and dehydroepiandrosterone sulfate (DHEAS) (SMD: 0.08, 95%CI: -0.55, 0.72, p = 0.794). Flaxseed supplementation had no significant effect on sex hormones in adults. Nevertheless, due to the limited included trials, this topic is still open and needs further studies in future RCTs.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajhashemy
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshte Torabi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Hatwik J, Patil HN, Limaye AM. Proliferative response of ERα-positive breast cancer cells to 10 μM enterolactone, and the associated alteration in the transcriptomic landscape. Gene 2023:147640. [PMID: 37453722 DOI: 10.1016/j.gene.2023.147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Enterolactone (EL) is a product of gut-microbial metabolism of dietary plant lignans. Studies linking EL with breast cancer risk have bolstered investigations into its effects on the mammary epithelial cells, and the mechanisms thereof. While it binds to the estrogen receptor α; ERα, its effect on the proliferation of mammary tumor cell lines is reportedly ambivalent; depending on its concentration. The genomic correlates of EL actions also remain unexplored. Here we have elaborately studied the effect of EL on proliferation of ERα-positive, and ERα-negative cell lines. 10 µM EL significantly enhanced the growth of the ERα-positive MCF-7 or T47D breast cancer cells, but not the ERα-negative MDA-MB-231 or MDA-MB-453 cells. In MCF-7 cells, it significantly increased the expression of TFF1 mRNA, an estrogen-induced transcript. The binding of ERα to the estrogen response element within the TFF1 locus further demonstrated the pro-estrogenic effect of 10 µM EL. We further explored the genome-wide transcriptomic effect of 10 µM EL using the next generation sequencing technology (RNA-seq). Analysis of RNA-seq data obtained from vehicle (0.1% DMSO)- or 10 µM EL treated- MCF-7 cells revealed modulation of expression of diverse sets of functionally related genes, which reflected cell cycle progression. The manner in which 10 µM EL regulated the hallmark G2/M checkpoint, and estrogen-response-late genes correlated with proliferation inducing, and estrogen-like effects of EL on MCF-7 cells.
Collapse
Affiliation(s)
- Juana Hatwik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Health Sciences, Al-Baath University, Homs, Syria
| | - Hrishikesh Nitin Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Sirotkin AV. Influence of Flaxseed (Linum usitatissimum) on Female Reproduction. PLANTA MEDICA 2023; 89:608-615. [PMID: 36808094 DOI: 10.1055/a-2013-2966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This review describes the chemical composition of flaxseed (Linum usitatissimum) and its general health effects, as well as the currently available knowledge concerning its action on the female reproductive state, functions on the ovary and ovarian cells and reproductive hormones, as well as possible constituents and extra- and intracellular mediators mediating its effects on female reproductive processes. Flaxseed contains a number of biologically active molecules, which, acting through multiple signalling pathways, can determine numerous physiological, protective and therapeutic effects of flaxseed. The available publications demonstrate the action of flaxseed and its constituents on the female reproductive system - ovarian growth, follicle development, the resulting puberty and reproductive cycles, ovarian cell proliferation and apoptosis, oo- and embryogenesis, hormonal regulators of reproductive processes and their dysfunctions. These effects can be determined by flaxseed lignans, alpha-linolenic acid and their products. Their actions can be mediated by changes in general metabolism, metabolic and reproductive hormones, their binding proteins, receptors and several intracellular signalling pathways, including protein kinases, transcription factors regulating cell proliferation, apoptosis, angiogenesis and malignant transformation. Flaxseed and its active molecules are found potentially useful for improving farm animal reproductive efficiency and treatment of polycystic ovarian syndrome and ovarian cancer.
Collapse
|
9
|
The Role of Flaxseed in Improving Human Health. Healthcare (Basel) 2023; 11:healthcare11030395. [PMID: 36766971 PMCID: PMC9914786 DOI: 10.3390/healthcare11030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Flaxseed contains high amounts of biologically active components such as α-linolenic acid, lignans, and dietary fiber. Due to its numerous nutritional properties, flaxseed has been classified as a "superfood", that is, a food of natural origin with various bioactive components and many health-promoting benefits. Flaxseed consumption can be an important factor in the prevention of diseases, particularly related to nutrition. The regular consumption of flaxseed may help to improve lipid profile and lower blood pressure, fasting glucose, and insulin resistance index (HOMA-IR). Moreover, flaxseed is characterized by anticancer and antioxidant properties and can significantly reduce the intensity of symptoms associated with menopause, constipation, and mental fatigue, improve skin condition, and accelerate wound healing. In addition to its bioactive compounds, flaxseed also contains antinutrients such as cyanogenic glycosides (CGs), cadmium, trypsin inhibitors, and phytic acid that can reduce the bioavailability of essential nutrients and/or limit its health-promoting effects. Three common forms of flaxseed available for human consumption include whole flaxseed, ground flaxseed, and flaxseed oil. The bioavailability of ALA and lignans is also dependent on the form of flaxseed consumed. To ensure high bioavailability of its bioactive components, flaxseed should be consumed in the ground form.
Collapse
|
10
|
Shim YY, Kim JH, Cho JY, Reaney MJT. Health benefits of flaxseed and its peptides (linusorbs). Crit Rev Food Sci Nutr 2022; 64:1845-1864. [PMID: 36193986 DOI: 10.1080/10408398.2022.2119363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Chiang C, Pacyga DC, Strakovsky RS, Smith RL, James-Todd T, Williams PL, Hauser R, Meling DD, Li Z, Flaws JA. Urinary phthalate metabolite concentrations and serum hormone levels in pre- and perimenopausal women from the Midlife Women's Health Study. ENVIRONMENT INTERNATIONAL 2021; 156:106633. [PMID: 34004451 PMCID: PMC8380691 DOI: 10.1016/j.envint.2021.106633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Phthalate exposure is associated with altered reproductive function, but little is known about associations between phthalate and hormone levels in midlife women. METHODS This cross-sectional analysis includes 45-54-year-old pre- and perimenopausal women from Baltimore, MD and its surrounding counties enrolled in the Midlife Women's Health Study (n = 718). Serum and urine samples were collected from participants once a week for four consecutive weeks to span the menstrual cycle. Serum samples were assayed for estradiol, testosterone, progesterone, sex hormone binding globulin (SHBG), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH), and geometric means were calculated for each hormone across all four weeks. Urine samples were analyzed for nine phthalate metabolites from pools of one-to-four urine samples. Phthalate metabolite concentrations were specific gravity-adjusted and assessed as individual metabolites or as molar sums of metabolites from common parents (di(2-ethylhexyl) phthalate metabolites, ∑DEHP), exposure sources (plastic, ∑Plastics; personal care products, ∑PCP), biological activity (anti-androgenic, ∑AA), and sum of all metabolites (∑Phthalates). We used linear regression models to assess overall associations of phthalate metabolites with hormones, controlling for important demographic, lifestyle, and health factors. We also explored whether associations differed by menopause status, body mass index (BMI), and race/ethnicity. RESULTS Most participants were non-Hispanic white (67%) or black (29%), college-educated (65%), employed (80%), and had somewhat higher mean urinary phthalate metabolite concentrations than other U.S. women. Overall, the following positive associations were observed between phthalate metabolites and hormones: ∑DEHP (%Δ: 4.9; 95%CI: 0.5, 9.6), ∑Plastics (%Δ: 5.1; 95%CI: 0.3, 10.0), and ∑AA (%Δ: 7.8; 95%CI: 2.3, 13.6) with estradiol; MiBP (%Δ: 6.6; 95%CI: 1.5, 12.1) with testosterone; ∑DEHP (%Δ: 8.3; 95%CI: 1.5, 15.6), ∑Plastics (%Δ: 9.8; 95%CI: 2.4, 17.7), MEP (%Δ: 4.6; 95%CI: 0.1, 9.2), ∑PCP (%Δ: 6.0; 95%CI: 0.2, 12.2), ∑Phthalates (%Δ: 9.0; 95%CI: 2.1, 16.5), and ∑AA (%Δ: 12.9; 95%CI: 4.4, 22.1) with progesterone; and MBP (%Δ: 8.5; 95%CI: 1.2, 16.3) and ∑AA (%Δ: 9.0; 95%CI: 1.3, 17.4) with AMH. Associations of phthalate metabolites with hormones differed by menopause status (strongest in premenopausal women for estradiol, progesterone, and FSH), BMI (strongest in obese women for progesterone), and race/ethnicity (strongest in non-Hispanic white women for estradiol and AMH). CONCLUSIONS We found that phthalate metabolites were positively associated with several hormones in midlife women, and that some demographic and lifestyle characteristics modified these associations. Future longitudinal studies are needed to corroborate these findings in more diverse midlife populations.
Collapse
Affiliation(s)
- Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States
| | - Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48823, United States
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - Rebecca L Smith
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States; Department of Pathobiology, University of Illinois, Urbana, IL 61802, United States
| | - Tamarra James-Todd
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States; Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
12
|
Wiggs AG, Chandler JK, Aktas A, Sumner SJ, Stewart DA. The Effects of Diet and Exercise on Endogenous Estrogens and Subsequent Breast Cancer Risk in Postmenopausal Women. Front Endocrinol (Lausanne) 2021; 12:732255. [PMID: 34616366 PMCID: PMC8489575 DOI: 10.3389/fendo.2021.732255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Endogenous estrogens have been associated with overall breast cancer risk, particularly for postmenopausal women, and ways to reduce these estrogens have served as a primary means to decrease overall risk. This narrative review of clinical studies details how various nutritional and exercise lifestyle interventions have been used to modify estrogen levels and metabolism to provide a protective impact against breast cancer incidence. We also summarized the evidence supporting the efficacy of interventions, outcomes of interest and identified emerging research themes. A systematic PubMed MEDLINE search identified scholarly articles or reviews published between 2000-2020 that contained either a cohort, cross-sectional, or interventional study design and focused on the relationships between diet and/or exercise and overall levels of different forms of estrogen and breast cancer risk and occurrence. Screening and data extraction was undertaken by two researchers. Data synthesis was narrative due to the heterogeneous nature of studies. A total of 1625 titles/abstracts were screened, 198 full texts reviewed; and 43 met eligibility criteria. Of the 43 studies, 28 were randomized controlled trials, and 15 were observational studies. Overall, studies that incorporated both diet and exercise interventions demonstrated better control of detrimental estrogen forms and levels and thus likely represent the best strategies for preventing breast cancer development for postmenopausal women. Some of the strongest associations included weight loss via diet and diet + exercise interventions, reducing alcohol consumption, and consuming a varied dietary pattern, similar to the Mediterranean diet. More research should be done on the effects of specific nutritional components on endogenous estrogen levels to understand the effect that the components have on their own and in combination within the diet.
Collapse
Affiliation(s)
- Alleigh G Wiggs
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Justin K Chandler
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Aynur Aktas
- Department of Supportive Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| | - Susan J Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Delisha A Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
13
|
Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018; 23:molecules23123251. [PMID: 30544820 PMCID: PMC6321438 DOI: 10.3390/molecules23123251] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023] Open
Abstract
The study aims to communicate the current status regarding the development and management of the databases on dietary lignans; within the phytochemicals, the class of the lignan compounds is of increasing interest because of their potential beneficial properties, i.e., anticancerogenic, antioxidant, estrogenic, and antiestrogenic activities. Furthermore, an introductory overview of the main characteristics of the lignans is described here. In addition to the importance of the general databases, the role and function of a food composition database is explained. The occurrence of lignans in food groups is described; the initial construction of the first lignan databases and their inclusion in harmonized databases at national and/or European level is presented. In this context, some examples of utilization of specific databases to evaluate the intake of lignans are reported and described.
Collapse
|