1
|
Shamshitov A, Satkevičiūtė E, Decorosi F, Viti C, Supronienė S. Phenotypic Profiling of Selected Cellulolytic Strains to Develop a Crop Residue-Decomposing Bacterial Consortium. Microorganisms 2025; 13:193. [PMID: 39858961 PMCID: PMC11767528 DOI: 10.3390/microorganisms13010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues. Therefore, this study aimed to address these limitations by assessing the metabolic profiles of five previously identified cellulolytic bacterial strains, including Bacillus pumilus 1G17, Micromonospora chalcea 1G49, Bacillus mobilis 5G17, Streptomyces canus 1TG5, and Streptomyces achromogenes 3TG21 using Biolog Phenotype Microarray analysis. Moreover, this study evaluated the impact of wheat straw inoculation with single strains and a bacterial consortium on soil organic carbon and nitrogen content in a pot experiment. Results revealed that, beyond the core subset of 12 carbon sources, the strains exhibited diverse metabolic capacities in utilizing 106 carbon sources. All strains demonstrated effective straw biomass degradation compared to the negative control, with significant differences detected only in oil seed rape straw biodegradation estimations. Furthermore, wheat straw inoculated with a bacterial consortium showed a significant increase in soil organic carbon content after 180 days in the pot experiment. Overall, these findings underscore the critical role of metabolic profiling in gaining a deeper understanding of microbial capabilities and addressing the complexities of residue composition and environmental variability.
Collapse
Affiliation(s)
- Arman Shamshitov
- Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Egidija Satkevičiūtė
- Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Francesca Decorosi
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florence, Via della Lastruccia 14, I-50019 Sesto Fiorentino, Italy; (F.D.); (C.V.)
| | - Carlo Viti
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florence, Via della Lastruccia 14, I-50019 Sesto Fiorentino, Italy; (F.D.); (C.V.)
| | - Skaidrė Supronienė
- Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| |
Collapse
|
2
|
Singh S, Arya G, Mishra R, Singla S, Pratap A, Upadhayay K, Sharma M, Chaba R. Molecular mechanisms underlying allosteric behavior of Escherichia coli DgoR, a GntR/FadR family transcriptional regulator. Nucleic Acids Res 2025; 53:gkae1299. [PMID: 39777470 PMCID: PMC11705089 DOI: 10.1093/nar/gkae1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
GntR/FadR family featuring an N-terminal winged helix-turn-helix DNA-binding domain and a C-terminal α-helical effector-binding and oligomerization domain constitutes one of the largest families of transcriptional regulators. Several GntR/FadR regulators govern the metabolism of sugar acids, carbon sources implicated in bacterial-host interactions. Although effectors are known for a few sugar acid regulators, the unavailability of relevant structures has left their allosteric mechanism unexplored. Here, using DgoR, a transcriptional repressor of d-galactonate metabolism in Escherichia coli, as a model, and its superrepressor alleles, we probed allostery in a GntR/FadR family sugar acid regulator. Genetic and biochemical studies established compromised response to d-galactonate as the reason for the superrepressor behavior of the mutants: T180I does not bind d-galactonate, and while A97V, S171L and M188I bind d-galactonate, effector binding does not induce a conformational change required for derepression, suggesting altered allostery. For mechanistic insights into allosteric communication, we performed simulations of the modeled DgoR structure in different allosteric states for both the wild-type and mutant proteins. We found that each mutant exhibits unique dynamics disrupting the intrinsic allosteric communication pathways, thereby impacting DgoR function. We finally validated the allosteric communication model by testing in silico predictions with experimental data.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Garima Arya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Rajesh Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Shivam Singla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Akhil Pratap
- Biological Systems Engineering, Plaksha University, Sector 101 alpha, IT City, SAS Nagar, Mohali 140306, Punjab, India
| | - Krishna Upadhayay
- Council of Scientific and Industrial Research—Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Monika Sharma
- Biological Systems Engineering, Plaksha University, Sector 101 alpha, IT City, SAS Nagar, Mohali 140306, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
3
|
Liu S, Liu R, Lv J, Feng Z, Wei F, Zhao L, Zhang Y, Zhu H, Feng H. The glycoside hydrolase 28 member VdEPG1 is a virulence factor of Verticillium dahliae and interacts with the jasmonic acid pathway-related gene GhOPR9. MOLECULAR PLANT PATHOLOGY 2023; 24:1238-1255. [PMID: 37401912 PMCID: PMC10502839 DOI: 10.1111/mpp.13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 07/05/2023]
Abstract
Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.
Collapse
Affiliation(s)
- Shichao Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Ruibing Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Junyuan Lv
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Zili Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Feng Wei
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
4
|
Wang J, Zhou Y, Yu Y, Wang Y, Xue D, Zhou Y, Li X. A ginseng-derived rhamnogalacturonan I (RG-I) pectin promotes longevity via TOR signalling in Caenorhabditis elegans. Carbohydr Polym 2023; 312:120818. [PMID: 37059546 DOI: 10.1016/j.carbpol.2023.120818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Panax ginseng C. A. Meyer (ginseng), a traditional Chinese herb, is usually used to improve health and increase anti-aging activity for human. Polysaccharides are bioactive components of ginseng. Herein, using Caenorhabditis elegans as a model, we discovered a ginseng-derived rhamnogalacturonan I (RG-I) pectin WGPA-1-RG promoted longevity via TOR signalling pathway with transcription factors FOXO/DAF-16 and Nrf2/SKN-1 accumulated in the nucleus, where they activated target genes. And the WGPA-1-RG-mediated lifespan extension was dependent on endocytosis, rather than a bacterial metabolic process. Glycosidic linkage analyses combined with arabinose- and galactose-releasing enzyme hydrolyses identified the RG-I backbone of WGPA-1-RG was primarily substituted with α-1,5-linked arabinan, β-1,4-linked galactan and arabinogalactan II (AG-II) side chains. Feeding worms with the WGPA-1-RG-derived fractions which lost distinct structural elements by enzymatic digestions, we found the arabinan side chains prominently contributed to the longevity-promoting activity of WGPA-1-RG. These findings provide a novel ginseng-derived nutrient that potentially increases human longevity.
Collapse
|
5
|
Béchade B, Hu Y, Sanders JG, Cabuslay CS, Łukasik P, Williams BR, Fiers VJ, Lu R, Wertz JT, Russell JA. Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny. FEMS Microbiol Ecol 2022; 98:6602351. [PMID: 35660864 DOI: 10.1093/femsec/fiac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America.,State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Christian S Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Piotr Łukasik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Bethany R Williams
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Valerie J Fiers
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Richard Lu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Kaczmarska A, Pieczywek PM, Cybulska J, Zdunek A. Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydr Polym 2022; 278:118909. [PMID: 34973730 DOI: 10.1016/j.carbpol.2021.118909] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Rhamnogalacturonan I (RG-I) belongs to the pectin family and is found in many plant cell wall types at different growth stages. It plays a significant role in cell wall and plant biomechanics and shows a gelling ability in solution. However, it has a significantly more complicated structure than smooth homogalacturonan (HG) and its variability due to plant source and physiological state contributes to the fact that RG-I's structure and function is still not so well known. Since functionality is a product of structure, we present a comprehensive review concerning the chemical structure and conformation of RG-I, its functions in plants and properties in solutions.
Collapse
Affiliation(s)
- Adrianna Kaczmarska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
7
|
Peng M, de Vries RP. Machine learning prediction of novel pectinolytic enzymes in Aspergillus niger through integrating heterogeneous (post-) genomics data. Microb Genom 2021; 7. [PMID: 34874247 PMCID: PMC8767319 DOI: 10.1099/mgen.0.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pectinolytic enzymes are a variety of enzymes involved in breaking down pectin, a complex and abundant plant cell-wall polysaccharide. In nature, pectinolytic enzymes play an essential role in allowing bacteria and fungi to depolymerize and utilize pectin. In addition, pectinases have been widely applied in various industries, such as the food, wine, textile, paper and pulp industries. Due to their important biological function and increasing industrial potential, discovery of novel pectinolytic enzymes has received global interest. However, traditional enzyme characterization relies heavily on biochemical experiments, which are time consuming, laborious and expensive. To accelerate identification of novel pectinolytic enzymes, an automatic approach is needed. We developed a machine learning (ML) approach for predicting pectinases in the industrial workhorse fungus, Aspergillus niger. The prediction integrated a diverse range of features, including evolutionary profile, gene expression, transcriptional regulation and biochemical characteristics. Results on both the training and the independent testing dataset showed that our method achieved over 90 % accuracy, and recalled over 60 % of pectinolytic genes. Application of the ML model on the A. niger genome led to the identification of 83 pectinases, covering both previously described pectinases and novel pectinases that do not belong to any known pectinolytic enzyme family. Our study demonstrated the tremendous potential of ML in discovery of new industrial enzymes through integrating heterogeneous (post-) genomimcs data.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
- *Correspondence: Mao Peng,
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Hoagland RE, Boyette CD. Effects of the Fungal Bioherbicide, Alternaria cassia on Peroxidase, Pectinolytic and Proteolytic Activities in Sicklepod Seedlings. J Fungi (Basel) 2021; 7:jof7121032. [PMID: 34947013 PMCID: PMC8703765 DOI: 10.3390/jof7121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Certain plant pathogens have demonstrated potential for use as bioherbicides for weed control, and numerous studies have been published on this subject for several decades. One of the early examples of an important fungal bioherbicide is Alternaria cassiae, isolated from the weed sicklepod (Senna obtusifolia). To gain further insight into biochemical interactions of this fungus and its host weed, we examined the effects of this bioherbicide on various enzymes associated with plant defense. Young sicklepod seedlings were challenged with A. cassiae spore inoculum and enzyme activities associated with plant defense (peroxidase, proteolytic, and pectinolytic) were assayed periodically over a 96-h time course on plants grown in continuous darkness or continuous light. Peroxidase activity increased with time in untreated control seedlings in both light and dark, but the effect was greater in the light. In A. cassiae-treated plants, peroxidase was elevated above that in control tissue at all sample times resulting in a 1.5 -fold increase above control in light-grown tissue and a 2- to 3-fold increase in dark-grown tissue over 48-96 h. Differences in leucine aminopeptidase activity in control versus A. cassiae-treated tissues were not significant until 48-96 h, when activity was inhibited in fungus-treated tissues by about 32% in light-grown tissue and 27% in dark-grown tissue after 96 h. Proteolytic activity on benzoyl-arginine-p-nitroanilide was not significantly different in treated versus control tissue in either light or dark over the time course. Pectinase activity increased in treated tissues at all time points as early as 16 h after spore application in light- or dark-grown plants. The greatest increases were 1.5-fold above control levels in light-grown plants (40-64 h) and 2-fold in plants grown in darkness (72-96 h). Data suggests that peroxidase may be involved as defense mechanism of sicklepod when challenged by A. cassia and that this mechanism is operative in young seedlings under both light and dark growth conditions. Differential proteolytic activity responses on these two substrates suggests the presence of two different enzymes. Increased pectinase activity during pathogenesis suggests that A. cassiae-sicklepod interaction results in an infectivity mechanism to degrade pectic polymers important to sicklepod cell wall integrity. These studies provide important information on some biochemical interactions that may be useful for improvements to biological weed control programs utilizing plant pathogens. Such information may also be useful in genetic selection and manipulation of pathogens for weed control.
Collapse
Affiliation(s)
- Robert E. Hoagland
- Crop Production Systems Research Unit, Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776, USA
- Correspondence:
| | - Clyde Douglas Boyette
- Biological Control of Pests Research Unit, Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776, USA;
| |
Collapse
|
9
|
Zhang L, Yan J, Fu Z, Shi W, Ninkuu V, Li G, Yang X, Zeng H. FoEG1, a secreted glycoside hydrolase family 12 protein from Fusarium oxysporum, triggers cell death and modulates plant immunity. MOLECULAR PLANT PATHOLOGY 2021; 22:522-538. [PMID: 33675158 PMCID: PMC8035634 DOI: 10.1111/mpp.13041] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 05/19/2023]
Abstract
Fusarium oxysporum is an important soilborne fungal pathogen with many different formae speciales that can colonize the plant vascular system and cause serious crop wilt disease worldwide. We found a glycoside hydrolase family 12 protein FoEG1, secreted by F. oxysporum, that acted as a pathogen-associated molecular pattern (PAMP) targeting the apoplast of plants to induce cell death. Purified FoEG1 protein triggered cell death in different plants and induced the plant defence response to enhance the disease resistance of plants. The ability of FoEG1 to induce cell death was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1, and this ability was independent of its hydrolase activity. The mutants of cysteine residues did not affect the ability of FoEG1 to induce cell death, and an 86 amino acid fragment from amino acid positions 144 to 229 of FoEG1 was sufficient to induce cell death in Nicotiana benthamiana. In addition, the expression of FoEG1 was strongly induced in the early stage of F. oxysporum infection of host plants, and FoEG1 deletion or loss of enzyme activity reduced the virulence of F. oxysporum. Therefore, our results suggest that FoEG1 can contribute to the virulence of F. oxysporum depending on its enzyme activity and can also act as a PAMP to induce plant defence responses.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhenchao Fu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Wenjiong Shi
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Vincent Ninkuu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
10
|
Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. PLANTS 2021; 10:plants10020399. [PMID: 33669710 PMCID: PMC7921929 DOI: 10.3390/plants10020399] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The plant cell wall (CW) is a complex structure that acts as a mechanical barrier, restricting the access to most microbes. Phytopathogenic microorganisms can deploy an arsenal of CW-degrading enzymes (CWDEs) that are required for virulence. In turn, plants have evolved proteins able to inhibit the activity of specific microbial CWDEs, reducing CW damage and favoring the accumulation of CW-derived fragments that act as damage-associated molecular patterns (DAMPs) and trigger an immune response in the host. CW-derived DAMPs might be a component of the complex system of surveillance of CW integrity (CWI), that plants have evolved to detect changes in CW properties. Microbial CWDEs can activate the plant CWI maintenance system and induce compensatory responses to reinforce CWs during infection. Recent evidence indicates that the CWI surveillance system interacts in a complex way with the innate immune system to fine-tune downstream responses and strike a balance between defense and growth.
Collapse
|
11
|
Jakeer S, Varma M, Sharma J, Mattoo F, Gupta D, Singh J, Kumar M, Gaur NA. Metagenomic analysis of the fecal microbiome of an adult elephant reveals the diversity of CAZymes related to lignocellulosic biomass degradation. Symbiosis 2020. [DOI: 10.1007/s13199-020-00695-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Knollenberg BJ, Li GX, Lambert JD, Maximova SN, Guiltinan MJ. Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2020; 11:617520. [PMID: 33424909 PMCID: PMC7786005 DOI: 10.3389/fpls.2020.617520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized phenylpropanoid metabolites distributed widely in the plant kingdom and are known to be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a small number of distantly related species. To explore the contribution of specialized metabolites to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed untargeted metabolomics using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 'Scavina 6' ('Sca6') were found to accumulate dramatically higher levels of clovamide and several other HCAAs compared to the susceptible 'Imperial College Selection 1' ('ICS1'). Clovamide was the most abundant metabolite in 'Sca6' leaf extracts based on MS signal, and was up to 58-fold higher in 'Sca6' than in 'ICS1'. In vitro assays demonstrated that clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance exclusively in 'Sca6' suggesting a potential functional role of these compounds. The potential to breed cacao with increased HCAAs for improved agricultural performance is discussed.
Collapse
Affiliation(s)
- Benjamin J. Knollenberg
- Plant Biology PhD Program ‐ Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guo-Xing Li
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Joshua D. Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan,
| |
Collapse
|
13
|
Roudsari NM, Lashgari NA, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru 2019; 27:755-780. [PMID: 31273572 PMCID: PMC6895345 DOI: 10.1007/s40199-019-00284-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a well diagnosed disease, thoroughly attributed to series of symptoms criteria that embrace a broad range of abdominal complainers. Such criteria help to diagnosis the disease and can guide controlled clinical trials to seek new therapeutic agents. Accordingly, a verity of mechanisms and pathophysiological conditions including inflammation, oxidative stress, lipid peroxidation and different life styles are involved in IBS. Predictably, diverse therapeutic approaches are available and prescribed by clinicians due to major manifestations (i.e., diarrhea-predominance, constipation-predominance, abdominal pain and visceral hypersensitivity), psychological disturbances, and patient preferences between herbal treatments versus pharmacological therapies, dietary or microbiological approaches. Herein, we gathered the latest scientific data between 1973 and 2019 from databases such as PubMed, Google Scholar, Scopus and Cochrane library on relevant studies concerning beneficial effects of herbal treatments for IBS, in particular polyphenols. This is concluded that polyphenols might be applicable for preventing IBS and improving the IBS symptoms, mainly through suppressing the inflammatory signaling pathways, which nowadays are known as novel platform for the IBS management. Graphical abstract.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - André M Marques
- Oswaldo Cruz Foundation (FIOCRUZ), Institute of Technology in Pharmaceuticals (Farmanguinhos), Rio de Janeiro, RJ, Brazil
| | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
14
|
Dai T, Chang X, Hu Z, Liang L, Sun M, Liu P, Liu X. Untargeted Metabolomics Based on GC-MS and Chemometrics: A New Tool for the Early Diagnosis of Strawberry Anthracnose Caused by Colletotrichum theobromicola. PLANT DISEASE 2019; 103:2541-2547. [PMID: 31432772 DOI: 10.1094/pdis-01-19-0219-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To prevent the spread of anthracnose in strawberry plants and characterize the metabolic changes occurring during plant-pathogen interactions, we developed a method for the early diagnosis of disease based on an analysis of the metabolome by gas chromatography-mass spectrometry. An examination of the metabolic profile revealed 189 and 202 total ion chromatogram peaks for the control and inoculated plants, respectively. A partial least squares discriminant analysis (PLS-DA) model was conducted for the reliable and accurate discrimination between healthy and diseased strawberry plants, even in the absence of disease symptoms (e.g., early stages of infection). ANOVA (analysis of variance) and orthogonal partial least squares analysis (OPLS) identified 20 metabolites as tentative biomarkers of Colletotrichum theobromicola infection (e.g., citric acid, d-xylose, erythrose, galactose, gallic acid, malic acid, methyl α-galactopyranoside, phosphate, and shikimic acid). At least some of these potential biomarkers may be applicable for the early diagnosis of anthracnose in strawberry plants. Moreover, these metabolites may be useful for characterizing pathogen infections and plant defense responses. This study confirms the utility of metabolomics research for developing diagnostic tools and clarifying the mechanism underlying plant-pathogen interactions. Furthermore, the data presented herein may be relevant for developing new methods for preventing anthracnose in strawberry seedlings cultivated under field conditions.
Collapse
Affiliation(s)
- Tan Dai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xunian Chang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihong Hu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Liang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingyou Sun
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Pengfei Liu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Zhou M, Li P, Wu S, Zhao P, Gao H. Bacillus subtilis CF-3 Volatile Organic Compounds Inhibit Monilinia fructicola Growth in Peach Fruit. Front Microbiol 2019; 10:1804. [PMID: 31440224 PMCID: PMC6692483 DOI: 10.3389/fmicb.2019.01804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we evaluated the effects of volatile organic compounds (VOCs) produced by Bacillus subtilis CF-3 in inhibiting Monilinia fructicola in vitro and in vivo. In the in vitro experiments, the effect of VOCs on the growth of the pathogenic fungi was explored by using plate enthalpy test; mycelial morphology was studied by scanning electron and transmission electron microscopy; and fatty acid contents in the cell membrane were assessed by gas chromatography-mass spectrometry (GC-MS). The results indicated that treatment with benzothiazole and CF-3 for 24 h, in the form of a fermentation broth (24hFB), significantly inhibited the germination of fungal spores, modified hyphal and cell morphology, and decreased the cell membrane fluidity and integrity. In the in vivo experiments, the effect of VOCs on the defense mechanism of peach fruit toward M. fructicola was studied, and we found that benzothiazole and CF-3 24hFB inhibited the activity of the pathogenic enzymes (pectinase, cellulase) secreted by M. fructicola to reduce the decomposition of plant tissues, activate the antioxidant enzymes (peroxidase, polyphenol oxidase, catalase, and superoxide dismutase) in the fruit to eliminate excessive reactive oxygen species in order to reduce plant cell damage, and trigger the disease-resistant enzymes (phenylalanine ammonia-lyase, chitinases, and β-1,3-glucanase) to enhance the resistance of peach fruit to M. fructicola and inhibit its growth. This study suggests that CF-3 VOCs could activate disease-resistant enzymes to prevent the invasion of pathogenic fungi and induce resistance in peach, thereby providing a theoretical basis for future applications.
Collapse
Affiliation(s)
- Minshun Zhou
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Peizhong Li
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Shiyuan Wu
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Pengyu Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Haiyan Gao
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| |
Collapse
|
16
|
Pectin oligosaccharides from hawthorn (Crataegus pinnatifida Bunge. Var. major): Molecular characterization and potential antiglycation activities. Food Chem 2019; 286:129-135. [DOI: 10.1016/j.foodchem.2019.01.215] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 11/24/2022]
|
17
|
Zhu R, Hong M, Zhuang C, Zhang L, Wang C, Liu J, Duan Z, Shang F, Hu F, Li T, Ning C, Chen G. Pectin oligosaccharides from hawthorn (Crataegus pinnatifidaBunge. Var. major) inhibit the formation of advanced glycation end products in infant formula milk powder. Food Funct 2019; 10:8081-8093. [DOI: 10.1039/c9fo01041f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pectin oligosaccharides (POSs) can not only be used as prebiotics but also can be used as natural food-borne antiglycation agents, which is related to their structure, including molecular weight and galacturonic acid content.
Collapse
|
18
|
Liu N, Sun Y, Wang P, Duan H, Ge X, Li X, Pei Y, Li F, Hou Y. Mutation of key amino acids in the polygalacturonase-inhibiting proteins CkPGIP1 and GhPGIP1 improves resistance to Verticillium wilt in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:546-561. [PMID: 30053316 DOI: 10.1111/tpj.14048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Verticillium wilt, one of the most devastating diseases of cotton (Gossypium hirsutum), causes severe yield and quality losses. Given the effectiveness of plant polygalacturonase-inhibiting proteins (PGIPs) in reducing fungal polygalacturonase (PG) activity, it is necessary to uncover the key functional amino acids to enhance cotton resistance to Verticillium dahliae. To identify novel antifungal proteins, the selectivity of key amino acids was investigated by screening against a panel of relevant PG-binding residues. Based on the obtained results, homologous models of the mutants were established. The docking models showed that hydrogen bonds and structural changes in the convex face in the conserved portion of leucine-rich repeats (LRRs) may be essential for enhanced recognition of PG. Additionally, we successfully constructed Cynanchum komarovii PGIP1 (CkPGIP1) mutants Asp176Val, Pro249Gln, and Asp176Val/Pro249Gln and G. hirsutum PGIP1 (GhPGIP1) mutants Glu169Val, Phe242Gln, and Glu169Val/Phe242Gln with site-directed mutagenesis. The proteins of interest can effectively inhibit VdPG1 activity and V. dahliae mycelial growth in a dose-dependent manner. Importantly, mutants that overproduced PGIP in Arabidopsis and cotton showed enhanced resistance to V. dahliae, with reduced Verticillium-associated chlorosis and wilting. Furthermore, the lignin content was measured in mutant-overexpressing plants, and the results showed enhanced lignification of the xylem, which blocked the spread of V. dahliae. Thus, using site-directed mutagenesis assays, we showed that mutations in CkPGIP1 and GhPGIP1 give rise to PGIP versatility, which allows evolving recognition specificities for PG and is required to promote Verticillium resistance in cotton by restricting the growth of invasive fungal pathogens.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hongxia Duan
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
19
|
Sista Kameshwar AK, Qin W. Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0230-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
20
|
Continuous production of pectic oligosaccharides from sugar beet pulp in a cross flow continuous enzyme membrane reactor. Bioprocess Biosyst Eng 2018; 41:1717-1729. [DOI: 10.1007/s00449-018-1995-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/29/2018] [Indexed: 11/25/2022]
|
21
|
Li S, Yang G, Yan J, Wu D, Hou Y, Diao Q, Zhou Y. Polysaccharide structure and immunological relationships of RG-I pectin from the bee pollen of Nelumbo nucifera. Int J Biol Macromol 2018; 111:660-666. [DOI: 10.1016/j.ijbiomac.2018.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
22
|
Betekhtin A, Milewska-Hendel A, Lusinska J, Chajec L, Kurczynska E, Hasterok R. Organ and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon. Int J Mol Sci 2018; 19:ijms19030725. [PMID: 29510511 PMCID: PMC5877586 DOI: 10.3390/ijms19030725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/30/2023] Open
Abstract
The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Joanna Lusinska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Lukasz Chajec
- Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| |
Collapse
|
23
|
Prandi B, Baldassarre S, Babbar N, Bancalari E, Vandezande P, Hermans D, Bruggeman G, Gatti M, Elst K, Sforza S. Pectin oligosaccharides from sugar beet pulp: molecular characterization and potential prebiotic activity. Food Funct 2018; 9:1557-1569. [DOI: 10.1039/c7fo01182b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pectin oligosaccharides (POS) obtained from sugar beet pulp with suitable technologies showed promising prebiotic activity.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| | | | - Neha Babbar
- Department of Food and Drug
- University of Parma
- Parma
- Italy
- Flemish Institute for Technological Research
| | | | | | | | | | - Monica Gatti
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| | - Kathy Elst
- Flemish Institute for Technological Research
- Mol
- Belgium
| | - Stefano Sforza
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| |
Collapse
|
24
|
Qin S, Ji C, Li Y, Wang Z. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources. G3 (BETHESDA, MD.) 2017; 7:2125-2138. [PMID: 28468818 PMCID: PMC5499122 DOI: 10.1534/g3.117.042226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022]
Abstract
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity.
Collapse
Affiliation(s)
- Shiwen Qin
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Ji
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yunfeng Li
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Liu N, Ma X, Sun Y, Hou Y, Zhang X, Li F. Necrotizing Activity of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum Endopolygalacturonases in Cotton. PLANT DISEASE 2017; 101:1128-1138. [PMID: 30682957 DOI: 10.1094/pdis-05-16-0657-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polygalacturonase (PG), which digests the pectin of plant cell walls, contributes to pathogenicity of fungi in plants. To explore the role of PG in pathogenicity of the fungal cotton pathogens Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, VDPG1 and FOVPG1 were cloned and their expression in different cotton (Gossypium hirsutum) cultivars and media was analyzed. VDPG1 and FOVPG1 were strongly upregulated during infection. Purified VDPG1 and FOVPG1 play important roles in the symptom development of both resistant and susceptible cotton. Moreover, after inoculation with purified PGs, the hydroxyproline content of the cell walls increased in cotton seedlings, with resistant cultivar seedlings showing significantly higher hydroxyproline content than seedlings of the susceptible cultivar. PG gene expression analysis in different media showed that both PG genes were induced in pectin medium but not in glucose medium. This study highlighted the role of VDPG1 and FOVPG1 in pathogenicity and virulence, which were detected in fungus-inoculated cotton, suggesting that PGs play an important role in the pathogenicity of V. dahliae and F. oxysporum f. sp. vasinfectum.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowen Ma
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, P. R. China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, P. R. China
| |
Collapse
|
26
|
Ohimain EI. Methanol contamination in traditionally fermented alcoholic beverages: the microbial dimension. SPRINGERPLUS 2016; 5:1607. [PMID: 27652180 PMCID: PMC5028366 DOI: 10.1186/s40064-016-3303-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Abstract
Incidence of methanol contamination of traditionally fermented beverages is increasing globally resulting in the death of several persons. The source of methanol contamination has not been clearly established in most countries. While there were speculations that unscrupulous vendors might have deliberately spiked the beverages with methanol, it is more likely that the methanol might have been produced by contaminating microbes during traditional ethanol fermentation, which is often inoculated spontaneously by mixed microbes, with a potential to produce mixed alcohols. Methanol production in traditionally fermented beverages can be linked to the activities of pectinase producing yeast, fungi and bacteria. This study assessed some traditional fermented beverages and found that some beverages are prone to methanol contamination including cachaca, cholai, agave, arak, plum and grape wines. Possible microbial role in the production of methanol and other volatile congeners in these fermented beverages were discussed. The study concluded by suggesting that contaminated alcoholic beverages be converted for fuel use rather than out rightly banning the age—long traditional alcohol fermentation.
Collapse
Affiliation(s)
- Elijah Ige Ohimain
- Ecotoxicology Research Group, Biological Sciences Department, Niger Delta University Wilberforce Island, Amassoma, Bayelsa State Nigeria
| |
Collapse
|
27
|
Gacura MD, Sprockett DD, Heidenreich B, Blackwood CB. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi. J Microbiol Methods 2016; 123:108-13. [PMID: 26899925 DOI: 10.1016/j.mimet.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/22/2023]
Abstract
Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes.
Collapse
Affiliation(s)
- Matthew D Gacura
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| | - Daniel D Sprockett
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | - Bess Heidenreich
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | | |
Collapse
|
28
|
|
29
|
Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:22. [PMID: 26834834 PMCID: PMC4731972 DOI: 10.1186/s13068-016-0440-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenomic analysis of the rice straw-adapted (RSA) microbial consortia enriched from compost ecosystems to decipher the systematic and functional contexts within such a distinctive microbiome. RESULTS Analyses of the 16S pyrotag library and 5 Gbp of metagenomic sequence showed that the phylum Actinobacteria was the predominant group among the Bacteria in the RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. The CAZymes profile revealed that CAZyme genes in the RSA consortia were also widely distributed within these bacterial phyla. Strikingly, about 46.1 % of CAZyme genes were from actinomycetal communities, which harbored a substantially expanded catalog of the cellobiohydrolase, β-glucosidase, acetyl xylan esterase, arabinofuranosidase, pectin lyase, and ligninase genes. Among these communities, a variety of previously unrecognized species was found, which reveals a greater ecological functional diversity of thermophilic Actinobacteria than previously assumed. CONCLUSION These data underline the pivotal role of thermophilic Actinobacteria in lignocellulose biodegradation processes in the compost habitat. Besides revealing a new benchmark for microbial enzymatic deconstruction of lignocelluloses, the results suggest that actinomycetes found in compost ecosystems are potential candidates for mining efficient lignocellulosic enzymes in the biofuel industry.
Collapse
Affiliation(s)
- Cheng Wang
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Da Dong
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- />Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an, Hangzhou, 311300 China
| | - Haoshu Wang
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Karin Müller
- />Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Private Bag 3123, Hamilton, New Zealand
| | - Yong Qin
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Hailong Wang
- />Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an, Hangzhou, 311300 China
| | - Weixiang Wu
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
30
|
Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras. PLoS One 2015; 10:e0142694. [PMID: 26571265 PMCID: PMC4646678 DOI: 10.1371/journal.pone.0142694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022] Open
Abstract
Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or, alternatively, it has a different mechanism of substrate binding than other polygalacturonases characterized to date.
Collapse
|
31
|
Rhamnogalacturonan I modifying enzymes: an update. N Biotechnol 2015; 33:41-54. [PMID: 26255130 DOI: 10.1016/j.nbt.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022]
Abstract
Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found to be able to catalyse the degradation of the RGI backbone, an endo-hydrolase (EC 3.2.1.171) derived from Aspergillus aculeatus, was discovered 25 years ago. Today the group of RGI modifying enzymes encompasses endo- and exo-hydrolases as well as lyases. The RGI hydrolases, EC 3.2.1.171-EC 3.2.1.174, have been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23-EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11. This review brings together the available knowledge of the RGI modifying enzymes and provides a detailed overview of biocatalytic reaction characteristics, classification, structure-function traits, and analyses the protein properties of these enzymes by multiple sequence alignments in neighbour-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes is important for understanding microbial plant cell wall degradation and for advancing enzymatic processing and biorefining of pectinaceous plant biomass.
Collapse
|
32
|
Germane KL, Servinsky MD, Gerlach ES, Sund CJ, Hurley MM. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105. Acta Crystallogr F Struct Biol Commun 2015; 71:1100-8. [PMID: 26249707 PMCID: PMC4528949 DOI: 10.1107/s2053230x15012121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022] Open
Abstract
Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR.
Collapse
Affiliation(s)
- Katherine L. Germane
- Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017, USA
| | - Matthew D. Servinsky
- RDRL-SEE-B, US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Elliot S. Gerlach
- Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401, USA
| | - Christian J. Sund
- RDRL-SEE-B, US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Margaret M. Hurley
- RDRL-SEE-B, US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005, USA
| |
Collapse
|
33
|
Abstract
SUMMARY Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.
Collapse
|
34
|
Ghosh K, Ray S, Bera K, Ray B. Isolation and structural elements of a water-soluble free radical scavenger from Nyctanthes arbor-tristis leaves. PHYTOCHEMISTRY 2015; 115:20-6. [PMID: 25749618 DOI: 10.1016/j.phytochem.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 02/05/2015] [Indexed: 05/21/2023]
Abstract
The leaves of Nyctanthes arbor-tristis L. (Oleaceae) are used in Ayurvedic medicine for the management of a range of diseases, but reports on its phytochemicals and pharmacological properties are inadequate. Herein, we report purification of an antioxidative polysaccharide (F2) extracted from its leaves by water. The presence of a highly branched polysaccharide (75 kDa) containing esterified phenolic acids was revealed by chemical, chromatographic and spectroscopic analyses. Particularly, ESMS analysis of per acetylated oligomeric fragments derived by Smith degradation provides important structural information on a spectrum of glycerol tagged oligosaccharides. This polysaccharide showed dose dependent free radical scavenging capacity as evidenced by DPPH and Ferric reducing power assay. This pharmacologically active compound (F2) formed a water soluble complex with bovine serum albumin over pH 4.0-7.4. Accordingly, traditional aqueous extraction method provides a molecular entity that induces a pharmacological effect: this could epitomize a smart approach in phytotherapeutic management.
Collapse
Affiliation(s)
- Kanika Ghosh
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Kaushik Bera
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India.
| |
Collapse
|
35
|
High-Throughput Sequencing Identifies Novel and Conserved Cucumber (Cucumis sativus L.) microRNAs in Response to Cucumber Green Mottle Mosaic Virus Infection. PLoS One 2015; 10:e0129002. [PMID: 26076360 PMCID: PMC4468104 DOI: 10.1371/journal.pone.0129002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/03/2015] [Indexed: 01/20/2023] Open
Abstract
Seedlings of Cucumis sativus L. (cv. 'Zhongnong 16') were artificially inoculated with Cucumber green mottle mosaic virus (CGMMV) at the three-true-leaf stage. Leaf and flower samples were collected at different time points post-inoculation (10, 30 and 50 d), and processed by high throughput sequencing analysis to identify candidate miRNA sequences. Bioinformatic analysis using screening criteria, and secondary structure prediction, indicated that 8 novel and 23 known miRNAs (including 15 miRNAs described for the first time in vivo) were produced by cucumber plants in response to CGMMV infection. Moreover, gene expression profiles (p-value <0.01) validated the expression of 3 of the novel miRNAs and 3 of the putative candidate miRNAs and identified a further 82 conserved miRNAs in CGMMV-infected cucumbers. Gene ontology (GO) analysis revealed that the predicted target genes of these 88 miRNAs, which were screened using the psRNATarget and miRanda algorithms, were involved in three functional categories: 2265 in molecular function, 1362 as cellular components and 276 in biological process. The subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the predicted target genes were frequently involved in metabolic processes (166 pathways) and genetic information processes (40 pathways) and to a lesser degree the biosynthesis of secondary metabolites (12 pathways). These results could provide useful clues to help elucidate host-pathogen interactions in CGMMV and cucumber, as well as for the screening of resistance genes.
Collapse
|
36
|
Zhang L, Kars I, Essenstam B, Liebrand TW, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JA. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. PLANT PHYSIOLOGY 2014; 164:352-64. [PMID: 24259685 PMCID: PMC3875813 DOI: 10.1104/pp.113.230698] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/19/2013] [Indexed: 05/18/2023]
Abstract
Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecular pattern receptor. RBPG1 recognizes several PGs from the plant pathogen Botrytis cinerea as well as one from the saprotroph Aspergillus niger. Infiltration of B. cinerea PGs into Arabidopsis accession Columbia induced a necrotic response, whereas accession Brno (Br-0) showed no symptoms. A map-based cloning strategy, combined with comparative and functional genomics, led to the identification of the Columbia RBPG1 gene and showed that this gene is essential for the responsiveness of Arabidopsis to the PGs. Transformation of RBPG1 into accession Br-0 resulted in a gain of PG responsiveness. Transgenic Br-0 plants expressing RBPG1 were equally susceptible as the recipient Br-0 to the necrotroph B. cinerea and to the biotroph Hyaloperonospora arabidopsidis. Pretreating leaves of the transgenic plants with a PG resulted in increased resistance to H. arabidopsidis. Coimmunoprecipitation experiments demonstrated that RBPG1 and PG form a complex in Nicotiana benthamiana, which also involves the Arabidopsis leucine-rich repeat receptor-like protein SOBIR1 (for SUPPRESSOR OF BIR1). sobir1 mutant plants did not induce necrosis in response to PGs and were compromised in PG-induced resistance to H. arabidopsidis.
Collapse
Affiliation(s)
| | - Ilona Kars
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Bert Essenstam
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Thomas W.H. Liebrand
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | | | - Joyce Elberse
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Panagiota Tagkalaki
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Devlin Tjoitang
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Guido van den Ackerveken
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | | |
Collapse
|
37
|
Liao X, Fang W, Lin L, Lu HL, Leger RJS. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One 2013; 8:e78118. [PMID: 24205119 PMCID: PMC3804458 DOI: 10.1371/journal.pone.0078118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/17/2013] [Indexed: 01/22/2023] Open
Abstract
As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (ΔMrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ΔMrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.
Collapse
Affiliation(s)
- Xinggang Liao
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangcai Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
38
|
Molnárová J, Vadkertiová R, Stratilová E. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 2013; 54 Suppl 1:S74-84. [DOI: 10.1002/jobm.201300072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jana Molnárová
- Institute of Chemistry, Slovak Academy of Sciences; Bratislava Slovakia
| | | | - Eva Stratilová
- Institute of Chemistry, Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
39
|
Asghar U, Rehman HU, Qader SAU, Maqsood ZT. Influence of phytic acid and its metal complexes on the activity of pectin degrading polygalacturonase. Carbohydr Polym 2013; 95:167-70. [PMID: 23618254 DOI: 10.1016/j.carbpol.2013.02.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/10/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Polygalacturonase is one of the important requirements of different microorganism to cause pathogenicity and spoilage of fruits and vegetables that involved in degradation of pectin during plant tissue infections. In current study, 20 mM phytic acid inhibited 70% activity of polygalacturonase. The effect of different concentration of metal ions such as Cu(+2), Al(+3) and V(+4) were studied separately and it was found that the 20 mM of these metal ions inhibited 37.2%, 79%, and 53% activity of polygalacturonase, respectively. Finally, the complexes of phytic acid and these metals ions were prepared and 1:1 ratio of phytic acid and metal ions complexes showed maximum inhibitory activity of enzyme as compared to complexes having 1:2 and 1:3 ratio except phytate-copper complexes which showed no inhibitory effect on the activity of polygalacturonase.
Collapse
Affiliation(s)
- Uzma Asghar
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | | | | | | |
Collapse
|
40
|
Ghosh D, Ray S, Ghosh K, Micard V, Chatterjee UR, Ghosal PK, Ray B. Antioxidative Carbohydrate Polymer from Enhydra fluctuans and Its Interaction with Bovine Serum Albumin. Biomacromolecules 2013; 14:1761-8. [PMID: 23635005 DOI: 10.1021/bm4001316] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Debjani Ghosh
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Kanika Ghosh
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Valérie Micard
- MontpellierSupAgro-INRA-UMII-CIRAD, UMR IATE,
2, Place Pierre Viala, 34060 Montpellier Cedex 01, France
| | - Udipta R. Chatterjee
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Pradyot K. Ghosal
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| |
Collapse
|
41
|
Yapo BM. Rhamnogalacturonan-I: A Structurally Puzzling and Functionally Versatile Polysaccharide from Plant Cell Walls and Mucilages. POLYM REV 2011. [DOI: 10.1080/15583724.2011.615962] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
42
|
Evaluation of production and characterization of polygalacturonase by Aspergillus niger ATCC 9642. FOOD AND BIOPRODUCTS PROCESSING 2011. [DOI: 10.1016/j.fbp.2010.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Alimardani-Theuil P, Gainvors-Claisse A, Duchiron F. Yeasts: An attractive source of pectinases—From gene expression to potential applications: A review. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.05.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Radwan O, Liu Y, Clough SJ. Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:958-72. [PMID: 21751852 DOI: 10.1094/mpmi-11-10-0271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sudden death syndrome (SDS) of soybean can be caused by any of four distinct Fusarium species, with F. virguliforme and F. tucumaniae being the main casual agents in North and South America, respectively. Although the fungal tissue is largely confined to the roots, the fungus releases a toxin that is translocated to leaf tissues, in which it causes interveinal chlorosis and necrosis leading to scorching symptoms and possible defoliation. In this study, we report on an Affymetrix analysis measuring transcript abundances in resistant (PI 567.374) and susceptible (Essex) roots upon infection by F. virguliforme, 5 and 7 days postinoculation. Many of the genes with increased expression were common between resistant and susceptible plants (including genes related to programmed cell death, the phenylpropanoid pathway, defense, signal transduction, and transcription factors), but some genotype-specific expression was noted. Changes in small (sm)RNA levels between inoculated and mock-treated samples were also studied and implicate a role for these molecules in this interaction. In total, 2,467 genes were significantly changing in the experiment, with 1,694 changing in response to the pathogen; 93 smRNA and 42 microRNA that have putative soybean gene targets were identified from infected tissue. Comparing genotypes, 247 genes were uniquely modulating in the resistant host, whereas 378 genes were uniquely modulating in the susceptible host. Comparing locations of differentially expressed genes to known resistant quantitative trait loci as well as identifying smRNA that increased while their putative targets decreased (or vice versa) allowed for the narrowing of candidate SDS defense-associated genes.
Collapse
Affiliation(s)
- Osman Radwan
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
45
|
Yapo BM. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.065] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Yadav PK, Singh VK, Yadav S, Yadav KDS, Yadav D. In silico analysis of pectin lyase and pectinase sequences. BIOCHEMISTRY (MOSCOW) 2009; 74:1049-55. [DOI: 10.1134/s0006297909090144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Westereng B, Coenen GJ, Michaelsen TE, Voragen AGJ, Samuelsen AB, Schols HA, Knutsen SH. Release and characterization of single side chains of white cabbage pectin and their complement-fixing activity. Mol Nutr Food Res 2009; 53:780-9. [DOI: 10.1002/mnfr.200800199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
|
49
|
Yapo BM. Pineapple and Banana Pectins Comprise Fewer Homogalacturonan Building Blocks with a Smaller Degree of Polymerization as Compared with Yellow Passion Fruit and Lemon Pectins: Implication for Gelling Properties. Biomacromolecules 2009; 10:717-21. [DOI: 10.1021/bm801490e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beda M. Yapo
- Unité de Formation et de Recherche en Sciences et Technologie des Aliments, Université d’Abobo-Adjamé, 02 BP 801 Abidjan 02, Côte d’Ivoire
| |
Collapse
|
50
|
Martínez-Trujillo A, Aranda JS, Gómez-Sánchez C, Trejo-Aguilar B, Aguilar-Osorio G. Constitutive and inducible pectinolytic enzymes from Aspergillus flavipes FP-500 and their modulation by pH and carbon source. Braz J Microbiol 2009; 40:40-7. [PMID: 24031315 PMCID: PMC3768495 DOI: 10.1590/s1517-83822009000100006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 07/09/2008] [Accepted: 02/15/2009] [Indexed: 11/21/2022] Open
Abstract
Growth and enzymes production by Aspergillus flavipes FP-500 were evaluated on pectin, polygalacturonic acid, galacturonic acid, arabinose, rhamnose, xylose, glycerol and glucose at different initial pH values. We found that the strain produced exopectinases, endopectinases and pectin lyases. Exopectinases and pectin lyase were found to be produced at basal levels as constitutive enzymes and their production was modulated by the available carbon source and pH of culture medium and stimulated by the presence of inducer in the culture medium. Endo-pectinase was basically inducible and was only produced when pectin was used as carbon source. Our results suggest that pectinases in A. flavipes FP-500 are produced in a concerted way. The first enzyme to be produced was exopectinase followed by Pectin Lyase and Endo-pectinase.
Collapse
Affiliation(s)
- Aurora Martínez-Trujillo
- Laboratory of Enzymatic Catalysis, Technologic Institute for Higher Studies of Ecatepec , Ecatepec , Estado de Mexico ; Department of Bioengineering, Professional Unit of Biotechnology, National Polytechnic Institute of Mexico, UPIBI-IPN, Col. La Laguna Ticoman, D.F. , Mexico
| | | | | | | | | |
Collapse
|