1
|
Zhang D, Li F, Sun C, Chen C, Qin H, Wu X, Jiang M, Zhou K, Yao C, Hu Y. Inhibition of PGAM5 hyperactivation reduces neuronal apoptosis in PC12 cells and experimental vascular dementia rats. Arch Gerontol Geriatr 2025; 131:105732. [PMID: 39754994 DOI: 10.1016/j.archger.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia. METHODS Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method. Neuronal damage was detected in vivo and in vitro in different groups using different concentrations of the PGAM5-specific inhibitor LFHP-1c, and necroptosis and mitochondrial dynamics-related factors were determined. RESULTS In vivo experiments, 10 mg/kg-1 and 20 mg/kg-1 LFHP-1c improved cognitive deficits, reduced neuronal edema and vacuoles, increased the number of nissl bodies, and it could modulate the expression of Caspase family and Bcl-2 family related proteins and mRNAs and ameliorate neuronal damage. Simultaneously, in vitro experiments, 5 μM, 10 μM and 20 μM LFHP-1c increased the activity and migration number of model cells, reduced the number of apoptotic cells, ameliorated the excessive accumulation of intracellular reactive oxygen species, inhibited the over-activation of caspase-family and Bcl-2-family related proteins and mRNAs, and improved the mitochondrial dynamics of the fission and fusion states. Moreover, in vivo and in vitro experiments have shown that LFHP-1c can also upregulate the expression level of BDNF, inhibit the expression content of TNF-α and ROS, regulate the expression of proteins and mRNAs related to the RIPK1/RIPK3/MLKL pathway and mitochondrial dynamics, and reduce neuronal apoptosis. CONCLUSIONS Inhibition of PGAM5 expression level can reduce neuronal damage caused by chronic cerebral ischemia and hypoxia, which mainly prevents necroptosis by targeting the RIPK1/RIPK3/MLKL signaling pathway and regulates the downstream mitochondrial dynamics homeostasis system to prevent excessive mitochondrial fission, thus improving cognition and exerting cerebroprotective effects.
Collapse
Affiliation(s)
- Ding Zhang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Fangcun Li
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chunying Sun
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Canrong Chen
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Hongling Qin
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Xuzhou Wu
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Minghe Jiang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Keqing Zhou
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chun Yao
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| | - Yueqiang Hu
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| |
Collapse
|
2
|
Byrne S, Porter M. Rehabilitation and intervention of developmental and acquired prosopagnosia: A systematic review. Neuropsychol Rehabil 2025:1-44. [PMID: 39883410 DOI: 10.1080/09602011.2024.2449068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/29/2024] [Indexed: 01/31/2025]
Abstract
Prosopagnosia is a neurological disorder; characterized by an impairment in facial recognition. It can occur from acquired prosopagnosia (occurring in approximately 5.6% of the population), or from developmental prosopagnosia (occurring in approximately 2% of the population). Despite the relatively high prevalence of prosopagnosia, there has been limited research into intervention for this condition. The current systematic review aimed to review the evidence base to aid the development of practice guidelines for clinicians working with impacted individuals. A systemic search identified 14 studies, 10 of which involved participants with developmental prosopagnosia, while the remaining studies involved participants with acquired prosopagnosia. Overall, the findings identified two strategies which produced significant improvement in face recognition in prosopagnosics. The first strategy involved a perceptual learning strategy (a restorative approach). While this strategy improved face processing abilities, the intervention was time-consuming and relied on specific software. The second strategy involved learned association of distinguishable facial features (a compensatory approach). This intervention produced improvements in face recognition and was quick to administer, however, the gains made were not generalisable to untrained faces. The current review identified a number of limitations in the existing literature, such as the lack of single-case experimental designs and randomized controlled trials, limited control for practice effects, and no consensus with regard to the assessment and diagnosis of prosopagnosia. This review highlighted the need for further research to inform practice guidelines.
Collapse
Affiliation(s)
- Sally Byrne
- School of Psychological Sciences, Macquarie University, Marsfield, NSW 2109, Australia
| | - Melanie Porter
- School of Psychological Sciences, Macquarie University, Marsfield, NSW 2109, Australia
| |
Collapse
|
3
|
Emhjellen PE, Starrfelt R, Raudeberg R, Hassel B. Assessment of Developmental Prosopagnosia in an Individual with Tourette Syndrome and Attention Deficit Hyperactivity Disorder: A Case Report. Brain Sci 2025; 15:56. [PMID: 39851424 PMCID: PMC11764325 DOI: 10.3390/brainsci15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prosopagnosia is the inability to recognize people by their faces. Developmental prosopagnosia is the hereditary or congenital variant of the condition. The aim of this study was to demonstrate the assessment of developmental prosopagnosia in a clinical context, using a combination of commercially available clinical assessment tools and experimental tools described in the research literature. METHODS We conducted a comprehensive neuropsychological assessment of a man with Tourette syndrome and attention deficit hyperactivity disorder (ADHD). The patient (ON) had experienced difficulties with face identity recognition throughout his life but believed they were caused by a lack of interest in others. RESULTS The neuropsychological assessment revealed varying degrees of difficulties primarily related to executive functions, attention, reaction time, and memory processes, as expected in a person with Tourette's syndrome and ADHD. In addition, ON reported severe problems with face recognition on a prosopagnosia questionnaire and demonstrated severely impaired performance on tests of face memory and face perception commonly used to diagnose prosopagnosia. Interestingly, he reported familial face recognition problems on the maternal side of the family, while tics and ADHD symptoms occurred on the paternal side. This suggests that, in this case, the conditions were likely inherited through different genetic pathways. CONCLUSIONS Proper assessment of face recognition problems, which includes a broad spectrum of clinical assessment tools, could help patients develop awareness and acceptance of themselves and their difficulties, and could serve as a basis for the development of clinical interventions. While ON's DP, Tourette syndrome, and ADHD may have distinct genetic origins, impairment in face identity recognition has been observed across several neurodevelopmental conditions and is likely more common than currently thought.
Collapse
Affiliation(s)
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Rune Raudeberg
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, 5007 Bergen, Norway;
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, 0424 Oslo, Norway; (P.E.E.); (B.H.)
| |
Collapse
|
4
|
Barton JJS. The 2024 Richardson Lecture: Prosopagnosia - A Classic Neurologic Deficit Meets the Modern Era. Can J Neurol Sci 2024:1-9. [PMID: 39391940 DOI: 10.1017/cjn.2024.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Acquired prosopagnosia is a rare disorder, but it serves as a model for impairments in expert-level visual processing. This review discusses five key observations made over the past 30 years. First, there are variants, an apperceptive type linked to damage to the inferior occipitotemporal cortex and an amnestic type associated with anterior temporal lesions, both either right or bilateral. Second, these variants are clustered in syndromes with other perceptual deficits, the apperceptive type with field defects, dyschromatopsia and topographagnosia, and the amnestic type with topographagnosia and the auditory disorders of phonagnosia and acquired amusia. Third, extensive testing often shows additional problems with recognizing exemplars of other objects, especially when degrees of expertise are taken into account. Fourth, the prosopagnosic impairment does not affect all facial information. For example, the perception of expression and lip-reading likely depends on other neural substrates than those for processing facial identity. Last, face perception in prosopagnosia is not immutable but can improve with extensive training, though as yet this does not represent a cure for the condition. Continuing work with neural networks and animal models will enhance our understanding of this intriguing condition and what it tells us about how our brains process vision.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
DeGutis J, Campbell A. Measure twice, cut once: Moving toward more inclusive, principled criteria for diagnosing developmental prosopagnosia. Cortex 2024; 177:389-392. [PMID: 38969568 DOI: 10.1016/j.cortex.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Joseph DeGutis
- Boston Attention and Learning Laboratory, Boston VA Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Alison Campbell
- Boston Attention and Learning Laboratory, Boston VA Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Nørkær E, Gobbo S, Roald T, Starrfelt R. Disentangling developmental prosopagnosia: A scoping review of terms, tools and topics. Cortex 2024; 176:161-193. [PMID: 38795651 DOI: 10.1016/j.cortex.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
The goal of this preregistered scoping review is to create an overview of the research on developmental prosopagnosia (DP). Through analysis of all empirical studies of DP in adults, we investigate 1) how DP is conceptualized and defined, 2) how individuals are classified with DP and 3) which aspects of DP are investigated in the literature. We reviewed 224 peer-reviewed studies of DP. Our analysis of the literature reveals that while DP is predominantly defined as a lifelong face recognition impairment in the absence of acquired brain injury and intellectual/cognitive problems, there is far from consensus on the specifics of the definition with some studies emphasizing e.g., deficits in face perception, discrimination and/or matching as core characteristics of DP. These differences in DP definitions is further reflected in the vast heterogeneity in classification procedures. Only about half of the included studies explicitly state how they classify individuals with DP, and these studies adopt 40 different assessment tools. The two most frequently studied aspects of DP are the role of holistic processing and the specificity of face processing, and alongside a substantial body of neuroimaging studies of DP, this paints a picture of a research field whose scientific interests and aims are rooted in cognitive neuropsychology and neuroscience. We argue that these roots - alongside the heterogeneity in DP definition and classification - may have limited the scope and interest of DP research unnecessarily, and we point to new avenues of research for the field.
Collapse
Affiliation(s)
- Erling Nørkær
- Department of Psychology, University of Copenhagen, Denmark.
| | - Silvia Gobbo
- Department of Psychology, Università degli Studi di Milano-Bicocca, Italy
| | - Tone Roald
- Department of Psychology, University of Copenhagen, Denmark
| | | |
Collapse
|
7
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
8
|
Epihova G, Astle DE. What is developmental about developmental prosopagnosia? Cortex 2024; 173:333-338. [PMID: 38460488 DOI: 10.1016/j.cortex.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
Developmental prosopagnosia (DP) is characterised by difficulties recognising face identities and is associated with diverse co-occurring object recognition difficulties. The high co-occurrence rate and heterogeneity of associated difficulties in DP is an intrinsic feature of developmental conditions, where co-occurrence of difficulties is the rule, rather than the exception. However, despite its name, cognitive and neural theories of DP rarely consider the developmental context in which these difficulties occur. This leaves a large gap in our understanding of how DP emerges in light of the developmental trajectory of face recognition. Here, we argue that progress in the field requires re-considering the developmental origins of differences in face recognition abilities, rather than studying the end-state alone. In practice, considering development in DP necessitates a re-evaluation of current approaches in recruitment, design, and analyses.
Collapse
Affiliation(s)
- Gabriela Epihova
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Lowes J, Hancock PJB, Bobak AK. A new way of classifying developmental prosopagnosia: Balanced Integration Score. Cortex 2024; 172:159-184. [PMID: 38330779 DOI: 10.1016/j.cortex.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Despite severe everyday problems recognising faces, some individuals with developmental prosopagnosia (DP) can achieve typical accuracy scores on laboratory face recognition tests. To address this, studies sometimes also examine response times (RTs), which tend to be longer in DPs relative to control participants. In the present study, 24 potential (according to self-report) DPs and 110 age-matched controls completed the Cambridge Face and Bicycle Memory Tests, old new faces task, and a famous faces test. We used accuracy and the Balanced Integration Score (BIS), a measure that adjusts accuracy for RTs, to classify our sample at the group and individual levels. Subjective face recognition ability was assessed using the PI20 questionnaire and semi structured interviews. Fifteen DPs showed a major impairment using BIS compared with only five using accuracy alone. Logistic regression showed that a model incorporating the BIS measures was the most sensitive for classifying DP and showed highest area under the curve (AUC). Furthermore, larger between-group effect sizes were observed for a derived global (averaged) memory measure calculated using BIS versus accuracy alone. BIS is thus an extremely sensitive novel measure for attenuating speed-accuracy trade-offs that can otherwise mask impairment measured only by accuracy in DP.
Collapse
Affiliation(s)
- Judith Lowes
- Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom.
| | - Peter J B Hancock
- Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom
| | - Anna K Bobak
- Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom
| |
Collapse
|
10
|
Faghel-Soubeyrand S, Ramon M, Bamps E, Zoia M, Woodhams J, Richoz AR, Caldara R, Gosselin F, Charest I. Decoding face recognition abilities in the human brain. PNAS NEXUS 2024; 3:pgae095. [PMID: 38516275 PMCID: PMC10957238 DOI: 10.1093/pnasnexus/pgae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Why are some individuals better at recognizing faces? Uncovering the neural mechanisms supporting face recognition ability has proven elusive. To tackle this challenge, we used a multimodal data-driven approach combining neuroimaging, computational modeling, and behavioral tests. We recorded the high-density electroencephalographic brain activity of individuals with extraordinary face recognition abilities-super-recognizers-and typical recognizers in response to diverse visual stimuli. Using multivariate pattern analyses, we decoded face recognition abilities from 1 s of brain activity with up to 80% accuracy. To better understand the mechanisms subtending this decoding, we compared representations in the brains of our participants with those in artificial neural network models of vision and semantics, as well as with those involved in human judgments of shape and meaning similarity. Compared to typical recognizers, we found stronger associations between early brain representations of super-recognizers and midlevel representations of vision models as well as shape similarity judgments. Moreover, we found stronger associations between late brain representations of super-recognizers and representations of the artificial semantic model as well as meaning similarity judgments. Overall, these results indicate that important individual variations in brain processing, including neural computations extending beyond purely visual processes, support differences in face recognition abilities. They provide the first empirical evidence for an association between semantic computations and face recognition abilities. We believe that such multimodal data-driven approaches will likely play a critical role in further revealing the complex nature of idiosyncratic face recognition in the human brain.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Meike Ramon
- Institute of Psychology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Eva Bamps
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven ON5, Belgium
| | - Matteo Zoia
- Department for Biomedical Research, University of Bern, Bern 3008, Switzerland
| | - Jessica Woodhams
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | | | - Roberto Caldara
- Département de Psychology, Université de Fribourg, Fribourg CH-1700, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| |
Collapse
|
11
|
Bate S, Murray E, Bennetts RJ. Familial Transmission of Developmental Prosopagnosia: New Case Reports from an Extended Family and Identical Twins. Brain Sci 2024; 14:49. [PMID: 38248264 PMCID: PMC10813035 DOI: 10.3390/brainsci14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Existing evidence suggests that developmental prosopagnosia (DP) is a surprisingly prevalent condition, with some individuals describing lifelong difficulties with facial identity recognition. Together with case reports of multiple family members with the condition, this evidence suggests that DP is inherited in at least some instances. Here, we offer some novel case series that further support the heritability of the condition. First, we describe five adult siblings who presented to our lab with symptoms of DP. Second, for the first known time in the literature, we describe a pair of adult identical twins who contacted us in the belief that they both experience DP. The condition was confirmed in three of the five siblings (with minor symptoms observed in the remaining two) and in both twins. Supplementary assessments suggested that all individuals also experienced some degree of difficulty with facial identity perception, but that object recognition was preserved. These findings bolster the evidence supporting the heritability of DP and suggest that it can be a specific impairment in some cases.
Collapse
Affiliation(s)
- Sarah Bate
- Department of Psychology, Bournemouth University, Poole BH12 5BB, UK
| | - Ebony Murray
- Department of Psychological Sciences, School of Natural and Social Sciences, University of Gloucestershire, Cheltenham GL50 4AZ, UK;
| | | |
Collapse
|
12
|
Burns EJ, Gaunt E, Kidane B, Hunter L, Pulford J. A new approach to diagnosing and researching developmental prosopagnosia: Excluded cases are impaired too. Behav Res Methods 2023; 55:4291-4314. [PMID: 36459376 PMCID: PMC9718472 DOI: 10.3758/s13428-022-02017-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/04/2022]
Abstract
Developmental prosopagnosia is characterized by severe, lifelong difficulties when recognizing facial identity. Unfortunately, the most common diagnostic assessment (Cambridge Face Memory Test) misses 50-65% of individuals who believe that they have this condition. This results in such excluded cases' absence from scientific knowledge, effect sizes of impairment potentially overestimated, treatment efficacy underrated, and may elicit in them a negative experience of research. To estimate their symptomology and group-level impairments in face processing, we recruited a large cohort who believes that they have prosopagnosia. Matching prior reports, 56% did not meet criteria on the Cambridge Face Memory Test. However, the severity of their prosopagnosia symptoms and holistic perception deficits were comparable to those who did meet criteria. Excluded cases also exhibited face perception and memory impairments that were roughly one standard deviation below neurotypical norms, indicating the presence of objective problems. As the prosopagnosia index correctly classified virtually every case, we propose it should be the primary method for providing a diagnosis, prior to subtype categorization. We present researchers with a plan on how they can analyze these excluded prosopagnosia cases in their future work without negatively impacting their traditional findings. We anticipate such inclusion will enhance scientific knowledge, more accurately estimate effect sizes of impairments and treatments, and identify commonalities and distinctions between these different forms of prosopagnosia. Owing to their atypicalities in visual perception, we recommend that the prosopagnosia index should be used to screen out potential prosopagnosia cases from broader vision research.
Collapse
Affiliation(s)
- Edwin J Burns
- Department of Psychology, Edge Hill University, Ormskirk, UK.
| | - Elizabeth Gaunt
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Betiel Kidane
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Lucy Hunter
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Jaylea Pulford
- Department of Psychology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
13
|
Jozranjbar B, Kristjánsson Á, Starrfelt R, Gerlach C, Sigurdardottir HM. Using representational similarity analysis to reveal category and process specificity in visual object recognition. Cortex 2023; 166:172-187. [PMID: 37390594 DOI: 10.1016/j.cortex.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/12/2023] [Accepted: 05/19/2023] [Indexed: 07/02/2023]
Abstract
Cross-condition comparisons on neurodevelopmental conditions are central in neurodiversity research. In the realm of visual perception, the performance of participants with different category-specific disorders such as developmental prosopagnosia (problems with faces) and dyslexia (problems with words) have contributed to understanding of perceptual processes involved in word and face recognition. Alterations in face and word recognition are present in several neurodiverse populations, and improved knowledge about their relationship may increase our understanding of this variability of impairment. The present study investigates organizing principles of visual object processing and their implications for developmental disorders of recognition. Some accounts suggest that distinct mechanisms are responsible for recognizing objects of different categories, while others propose that categories share or even compete for cortical resources. We took an individual differences approach to estimate the relationship between abilities in recognition. Neurotypical participants (N = 97 after outlier exclusion) performed a match-to-sample task with faces, houses, and pseudowords. Either individual features or feature configurations were manipulated. To estimate the separability of visual recognition mechanisms, we used representational similarity analysis (RSA) where correlational matrices for accuracy were compared to predicted data patterns. Recognition abilities separated into face recognition on one hand and house/pseudoword recognition on the other, indicating that face recognition may rely on relatively selective mechanisms in neurotypicals. We also found evidence for a general visual object recognition mechanism, while some combinations of category (faces, houses, words) and processing type (featural, configural) likely rely on additional mechanisms. Developmental conditions may therefore reflect combinations of impaired and intact aspects of specific and general visual object recognition mechanisms, where featural and configural processes for one object category separate from the featural or configural processing of another. More generally, RSA is a promising approach for advancing understanding of neurodiversity, including shared aspects and distinctions between neurodevelopmental conditions of visual recognition.
Collapse
Affiliation(s)
- Bahareh Jozranjbar
- Icelandic Vision Lab, Department of Psychology, University of Iceland, Iceland.
| | - Árni Kristjánsson
- Icelandic Vision Lab, Department of Psychology, University of Iceland, Iceland
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gerlach
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
14
|
Epihova G, Cook R, Andrews TJ. Recognition of animal faces is impaired in developmental prosopagnosia. Cognition 2023; 237:105477. [PMID: 37156079 DOI: 10.1016/j.cognition.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
An on-going debate in psychology and neuroscience concerns the way faces and objects are represented. Domain-specific theories suggest that faces are processed via a specialised mechanism, separate from objects. Developmental prosopagnosia (DP) is a neurodevelopmental disorder in which there is a deficit in the ability to recognize conspecific (human) faces. It is unclear, however, whether prosopagnosia also affects recognition of heterospecific (animal) faces. To address this question, we compared recognition performance with human and animal faces in neurotypical controls and participants with DP. We found that DPs showed deficits in the recognition of both human and animal faces compared to neurotypical controls. In contrast to, we found no group-level deficit in the recognition of animate or inanimate non-face objects in DPs. Using an individual-level approach, we demonstrate that in 60% of cases in which face recognition is impaired, there is a concurrent deficit with animal faces. Together, these results show that DPs have a general deficit in the recognition of faces that encompass a range of configural and morphological structures.
Collapse
Affiliation(s)
- Gabriela Epihova
- Department of Psychology, University of York, York YO10 5DD, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Richard Cook
- Department of Psychology, University of York, York YO10 5DD, UK; School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
15
|
DeGutis J, Bahierathan K, Barahona K, Lee E, Evans TC, Shin HM, Mishra M, Likitlersuang J, Wilmer JB. What is the prevalence of developmental prosopagnosia? An empirical assessment of different diagnostic cutoffs. Cortex 2023; 161:51-64. [PMID: 36905701 PMCID: PMC10065901 DOI: 10.1016/j.cortex.2022.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
The prevalence of developmental prosopagnosia (DP), lifelong face recognition deficits, is widely reported to be 2-2.5%. However, DP has been diagnosed in different ways across studies, resulting in differing prevalence rates. In the current investigation, we estimated the range of DP prevalence by administering well-validated objective and subjective face recognition measures to an unselected web-based sample of 3116 18-55 year-olds and applying DP diagnostic cutoffs from the last 14 years. We found estimated prevalence rates ranged from .64-5.42% when using a z-score approach and .13-2.95% when using a percentile approach, with the most commonly used cutoffs by researchers having a prevalence rate of .93% (z-score, .45% when using percentiles). We next used multiple cluster analyses to examine whether there was a natural grouping of poorer face recognizers but failed to find consistent grouping beyond those with generally above versus below average face recognition. Lastly, we investigated whether DP studies with more relaxed diagnostic cutoffs were associated with better performance on the Cambridge Face Perception Test. In a sample of 43 studies, there was a weak nonsignificant association between greater diagnostic strictness and better DP face perception accuracy (Kendall's tau-b correlation, τb =.18 z-score; τb = .11 percentiles). Together, these results suggest that researchers have used more conservative DP diagnostic cutoffs than the widely reported 2-2.5% prevalence. We discuss the strengths and weaknesses of using more inclusive cutoffs, such as identifying mild and major forms of DP based on DSM-5.
Collapse
Affiliation(s)
- Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Kanisha Bahierathan
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Katherine Barahona
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - EunMyoung Lee
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Travis C Evans
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Hye Min Shin
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
| | - Maruti Mishra
- Department of Psychology, University of Richmond, Richmond, VA, USA
| | - Jirapat Likitlersuang
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jeremy B Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
16
|
Kieseler ML, Duchaine B. Persistent prosopagnosia following COVID-19. Cortex 2023; 162:56-64. [PMID: 36966620 PMCID: PMC9995301 DOI: 10.1016/j.cortex.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/02/2022] [Accepted: 01/13/2023] [Indexed: 03/18/2023]
Abstract
COVID-19 can cause psychological problems including loss of smell and taste, long-lasting memory, speech, and language impairments, and psychosis. Here, we provide the first report of prosopagnosia following symptoms consistent with COVID-19. Annie is a 28-year-old woman who had normal face recognition prior to contracting COVID-19 in March 2020. Two months later, she noticed face recognition difficulties while experiencing symptom relapses and her deficits with faces have persisted. On two tests of familiar face recognition and two tests of unfamiliar face recognition, Annie showed clear impairments. In contrast, she scored normally on tests assessing face detection, face identity perception, object recognition, scene recognition, and non-visual memory. Navigational deficits frequently co-occur with prosopagnosia, and Annie reports that her navigational abilities are substantially worse than before she became ill. Self-report survey data from 54 respondents with long COVID showed that a majority reported reductions in visual recognition and navigation abilities. In summary, Annie's results indicate that COVID-19 can produce severe and selective neuropsychological impairment similar to deficits seen following brain damage, and it appears that high-level visual impairments are not uncommon in people with long COVID.
Collapse
|
17
|
The Danish Version of the 20-Item Prosopagnosia Index (PI20): Translation, Validation and a Link to Face Perception. Brain Sci 2023; 13:brainsci13020337. [PMID: 36831880 PMCID: PMC9954571 DOI: 10.3390/brainsci13020337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Developmental prosopagnosia (DP) is a neurodevelopmental condition characterized by face recognition problems. Psychometrically sound self-report measures of face recognition problems are important tools in classification of DP. A widely used measure of such problems is the 20-item prosopagnosia index (PI20). Here, we present a Danish translation of the PI20 (PI20DK). We administered the PI20DK alongside three objective measures of face and object processing performance to 119 participants to validate the PI20DK. Further, we assess the underlying factor structure of the PI20DK. Finally, as the first study in the field, we investigate the association between self-reported face recognition ability and face perception performance. The project was preregistered prior to data collection. The results suggest excellent convergent validity, discriminant validity and internal consistency for the PI20DK. A confirmatory factor analysis, however, indicates a suboptimal fit of the PI20DK to a one factor solution. An investigation of the association between the PI20DK and face perception suggests that the poor fit may reflect that the PI20DK measures problems with face recognition in general and not specifically face memory problems.
Collapse
|
18
|
Preference for horizontal information in faces predicts typical variations in face recognition but is not impaired in developmental prosopagnosia. Psychon Bull Rev 2023; 30:261-268. [PMID: 36002717 PMCID: PMC9971097 DOI: 10.3758/s13423-022-02163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
Face recognition is strongly influenced by the processing of orientation structure in the face image. Faces are much easier to recognize when they are filtered to include only horizontally oriented information compared with vertically oriented information. Here, we investigate whether preferences for horizontal information in faces are related to face recognition abilities in a typical sample (Experiment 1), and whether such preferences are lacking in people with developmental prosopagnosia (DP; Experiment 2). Experiment 1 shows that preferences for horizontal face information are linked to face recognition abilities in a typical sample, with weak evidence of face-selective contributions. Experiment 2 shows that preferences for horizontal face information are comparable in control and DP groups. Our study suggests that preferences for horizontal face information are related to variations in face recognition abilities in the typical range, and that these preferences are not aberrant in DP.
Collapse
|
19
|
Gerlach C, Barton JJS, Albonico A, Malaspina M, Starrfelt R. Contrasting domain-general and domain-specific accounts in cognitive neuropsychology: An outline of a new approach with developmental prosopagnosia as a case. Behav Res Methods 2022; 54:2829-2842. [PMID: 35106730 DOI: 10.3758/s13428-021-01774-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
The backbone of cognitive neuropsychology is the observation of (double) dissociations in performance between patients, suggesting some degree of independence between cognitive processes (domain specificity). In comparison, observations of associations between disorders/deficits have been deemed less evidential in neuropsychological theorizing about cognitive architecture. The reason is that associations can reflect damage to independent cognitive processes that happen to be mediated by structures commonly affected by the same brain disorder rather than damage to a shared (domain-general) mechanism. Here we demonstrate that it is in principle possible to discriminate between these alternatives by means of a procedure involving large unbiased samples. We exemplify the procedure in the context of developmental prosopagnosia (DP), but the procedure is in principle applicable to all neuropsychological deficits/disorders. A simulation of the procedure on a dataset yields estimates of dissociations/associations that are well in line with existing DP-studies, and also suggests that seemingly selective disorders can reflect damage to both domain-general and domain-specific cognitive processes. However, the simulation also highlights some limitations that should be considered if the procedure is to be applied prospectively. The main advantage of the procedure is that allows for examination of both associations and dissociations in the same sample. Hence, it may help even the balance in the use of associations and dissociations as grounds for neuropsychological theorizing.
Collapse
Affiliation(s)
- Christian Gerlach
- Department of Psychology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Manuela Malaspina
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, København, Denmark
| |
Collapse
|
20
|
Barton JJS. Cerebral Visual Loss. Ann Indian Acad Neurol 2022; 25:S106-S112. [PMID: 36589033 PMCID: PMC9795709 DOI: 10.4103/aian.aian_136_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral visual disorders include a range of common and rare deficits. They can be divided into effects on low-, intermediate-, and high-level forms of visual processing. Low-level deficits are various forms of homonymous hemifield scotomata, which affect all types of vision within their borders. Intermediate-level deficits refer to impairments of colour or motion perception, which affect either one hemifield or the entire field when lesions are bilateral. High-level deficits are divided into those of the ventral (occipitotemporal) or dorsal (occipitoparietal) stream. Occipitotemporal lesions affect various aspects of object recognition, ranging from general visual agnosia to selective agnosias, such as prosopagnosia or topographagnosia from right or bilateral lesions, and pure alexia from left-sided lesions. Occipitoparietal lesions cause the various components of Bálint syndrome, namely, simultanagnosia, optic ataxia, and ocular motor apraxia. They can also cause other impairments of visuospatial or visuotemporal processing, such as astereopsis and sequence-agnosia. Because of anatomic proximity, certain deficits cluster together to form a number of cerebral visual syndromes. Treatment of these disorders remains challenging, with frequent reliance on strategic substitutions rather than restorative approaches.
Collapse
Affiliation(s)
- Jason J. S. Barton
- Department of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada,Address for correspondence: Prof. Jason J. S. Barton, Neuro-ophthalmology, Section K, VGH Eye Care Centre, 2550 Willow Street, Vancouver, British Columbia, Canada. E-mail:
| |
Collapse
|
21
|
Bennetts RJ, Gregory NJ, Tree J, Di Bernardi Luft C, Banissy MJ, Murray E, Penton T, Bate S. Face specific inversion effects provide evidence for two subtypes of developmental prosopagnosia. Neuropsychologia 2022; 174:108332. [PMID: 35839963 DOI: 10.1016/j.neuropsychologia.2022.108332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Many studies have attempted to identify the perceptual underpinnings of developmental prosopagnosia (DP). The majority have focused on whether holistic and configural processing mechanisms are impaired in DP. However, previous work suggests that there is substantial heterogeneity in holistic and configural processing within the DP population; further, there is disagreement as to whether any deficits are face-specific or reflect a broader perceptual deficit. This study used a data-driven approach to examine whether there are systematic patterns of variability in DP that reflect different underpinning perceptual deficits. A group of individuals with DP (N = 37) completed a cognitive battery measuring holistic/configural and featural processing in faces and non-face objects. A two-stage cluster analysis on data from the Cambridge Face Perception Test identified two subgroups of DPs. Across several tasks, the first subgroup (N = 21) showed typical patterns of holistic/configural processing (measured via inversion effects); the second (N = 16) was characterised by reduced or abolished inversion effects compared to age-matched control participants (N = 91). The subgroups did not differ on tasks measuring upright face matching, object matching, non-face holistic processing, or composite effects. These findings indicate two separable pathways to face recognition impairment, one characterised by impaired configural processing and the other potentially by impaired featural processing. Comparisons to control participants provide some preliminary evidence that the deficit in featural processing may extend to some non-face stimuli. Our results demonstrate the utility of examining both the variability between and consistency across individuals with DP as a means of illuminating our understanding of face recognition in typical and atypical populations.
Collapse
Affiliation(s)
- Rachel J Bennetts
- College of Health, Medicine and Life Sciences, Brunel University, UK.
| | | | - Jeremy Tree
- Department of Psychology, Swansea University, UK
| | | | - Michael J Banissy
- School of Psychological Science, University of Bristol, UK; Department of Psychology, Goldsmiths, University of London, UK
| | - Ebony Murray
- Department of Psychological Sciences, University of Gloucestershire, UK
| | - Tegan Penton
- Department of Psychology, Goldsmiths, University of London, UK
| | - Sarah Bate
- Department of Psychology, Bournemouth University, UK
| |
Collapse
|
22
|
Face processing still predicts reading ability: evidence from developmental prosopagnosia. A reply to Gerlach and Starrfelt (2022). Cortex 2022; 154:340-347. [DOI: 10.1016/j.cortex.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
|
23
|
Tsantani M, Gray KLH, Cook R. New evidence of impaired expression recognition in developmental prosopagnosia. Cortex 2022; 154:15-26. [PMID: 35728295 DOI: 10.1016/j.cortex.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/27/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Developmental prosopagnosia (DP) is a neurodevelopmental condition characterized by lifelong face recognition difficulties. To date, it remains unclear whether or not individuals with DP experience impaired recognition of facial expressions. It has been proposed that DPs may have sufficient perceptual ability to correctly interpret facial expressions when tasks are relatively easy (e.g., the stimuli are unambiguous and viewing conditions are optimal), but exhibit subtle impairments when tested under more challenging conditions. In the present study, we sought to take advantage of the COVID-19 pandemic to test this view. It is well-established that the surgical-type masks worn during the pandemic hinder the recognition and interpretation of facial emotion in typical participants. Relative to typical participants, we hypothesized that DPs may be disproportionately impaired when asked to interpret the facial emotion of people wearing face masks. We compared the ability of 34 DPs and 60 age-matched typical controls to recognize facial emotions i) when the whole face is visible, and ii) when the lower portion of the face is covered with a surgical mask. When expression stimuli were viewed without a mask, the DPs and typical controls exhibited similar levels of performance. However, when expression stimuli were shown with a mask, the DPs showed signs of subtle expression recognition deficits. The DPs were particularly prone to mislabeling masked expressions of happiness as emotion neutral. These results add to a growing body of evidence that under some conditions, DPs do exhibit subtle deficits of expression recognition.
Collapse
Affiliation(s)
- Maria Tsantani
- Department of Psychological Sciences, Birkbeck, University of London, London, UK.
| | - Katie L H Gray
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Richard Cook
- Department of Psychological Sciences, Birkbeck, University of London, London, UK; Department of Psychology, University of York, UK
| |
Collapse
|
24
|
The clinical approach to the identification of higher-order visual dysfunction in neurodegenerative disease. Curr Neurol Neurosci Rep 2022; 22:229-242. [PMID: 35320467 DOI: 10.1007/s11910-022-01186-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW This review is intended to assist the reader in gaining the knowledge and skills necessary for the recognition and assessment of higher-order visual dysfunction due to neurodegenerative diseases including Alzheimer's disease, dementia with Lewy bodies, Parkinson's dementia, corticobasal degeneration, Creutzfeldt-Jakob disease, and the posterior cortical atrophy syndrome. Clinical problem-solving and pattern recognition must be developed and practiced to accurately diagnosis disturbances of higher-order visual function, and knowledge of higher-order visual brain regions and their visual syndromes forms the foundation for deciphering symptoms presented by patients and/or their care partners. Tests of higher-order visual dysfunction must be assembled by the clinician and assessment can take time and effort. The use of screening tests, follow-up visits, and formal neuropsychological referrals are critical components for accurate diagnosis and these principles are reviewed here. RECENT FINDINGS A recent survey of neuro-ophthalmologists revealed that over half of the respondents report that 5-10% of their new patient referrals carry a diagnosis of neurodegenerative disease and many patients were referred for visual symptoms of unknown cause. Despite over a century of discovery related to higher-order visual functions of the human brain, translation of discovery to the clinical assessment of patients has been slow or absent. As with the approach to translational medicine in general, to see meaningful progress, an interdisciplinary approach is indispensable. The first step involves the application of discoveries from the field visual neuroscience by clinicians from the fields of ophthalmology, neurology, and neuropsychology, and from the disciplines of neuro-ophthalmology and behavioral neurology. The unmet need for recognition, assessment, and management of higher-order visual dysfunction in neurodegeneration is evident and clinicians can contribute to closing the gap by using the approach and the tools outlined in the review.
Collapse
|
25
|
Bennetts RJ, Johnson Humphrey P, Zielinska P, Bate S. Face masks versus sunglasses: limited effects of time and individual differences in the ability to judge facial identity and social traits. Cogn Res Princ Implic 2022; 7:18. [PMID: 35171394 PMCID: PMC8850515 DOI: 10.1186/s41235-022-00371-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Some research indicates that face masks impair identification and other judgements such as trustworthiness. However, it is unclear whether those effects have abated over time as individuals adjust to widespread use of masks, or whether performance is related to individual differences in face recognition ability. This study examined the effect of masks and sunglasses on face matching and social judgements (trustworthiness, competence, attractiveness). In Experiment 1, 135 participants across three different time points (June 2020-July 2021) viewed unedited faces and faces with masks, sunglasses, or both. Both masks and sunglasses similarly decreased matching performance. The effect of masks on social judgements varied depending on the judgement and whether the face was depicted with sunglasses. There was no effect of timepoint on any measure, suggesting that the effects of masks have not diminished. In Experiment 2, 12 individuals with developmental prosopagnosia (DP) and 10 super-recognisers (SRs) completed the same tasks. The effect of masks on identity matching was reduced in SRs, whereas the effects of masks and sunglasses for the DP group did not differ from controls. These findings indicate that face masks significantly affect face perception, depending on the availability of other facial information, and are not modified by exposure.
Collapse
Affiliation(s)
- Rachel J Bennetts
- Division of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Poppy Johnson Humphrey
- Division of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Paulina Zielinska
- Division of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Sarah Bate
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, UK
| |
Collapse
|
26
|
Gobbo S, Calati R, Silveri MC, Pini E, Daini R. The rehabilitation of object agnosia and prosopagnosia: A systematic review. Restor Neurol Neurosci 2022; 40:217-240. [PMID: 36155537 DOI: 10.3233/rnn-211234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Agnosia for objects is often overlooked in neuropsychology, especially with respect to rehabilitation. Prosopagnosia has been studied more extensively, yet there have been few attempts at training it. The lack of training protocols may partially be accounted for by their relatively low incidence and specificity to sensory modality. However, finding effective rehabilitations for such deficits may help to reduce their impact on the social and psychological functioning of individuals. OBJECTIVE Our aim in this study was to provide clinicians and researchers with useful information with which to conduct new studies on the rehabilitation of object agnosia and prosopagnosia. To accomplish this, we performed a systematic and comprehensive review of the effect of neuropsychological rehabilitation on visual object and prosopagnosia. METHODS The Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines were followed. In addition, the Single-Case Experimental Design (SCED) and the Critical Appraisal Skills Programme (CASP) scales were used to assess the quality of reporting. RESULTS Seven articles regarding object agnosia, eight articles describing treatments for prosopagnosia, and two articles describing treatments for both deficits were included. CONCLUSIONS In the light of the studies reviewed, treatments based on analysis of parts seem effective for object agnosia, while prosopagnosia appears to benefit most from treatments relying on holistic/configural processing. However, more attempts at rehabilitation of face and object agnosia are needed to clarify the mechanisms of these processes and possible rehabilitations. Moreover, a publication bias could mask a broader attempt to find effective treatments for visual agnosia and leaving out studies that are potentially more informative.
Collapse
Affiliation(s)
- Silvia Gobbo
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Raffaella Calati
- Department of Adult Psychiatry, Nîmes University Hospital, Nîmes, France
| | | | - Elisa Pini
- Neuroscience Department "Fondazione Poliambulanza" Hospital, Brescia, Italy
| | - Roberta Daini
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
- Milan Center for Neuroscience (Neuromi)
- University Research Center in Opticsand Optometry, Università di Milano-Bicocca (Comib), Milano, Italy
| |
Collapse
|
27
|
Albonico A, Yu S, Corrow SL, Barton JJS. Facial identity and facial speech processing in developmental prosopagnosia. Neuropsychologia 2022; 168:108163. [DOI: 10.1016/j.neuropsychologia.2022.108163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
28
|
Normal colour perception in developmental prosopagnosia. Sci Rep 2021; 11:13741. [PMID: 34215772 PMCID: PMC8253794 DOI: 10.1038/s41598-021-92840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
Developmental prosopagnosia (DP) is a selective neurodevelopmental condition defined by lifelong impairments in face recognition. Despite much research, the extent to which DP is associated with broader visual deficits beyond face processing is unclear. Here we investigate whether DP is accompanied by deficits in colour perception. We tested a large sample of 92 DP individuals and 92 sex/age-matched controls using the well-validated Ishihara and Farnsworth–Munsell 100-Hue tests to assess red–green colour deficiencies and hue discrimination abilities. Group-level analyses show comparable performance between DP and control individuals across both tests, and single-case analyses indicate that the prevalence of colour deficits is low and comparable to that in the general population. Our study clarifies that DP is not linked to colour perception deficits and constrains theories of DP that seek to account for a larger range of visual deficits beyond face recognition.
Collapse
|
29
|
Barton JJS, Davies-Thompson J, Corrow SL. Prosopagnosia and disorders of face processing. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:175-193. [PMID: 33832676 DOI: 10.1016/b978-0-12-821377-3.00006-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Face recognition is a form of expert visual processing. Acquired prosopagnosia is the loss of familiarity for facial identity and has several functional variants, namely apperceptive, amnestic, and associative forms. Acquired forms are usually caused by either occipitotemporal or anterior temporal lesions, right or bilateral in most cases. In addition, there is a developmental form, whose functional and structural origins are still being elucidated. Despite their difficulties with recognizing faces, some of these subjects still show signs of covert recognition, which may have a number of explanations. Other aspects of face perception can be spared in prosopagnosic subjects. Patients with other types of face processing difficulties have been described, including impaired expression processing, impaired lip-reading, false familiarity for faces, and a people-specific amnesia. Recent rehabilitative studies have shown some modest ability to improve face perception in prosopagnosic subjects through perceptual training protocols.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, and Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Jodie Davies-Thompson
- Face Research Swansea, Department of Psychology, Swansea University, Sketty, United Kingdom
| | - Sherryse L Corrow
- Visual Cognition Lab, Department of Psychology, Bethel University, St. Paul, MN, United States
| |
Collapse
|
30
|
Murray E, Bate S. Diagnosing developmental prosopagnosia: repeat assessment using the Cambridge Face Memory Test. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200884. [PMID: 33047048 PMCID: PMC7540801 DOI: 10.1098/rsos.200884] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 05/11/2023]
Abstract
Developmental prosopagnosia (DP) is a cognitive condition characterized by a relatively selective impairment in face recognition. Currently, people are screened for DP via a single attempt at objective face-processing tests, usually all presented on the same day. However, several variables probably influence performance on these tests irrespective of actual ability, and the influence of repeat administration is also unknown. Here, we assess, for the first known time, the test-retest reliability of the Cambridge Face Memory Test (CFMT)-the leading task used worldwide to diagnose DP. This value was found to fall just below psychometric standards, and single-case analyses revealed further inconsistencies in performance that were not driven by testing location (online or in-person), nor the time-lapse between attempts. Later administration of an alternative version of the CFMT (the CFMT-Aus) was also found to be valuable in confirming borderline cases. Finally, we found that performance on the first 48 trials of the CFMT was equally as sensitive as the full 72-item score, suggesting that the instrument may be shortened for testing efficiency. We consider the implications of these findings for existing diagnostic protocols, concluding that two independent tasks of unfamiliar face memory should be completed on separate days.
Collapse
|
31
|
Fry R, Wilmer J, Xie I, Verfaellie M, DeGutis J. Evidence for normal novel object recognition abilities in developmental prosopagnosia. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200988. [PMID: 33047056 PMCID: PMC7540787 DOI: 10.1098/rsos.200988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The issue of the face specificity of recognition deficits in developmental prosopagnosia (DP) is fundamental to the organization of high-level visual memory and has been increasingly debated in recent years. Previous DP investigations have found some evidence of object recognition impairments, but have almost exclusively used familiar objects (e.g. cars), where performance may depend on acquired object-specific experience and related visual expertise. An object recognition test not influenced by experience could provide a better, less contaminated measure of DPs' object recognition abilities. To investigate this, in the current study we tested 30 DPs and 30 matched controls on a novel object memory test (NOMT Ziggerins) and the Cambridge Face Memory Test (CFMT). DPs with severe impairment on the CFMT showed no differences in accuracy or reaction times compared with controls on the NOMT. We found similar results when comparing DPs with a larger sample of 274 web-based controls. Additional individual analyses demonstrated that the rate of object recognition impairment in DPs did not differ from the rate of impairment in either control group. Together, these results demonstrate unimpaired object recognition in DPs for a class of novel objects that serves as a powerful index for broader novel object recognition capacity.
Collapse
Affiliation(s)
- Regan Fry
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jeremy Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| | - Isabella Xie
- Washington University in St Louis, St Louis, MO, USA
- Harvard Decision Science Lab, Harvard Kennedy School, Cambridge, MA, USA
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Behrmann M, Plaut DC. Hemispheric Organization for Visual Object Recognition: A Theoretical Account and Empirical Evidence. Perception 2020; 49:373-404. [PMID: 31980013 PMCID: PMC9944149 DOI: 10.1177/0301006619899049] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite the similarity in structure, the hemispheres of the human brain have somewhat different functions. A traditional view of hemispheric organization asserts that there are independent and largely lateralized domain-specific regions in ventral occipitotemporal (VOTC), specialized for the recognition of distinct classes of objects. Here, we offer an alternative account of the organization of the hemispheres, with a specific focus on face and word recognition. This alternative account relies on three computational principles: distributed representations and knowledge, cooperation and competition between representations, and topography and proximity. The crux is that visual recognition results from a network of regions with graded functional specialization that is distributed across both hemispheres. Specifically, the claim is that face recognition, which is acquired relatively early in life, is processed by VOTC regions in both hemispheres. Once literacy is acquired, word recognition, which is co-lateralized with language areas, primarily engages the left VOTC and, consequently, face recognition is primarily, albeit not exclusively, mediated by the right VOTC. We review psychological and neural evidence from a range of studies conducted with normal and brain-damaged adults and children and consider findings which challenge this account. Last, we offer suggestions for future investigations whose findings may further refine this account.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Abstract
Prosopagnosia is an impairment in the ability to recognize faces and can be acquired after a brain lesion or occur as a developmental variant. Studies of prosopagnosia make important contributions to our understanding of face processing and object recognition in the human visual system. We review four areas of advances in the study of this condition in recent years. First are issues surrounding the diagnosis of prosopagnosia, including the development and evaluation of newer tests and proposals for diagnostic criteria, especially for the developmental variant. Second are studies of the structural basis of prosopagnosia, including the application of more advanced neuroimaging techniques in studies of the developmental variant. Third are issues concerning the face specificity of the defect in prosopagnosia, namely whether other object processing is affected to some degree and in particular the status of visual word processing in light of recent predictions from the "many-to-many hypothesis". Finally, there have been recent rehabilitative trials of perceptual learning applied to larger groups of prosopagnosic subjects that show that face impairments are not immutable in this condition.
Collapse
Affiliation(s)
- Andrea Albonico
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Jason Barton
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|