1
|
Li JD, Liu YQ, He RQ, Huang ZG, Huang WY, Huang H, Liu ZH, Chen G. Understanding and addressing the global impact: A systematic review and cross-sectional bibliometric analysis of Langya henipavirus and pre-existing severe henipaviruses. J Infect Public Health 2025; 18:102631. [PMID: 39778464 DOI: 10.1016/j.jiph.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
In 2022, Langya henipavirus was identified in patients with fever in eastern China. This study provides an overview of the scientific landscape, highlights research focus areas, and outlines potential future investigations. The relevant scientific literature was systematically searched and reviewed via advanced bibliometric techniques. Over the past two decades, henipavirus research has increased at an annual rate of 8.82 %. The United States leads in research output, with the Australian Animal Health Laboratory as the top institution. Most articles are published in the Journal of Virology, identified as the most influential journal along with researcher Wang LF. Current research focuses on "zoonosis," "vaccine," and "pathogenesis," whereas future areas may include "molecular docking," "immunoinformatics," "climate change," "antibodies," "vaccines," "glycoprotein," and "ephrin-b2." This study details henipavirus research, highlighting key players, trends, and future directions. These insights will guide future efforts to address the risks posed by novel Henipaviruses, such as Langya.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yu-Qing Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Hong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Zhi-Hong Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| |
Collapse
|
2
|
Amer SA, Ali HT, Swed S, Albeladi OA, Ndjip Ndjock AS, Soliman AZM. Unveiling the nexus! Understanding knowledge issues, animal contact patterns and interaction of health care providers in the context of monkeypox and COVID-19 during monkeypox outbreak 2022. Ann Med 2024; 56:2386452. [PMID: 39105258 PMCID: PMC11305047 DOI: 10.1080/07853890.2024.2386452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND A monkeypox (MPOX) outbreak occurred in May 2022. On June 3, 2022, the WHO Blueprint organized a consultation on MPOX research knowledge gaps and priority research questions because the engagement of health care providers (HCPs) in providing accurate information and the public's motivation to adapt protective behaviour were crucial. Thus, we conducted this study to explore the knowledge issues, animal patterns, and interactions of HCPs in the context of MPOX and COVID-19 during the MPOX outbreak. METHODS We conducted a cross-sectional web-based survey among 816 HCPs working in governmental health facilities from many countries, mainly Syria, Egypt, Saudi Arabia, and Cameroon, in September 2022. RESULTS Four hundred and sixty (56.37%) were aged between 18 and less than 35 years old. About 34.44% were physicians, while only 37.25% worked on the frontlines with patients. 37.99% and 5.88% received vaccinations against chickenpox and MPOX, respectively. In the meantime, 55.39% had taken courses or training programmes regarding COVID-19. Regarding knowledge-seeking behaviours (KSBs) about COVID-19, 38.73% were through passive attention, while only 28.8% got their information through active search. Most of the participants (56.86%) had a moderate level of knowledge regarding COVID-19. Only 8.82% had courses or training programmes regarding MPOX. Regarding KSB about MPOX, 50.86% were obtained through passive attention, while only 18.01% and 23.04% got their information through active and passive search, respectively. Most of the participants (57.60%) had a poor level of knowledge regarding MPOX. The regression analysis of the MPOX knowledge score revealed that individuals working on the frontlines with patients and those who had training programmes or courses were shown to have a higher score by 1.25 and 3.18 points, respectively. CONCLUSIONS The studied HCPs had poorer knowledge about the MPOX virus than they did about the SARS-CoV-2 virus. Training programmes and education courses had an impact on their knowledge.
Collapse
Affiliation(s)
- Samar A. Amer
- Department of Public Health and Community Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Royal Colleague of General Practitioners [INT], London, UK
- Department of Mental Health Primary Care, Nova University, Lisbon, Portugal
| | | | - Sarya Swed
- Faculty of Medicine, Aleppo University, Aleppo, Syria
| | - Omar A. Albeladi
- Public Health Departments, King Salman Bin Abdulaziz Medical City, El Madinah, Saudi Arabia
| | - Alex Stéphane Ndjip Ndjock
- Department of Public Health, Edea Health District, Edea, Cameroon
- Association pour le développement de l'épidémiologie de terrain, Château de Vaccassy, Saint-Maurice Cedex, France
| | - Al Zahraa M. Soliman
- Department of Public Health and Community Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Shaikh SS, Ahmed I, Sangah AB, Khalid MZ. Securing the borders: preventive measures against Nipah virus outbreak in Pakistan. Ann Med Surg (Lond) 2024; 86:6366-6368. [PMID: 39525747 PMCID: PMC11543178 DOI: 10.1097/ms9.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Shazia S. Shaikh
- Department of Internal Medicine, Liaquat National Hospital and Medical College
| | - Ikhlas Ahmed
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Abdul B. Sangah
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | |
Collapse
|
4
|
Branda F, Pavia G, Ciccozzi A, Quirino A, Marascio N, Matera G, Romano C, Locci C, Azzena I, Pascale N, Sanna D, Casu M, Ceccarelli G, Ciccozzi M, Scarpa F. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024; 16:1688. [PMID: 39599803 PMCID: PMC11599060 DOI: 10.3390/v16111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The family Paramyxoviridae includes a number of negative RNA viruses known for their wide host range and significant zoonotic potential. In recent years, there has been a surge in the identification of emerging zoonotic paramyxoviruses, particularly those hosted by bat species, which serve as key reservoirs. Among these, the genera Henipavirus and Pararubulavirus are of particular concern. Henipaviruses, including the highly pathogenic Hendra and Nipah viruses, have caused severe outbreaks with high mortality rates in both humans and animals. In contrast, zoonotic pararubulaviruses such as the Menangle virus typically induce mild symptoms or remain asymptomatic in human hosts. This review summarizes current knowledge on the evolution, ecology, and epidemiology of emerging zoonotic paramyxoviruses, focusing on recently discovered viruses and their potential to cause future epidemics. We explore the molecular mechanisms underlying host-switching events, viral replication strategies, and immune evasion tactics that facilitate interspecies transmission. In addition, we discuss ecological factors influencing virus emergence, including changes in bat populations and habitats and the role of wildlife-human interfaces. We also examine the public health impact of these emerging viruses, underlining the importance of enhanced surveillance, developing improved diagnostic tools, and implementing proactive strategies to prevent potential outbreaks. By providing a comprehensive overview of recent advances and gaps in knowledge, this review aims to inform future research directions and public health policies related to zoonotic paramyxoviruses.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| |
Collapse
|
5
|
Qin L, Li H, Zheng D, Lin S, Ren X. Glioblastoma patients' survival and its relevant risk factors during the pre-COVID-19 and post-COVID-19 pandemic: real-world cohort study in the USA and China. Int J Surg 2024; 110:2939-2949. [PMID: 38376848 PMCID: PMC11093471 DOI: 10.1097/js9.0000000000001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Although the COVID-19 pandemic has exerted potential impact on patients with glioblastomas (GBMs), it remains unclear whether the survival and its related risk factors of GBM patients would be altered or not during the period spanning from pre-COVID-19 to post-COVID-19 pandemic era. This study aimed to clarify the important issues above. METHODS Two observational cohorts were utilized, including the nationwide American cohort from the Surveillance, Epidemiology, and End-Results (SEER) and the Chinese glioblastoma cohort (CGC) at our institution during 2018-2020. Demographics, tumour features, treatment regimens and clinical outcomes were collected. Cox regression model, competing risk model, and subgroup and sensitivity analysis were used to dynamically estimate the survival and its relevant risk factors over different diagnosis years from the pre-COVID-19 (2018 and 2019) to post-COVID-19 (2020) pandemic. Causal mediation analysis was further adopted to explore the potential relationship between risk factors and mortality. RESULTS This study included 11321 GBM cases in SEER and 226 GBM patients in CGC, respectively. Instead of the diagnostic years of 2018-2020, the prognostic risk factors, such as advanced age, bilateral tumour and absence of comprehensive therapy (surgery combined with chemoradiotherapy), were identified to persistently affect GBM survival independently during the period from 2018 to 2020 in the SEER cohort (all P < 0.05). In CGC, lack of comprehensive therapy for GBM patients were restated as survival risk factors during the same timeframe. Causal mediation analysis showed that the effect of comprehensive therapy on all-cause mortality played a determinant role (direct effect value -0.227, 95% CI -0.248 to -0.207), which was partially mediated by age (9.11%) rather than tumour laterality. CONCLUSIONS As the timeframe shifted from pre-COVID-19 to post-COVID-19 pandemic, survival of GBM patients remained stable, yet advanced age, bilateral tumours, and passive treatment continuingly impacted GBM survival. It is necessary to optimize the comprehensive treatment for GBM patients even in the post-pandemic era.
Collapse
Affiliation(s)
- Ling Qin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College
| | - Haoyi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ali I, Hassan Z, Rahat Ullah A, Noman Khan Wazir M, Fida N, Idrees Khan M, Masood A, Zulfiqar Ali Shah S, Ali W, Ullah I, Ashraf A, Hussain A, Ahsan A, Hemmeda L, Mustafa Ahmed GE, Abbasher Hussien Mohamed Ahmed K. Healthcare workers' knowledge and risk perception regarding the first wave of COVID-19 in Khyber Pakhtunkhwa, Pakistan: an online cross-sectional survey. Ann Med Surg (Lond) 2024; 86:2562-2571. [PMID: 38694302 PMCID: PMC11060209 DOI: 10.1097/ms9.0000000000001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/25/2024] [Indexed: 05/04/2024] Open
Abstract
Background Increased COVID-19 transmission among the populace may be caused by healthcare workers (HCWs) who lack knowledge, awareness, and good preventive practices. Additionally, it may cause elevated stress levels, anxiety, poor medical judgement, and situational overestimation. Objectives The present survey aimed to assess knowledge and risk perception regarding COVID-19 among HCWs in Khyber Pakhtunkhwa (KP), Pakistan. Methodology A web-based online, pre-tested questionnaire comprising 26 items was circulated via social media in April 2020 amongst HCWs in major tertiary care facilities in KP. Results The study's results, revealing both the commendable knowledge levels among HCWs about COVID-19 and their heightened risk perception, highlight the critical need for targeted interventions to address the potential impact on self-protective behaviour and mental health within this vital workforce. This insight is important for designing strategies that not only enhance HCWs' well-being but also ensure the continued effectiveness of healthcare delivery during pandemics. The percentage mean score (PMS) of COVID-19 knowledge was 85.14±10.82. Male HCWs and those with an age older than or equal to 32 years demonstrated a higher knowledge score (85.62±11.08; P=0.032 and 87.59±7.33, P=0.021, respectively). About 76% of HCWs feared contracting COVID-19. Nearly 82% of respondents were mentally preoccupied with the pandemic and also terrified of it. 'Of these, 81% were nurses, 87% had a job experience of 6-8 years and 54.45% were frontline workers. Feelings of panic and concern about the pandemic were found to be more in HCWs who were physicians above the age of 32, and who had 3-5 years of work experience. HCWs' overall risk perception was found to be significantly different between males (7.04±2.26) and females (8.01±1.97), job experience of 6-10 years (8.04±177) with 3-5 years and younger than or equal to 2 years job experience (7.18±2.43,6.93±2.22), respectively, and between frontline HCWs (7.50±2.10) and non-frontline HCWs (6.84±2.40). Conclusion HCWs demonstrated good knowledge about COVID-19. As the risk perception of COVID-19 among HCWs is high, it can raise concerns about their self-protective behaviour, and mental health. These issues need to be addressed.
Collapse
Affiliation(s)
| | - Zair Hassan
- Department of Cardiology, Lady Reading Hospital
| | - Arslan Rahat Ullah
- Department of Medicine & Allied, Northwest General Hospital & Research Centre
| | | | - Najma Fida
- Department of Physiology, Kabir Medical College
| | | | - Aysha Masood
- Department of Thoracic Medicine, Royal Bournemouth Hospital, Castle Ln E, Bournemouth, UK
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Waqar Ali
- Pharmacy, Hayatabad Medical Complex
- Departments ofPharmacy
| | - Irfan Ullah
- Kabir Medical College, Gandhara University, Peshawar, Khyber Pakhtunkhwa
- Undergraduate Research Organizations, Dhaka, Bangladesh
| | - Adnan Ashraf
- Paraplegic Center, Hayatabad
- Social Work, University of Peshawar
| | - Arshad Hussain
- Department of Medicine & Allied, Northwest General Hospital & Research Centre
| | - Areeba Ahsan
- Foundation university school of health sciences, Islamabad, Pakistan
| | - Lina Hemmeda
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | | |
Collapse
|
7
|
He W, Ma T, Wang Y, Han W, Liu J, Lei W, Zhang L, Wu G. Development and evaluation of a quadruple real-time fluorescence-based quantitative reverse transcription polymerase chain reaction assay for detecting Langya, Mojiang, Nipah, and Cedar viruses. BIOSAFETY AND HEALTH 2024; 6:80-87. [PMID: 40078949 PMCID: PMC11894978 DOI: 10.1016/j.bsheal.2024.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/14/2025] Open
Abstract
The emerging viruses within the genus Henipavirus in the family Paramyxoviridae pose a great threat to public biosafety. To develop a quadruple real-time fluorescence-based quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay is pivotal for the early warning of the potential of zoonotic infectious diseases. Specific primers and probes were designed for the relatively conserved regions based on whole genome sequences of Langya virus (LayV), Mojiang virus (MojV), Nipah virus (NiV), and Cedar virus (CedV), followed by the establishment of a quadruple real-time fluorescence-based qRT-PCR detection method. No cross-reactivity was observed with other viral nucleic acids. The optimal linear detection range for LayV, MojV, NiV, and CedV was 101-108 copies/μL, and the lower limit of detection was 10 copies/μL. Three different DNA concentrations of LayV, MojV, NiV, and CedV (104, 105, and 106 copies/μL) were tested 14 times, achieving good repeatability. The standard deviation of the cycle threshold values for each concentration was <0.5 and the coefficient of variation was <3 %. Furthermore, the amplification efficiency of quadruple real-time fluorescence-based qRT-PCR was >90 %, and the correlation coefficient was >0.99. The established quadruple real-time fluorescence-based qRT-PCR assay for the detection of LayV, MojV, NiV, and CedV exhibits good sensitivity, specificity, and repeatability. Therefore, it can be used to detect Henipavirus and other related clinical specimens.
Collapse
Affiliation(s)
- Wenjun He
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tian Ma
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yalan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weifang Han
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Le Zhang
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
8
|
Guo Y, Wu S, Li W, Yang H, Shi T, Ju B, Zhang Z, Yan R. The cryo-EM structure of homotetrameric attachment glycoprotein from langya henipavirus. Nat Commun 2024; 15:812. [PMID: 38280880 PMCID: PMC10821904 DOI: 10.1038/s41467-024-45202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
Langya Henipavirus (LayV) infection is an emerging zoonotic disease that has been causing respiratory symptoms in China since 2019. For virus entry, LayV's genome encodes the fusion protein F and the attachment glycoprotein G. However, the structural and functional information regarding LayV-G remains unclear. In this study, we revealed that LayV-G cannot bind to the receptors found in other HNVs, such as ephrin B2/B3, and it shows different antigenicity from HeV-G and NiV-G. Furthermore, we determined the near full-length structure of LayV-G, which displays a distinct mushroom-shaped configuration, distinguishing it from other attachment glycoproteins of HNV. The stalk and transmembrane regions resemble the stem and root of mushroom and four downward-tilted head domains as mushroom cap potentially interact with the F protein and influence membrane fusion process. Our findings enhance the understanding of emerging HNVs that cause human diseases through zoonotic transmission and provide implication for LayV related vaccine development.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Songyue Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haonan Yang
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Tianhao Shi
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Renhong Yan
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
9
|
Thien DH, Tran HB, Uyen NNP, Thao HLP, Tam HTM, Quan NK, Huy NT. A comprehensive review of Langya virus and framework for future zoonotic disease control. Rev Med Virol 2024; 34:e2520. [PMID: 38282399 DOI: 10.1002/rmv.2520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
First reported in August 2022, the Langya virus (LayV) has emerged as a potential global health threat in the post-COVID-19 era. Preliminary reports show that 35 patients near Shandong and Henan, China experienced a febrile acute LayV infection. We conducted this review following the PRISMA protocol to synthesise current knowledge on LayV's characteristics in terms of molecular, clinical, and public health perspectives. This virus belongs to the Paramyxoviridae family and carries a non-segmented, single-stranded negative-sense RNA genome. Shrews may be the natural reservoir of the virus. Clinical symptoms range from mild flu-like symptoms to severe manifestations involving pneumonia, haematological disorders, and organ dysfunction. Diagnostic methods include PCR and ELISA assays. Despite the absence of established treatments, antiviral drugs such as ribavirin and chloroquine may be useful in some cases. In light of prevention, a comprehensive approach that emphasises multidisciplinary collaboration is crucial for early surveillance and response. Urgent global efforts are needed for vaccine development and preparedness against this potential pandemic threat. As the viral dynamics remain uncertain, a proactive approach is vital to mitigate the impact of not only LayV but also future threats on a large scale in long term.
Collapse
Affiliation(s)
- Dang Huu Thien
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Online Research Club, Nagasaki, Japan
| | - Hoang Bao Tran
- Online Research Club, Nagasaki, Japan
- Le Hong Phong High School for the Gifted, Ho Chi Minh, Vietnam
| | - Nguyen Ngoc Phuong Uyen
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Online Research Club, Nagasaki, Japan
| | - Huynh Lai Phuong Thao
- Online Research Club, Nagasaki, Japan
- Le Hong Phong High School for the Gifted, Ho Chi Minh, Vietnam
| | - Huynh Thi My Tam
- Online Research Club, Nagasaki, Japan
- School of Medicine and Pharmacy, The University of Da Nang, Da Nang, Vietnam
| | - Nguyen Khoi Quan
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Online Research Club, Nagasaki, Japan
- Institute for Global Health, University College London, London, UK
| | - Nguyen Tien Huy
- Online Research Club, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Choudhary OP. One health and bat-borne henipaviruses. New Microbes New Infect 2024; 56:101195. [PMID: 38035121 PMCID: PMC10684794 DOI: 10.1016/j.nmni.2023.101195] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, 151103, Punjab, India
| |
Collapse
|
11
|
Ahmad S, Nazarian S, Alizadeh A, Pashapour Hajialilou M, Tahmasebian S, Alharbi M, Alasmari AF, Shojaeian A, Ghatrehsamani M, Irfan M, Pazoki-Toroudi H, Sanami S. Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins. J Biomol Struct Dyn 2023; 42:10617-10634. [PMID: 37713338 DOI: 10.1080/07391102.2023.2258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
In July 2022, Langya henipavirus (LayV) was identified in febrile patients in China. There is currently no approved vaccine against this virus. Therefore, this research aimed to design a multi-epitope vaccine against LayV using reverse vaccinology. The best epitopes were selected from LayV's fusion protein (F) and glycoprotein (G), and a multi-epitope vaccine was designed using these epitopes, adjuvant, and appropriate linkers. The physicochemical properties, antigenicity, allergenicity, toxicity, and solubility of the vaccine were evaluated. The vaccine's secondary and 3D structures were predicted, and molecular docking and molecular dynamics (MD) simulations were used to assess the vaccine's interaction and stability with toll-like receptor 4 (TLR4). Immune simulation, codon optimization, and in silico cloning of the vaccine were also performed. The vaccine candidate showed good physicochemical properties, as well as being antigenic, non-allergenic, and non-toxic, with acceptable solubility. Molecular docking and MD simulation revealed that the vaccine and TLR4 have stable interactions. Furthermore, immunological simulation of the vaccine indicated its ability to elicit immune responses against LayV. The vaccine's increased expression was also ensured using codon optimization. This study's findings were encouraging, but in vitro and in vivo tests are needed to confirm the vaccine's protective effect.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, VA, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Shahin Nazarian
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Pashapour Hajialilou
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Piracha ZZ, Saeed U, Ahmed RAI, Khan FNA, Nasir MI. Global emergence of Langya virus: A serious public health concern. J Glob Health 2023; 13:03034. [PMID: 37411008 PMCID: PMC10325733 DOI: 10.7189/jogh-13-03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Affiliation(s)
- Zahra Z Piracha
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Umar Saeed
- Clinical and Biomedical Research Center, Foundation University School of Health Sciences (FUSH), Foundation University Islamabad, Pakistan
| | - Rawal AI Ahmed
- Regional Disease Surveillance and Response Unit Sukkur, Sindh, Pakistan
| | | | - Muhammad I Nasir
- Fazaia Ruth Pfau Medical College – FRPMC PAF Base Faisal Karachi
| |
Collapse
|
13
|
Piracha ZZ, Saeed U, Ahmed RA, Khan FN, Nasir MI. Global emergence of Langya virus: A serious public health concern. J Glob Health 2023; 13:03034. [PMID: 37411008 DOI: 10.7189/jogh.13.03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Affiliation(s)
- Zahra Z Piracha
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Umar Saeed
- Clinical and Biomedical Research Center, Foundation University School of Health Sciences (FUSH), Foundation University Islamabad, Pakistan
| | - Rawal Ai Ahmed
- Regional Disease Surveillance and Response Unit Sukkur, Sindh, Pakistan
| | | | - Muhammad I Nasir
- Fazaia Ruth Pfau Medical College - FRPMC PAF Base Faisal Karachi
| |
Collapse
|
14
|
Chavda VP, Apostolopoulos V, Sah R. Langya henipavirus outbreak. Expert Rev Anti Infect Ther 2023; 21:1021-1024. [PMID: 37724512 DOI: 10.1080/14787210.2023.2260561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | | | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
15
|
Fahira A, Amin RS, Arshad U, Khan MI, Shah Syed AA, Alshammari A, Yang Q, Wang Z, Ali L, Shi Y. Chimeric vaccine design against the epidemic Langya Henipavirus using immunoinformatics and validation via immune simulation approaches. Heliyon 2023; 9:e17376. [PMID: 37484358 PMCID: PMC10361368 DOI: 10.1016/j.heliyon.2023.e17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
In July 2022, a new virus called Langya virus (LayV) was discovered in China in patients who had a fever. This virus is a type of Henipavirus (HNV) and is considered a potential threat as it could spread from animals to humans. It causes respiratory disease with symptoms including fever, coughing, and fatigue and is closely linked to two other henipaviruses that are known to infect humans, namely Hendra and Nipah viruses. These viruses may cause fatal respiratory illnesses. Investigators believe that the LayV is spread by shrews, and may have infected humans directly or via an intermediary species. Thus, the use of vaccines or immunizations against LayV is an alternate strategy for disease prevention. In this study, we employed various immunoinformatics methods to predict B cell, HTL and T cell epitopes from the LayV proteome in order to find the most promising candidate for a LayV vaccine. The most potent epitopes that are immunogenic and non-allergenic were joined with each other through suitable linkers. Human β-defensin 2 was employed as an adjuvant to increase the immunogenicity of the vaccine construct. The final sequence of a multi-epitope vaccine construct was modelled for docking with TLRs. Concisely, our results suggest that the docked complexes of vaccine-TLRs seemed to be stable. Additionally, in silico cloning was done using E. coli as the host in order to validate the expression of our designed vaccine construct. The GC content of 54.39% and CAI value of 0.94 revealed that the vaccine component expresses efficiently in the host. This study presents the novel vaccine construct for LayV which will be essential for further experimental validations to confirm the immunogenicity and safety of the proposed vaccine structure, and eventually to treat HNV-related diseases.
Collapse
Affiliation(s)
- Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, China
| | | | - Uzma Arshad
- Gujranwala Medical College, Gujranwala, Punjab, Pakistan
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ali Alamdar Shah Syed
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, China
| | - Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
16
|
Kadir AKMS, Umar TP, Rabbi AA, Chowdhury MS, Shemanto MU. Preparedness of South Asian countries regarding Langya virus emergence: A view on the current situation. HEALTH CARE SCIENCE 2023; 2:194-197. [PMID: 38939109 PMCID: PMC11080717 DOI: 10.1002/hcs2.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/29/2024]
Affiliation(s)
- Al Kamal Muhammad Shafiul Kadir
- Biomedical Research Division, Institute of Biological Sciences (IBSc)University of RajshahiRajshahiNorthern RegionBangladesh
| | - Tungki Pratama Umar
- Medical Profession Program, Faculty of MedicineSriwijaya UniversityPalembangSouth SumateraIndonesia
| | - Abdullah Al Rabbi
- Biomedical Research Division, Institute of Biological Sciences (IBSc)University of RajshahiRajshahiNorthern RegionBangladesh
| | - Md. Suza Chowdhury
- Health Education DivisionCentral Medical Assistant Training SchoolRangpurNorth BengalBangladesh
- Health Education DivisionSmart Living Nursing CollegeRangpurNorth BengalBangladesh
| | - Mohammad Ullah Shemanto
- Healthcare Services DivisionAhsania Mission Cancer and General Hospital (AMCGH)DhakaCentral RegionBangladesh
| |
Collapse
|
17
|
Luo XL, Lu S, Qin C, Shi M, Lu XB, Wang L, Ga S, Jin D, Ma XL, Yang J, Dai Y, Bao LL, Cheng YP, Ge YJ, Bai YB, Zhu WT, Pu J, Sun H, Huang YY, Xu MC, Lei WJ, Dong K, Yang CX, Jiao YF, Lv Q, Li FD, Xu J. Emergence of an ancient and pathogenic mammarenavirus. Emerg Microbes Infect 2023; 12:e2192816. [PMID: 36939609 DOI: 10.1080/22221751.2023.2192816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACTEmerging zoonoses of wildlife origin caused by previously unknown agents are one of the most important challenges for human health. The Qinghai-Tibet Plateau represents a unique ecological niche with diverse wildlife that harbors several human pathogens and numerous previously uncharacterized pathogens. In this study, we identified and characterized a novel arenavirus (namely, plateau pika virus, PPV) from plateau pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau by virome analysis. Isolated PPV strains could replicate in several mammalian cells. We further investigated PPV pathogenesis using animal models. PPV administered via an intraventricular route caused trembling and sudden death in IFNαβR-/- mice, and pathological inflammatory lesions in brain tissue were observed. According to a retrospective serological survey in the geographical region where PPV was isolated, PPV-specific IgG antibodies were detected in 8 (2.4%) of 335 outpatients with available sera. Phylogenetic analyses revealed that this virus was clearly separated from previously reported New and Old World mammarenaviruses. Under the co-speciation framework, the estimated divergence time of PPV was 77-88 million years ago (MYA), earlier than that of OW and NW mammarenaviruses (26-34 MYA).
Collapse
Affiliation(s)
- Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Bo Lu
- Infectious diseases department, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, China
| | - Lu Wang
- Kashi Center for Disease Control and Prevention, Kashi, Xinjiang Autonomous Region, China
| | - Sang Ga
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, Qinghai Province, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Li Ma
- Kashi first people's hospital, Kashi, Xinjiang Autonomous Region, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan Dai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Lin-Lin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yan-Peng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Ya-Jun Ge
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yi-Bo Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wen-Tao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yu-Yuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ming-Chao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen-Jing Lei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Kui Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Cai-Xin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Yi-Fan Jiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qi Lv
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Feng-Di Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China.,Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Amin R, Darwin R, Chopra H, Emran TB. Langya virus: Slope of the iceberg for unexplored pathogens. Int J Surg 2023; 109:163-164. [PMID: 36799838 PMCID: PMC10389470 DOI: 10.1097/js9.0000000000000151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam Down Town University, Panikhaiti, Guwahati, Assam, India
| | - Ronald Darwin
- Department of Pharmacology, School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Chennai, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
19
|
COVID-19 Vaccination Prioritization Strategies in Malaysia: A Retrospective Analysis of Early Evidence. Vaccines (Basel) 2022; 11:vaccines11010048. [PMID: 36679893 PMCID: PMC9861551 DOI: 10.3390/vaccines11010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) that can cause extreme acute respiratory syndrome has posed a catastrophic threat to public health. The vaccines had indeed restored optimism and, after more than two years of battling the pandemic, there is renewed hope for the transition to endemicity. At the start of vaccination efforts, when supply shortages of vaccines were inevitable, every nation determined the high-risk population groups to be given priority for the COVID-19 vaccines. In this paper, the characteristics of the initial COVID-19 vaccine recipients in Malaysia are described. In line with the policies of many other countries, Malaysia firstly inoculated frontline healthcare workers, and subsequently the list of front liners grew to include defense and security personnel and those involved in the provision of essential services. People with disabilities or those with special needs and several underlying medical conditions that increased their risk of developing severe COVID-related illnesses were included in the priority categories. These included patients with severe lung disease, chronic heart disease, chronic kidney disease, chronic liver disease, neurological disease, diabetes mellitus and obesity in adults, splenic dysfunction, and severe mental illness. With little information and under circumstances of great uncertainty, the Health Ministry of a middle-income country had developed a vaccination priority-list based on the disease's epidemiology and clinical data, vaccine type, operational considerations, and risk evaluation. Early evidence was presented and suggested that the full vaccination with any of the three predominant vaccines (AZD1222, BNT162b2, and CoronaVac) in the country had been highly effective in preventing COVID-19 infections, COVID-19-related ICU admissions, and death. As many SARS-CoV-2 variants of concern (VoC), such as the Omicron BA.2/4/5, are emerging, future vaccination strategies may necessitate the need to change the immunogen of the vaccine, as well as considerations for when to give high-risk groups booster injections. These considerations are valuable for future planning by policymakers and healthcare providers to make vaccination policy and decisions, especially for the inclusion of the COVID-19 vaccines into national immunization programs.
Collapse
|
20
|
Ngare IO, Gikonyo SW, Gathuku GN, Ogutu EA. Review: Climate change resilience disconnect in rural communities in coastal Kenya. A rhetoric communication discord proliferated by COVID-19 pandemic. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.943181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The world has been hit by consequential pandemics in the past two millennia. The COVID-19 pandemic has taken center stage, paralyzing vulnerable communities in the global south impacted by unprecedented climate vagaries. The focus of this study is COVID-19 and climate resilience communication rhetoric. In this context, we embed this study in response to the resilience of rural livelihoods to the COVID-19 crisis and climate resilience education communication rhetoric. We posit our review based on the following questions: Has COVID-19 worsened the climate resilience pathway for rural communities in coastal Kenya? Is the COVID-19 pandemic a proxy for climate resilience in rural livelihoods? How does COVID-19 communication rhetoric undermine climate resilience for vulnerable coastal communities in Kenya? Through a resilient theoretical paradigm, we enclose our view based on the existing literature along with climate resilience and COVID-19 proliferation. In light of the current state of COVID-19, the focus has shifted to the pandemic that will cover climate resilience. From the review, climate resilience pathway has been impacted by corona virus with noted funding response variations, in addition, even with the corona virus pandemic, climate resilience communication should be on-going rather than sporadic. Increasing the discursive process about climate change challenges is critical among Kenyan coastal communities. We recommend inclusion of climate resilience communication in existing policy frameworks as a salient solution to notable information discourse bottlenecks.
Collapse
|
21
|
Quarleri J, Galvan V, Delpino MV. Henipaviruses: an expanding global public health concern? GeroScience 2022; 44:2447-2459. [PMID: 36219280 PMCID: PMC9550596 DOI: 10.1007/s11357-022-00670-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 01/18/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Verónica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veterans Affairs, Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|