1
|
Williams RP, Kreider W, Nartov FA, Karzova MM, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. Synthesized acoustic holography: A method to evaluate steering and focusing performance of ultrasound arrays. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2750-2762. [PMID: 40214264 PMCID: PMC11993273 DOI: 10.1121/10.0036225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/26/2025] [Accepted: 03/05/2025] [Indexed: 04/14/2025]
Abstract
Acoustic holography is a commonly used tool to characterize the three-dimensional acoustic fields and the vibration patterns of ultrasound (US) transducers and arrays. It involves recording the pressure distribution over a transverse plane in front of the transducer via a two-dimensional hydrophone scan, and subsequent forward or backward field projection. For multi-element arrays capable of electronic focus steering, a separate hologram is needed to describe each beam configuration of interest. Since medical US arrays commonly use tens to hundreds of beam configurations, their characterization is very time consuming. Here, we show that holograms for the field of each array element can be recorded with a single hydrophone scan by pulsing the elements sequentially at each location. This approach was validated using a 1 MHz 64-element diagnostic-therapeutic linear array. Holograms of each element combined with backpropagation to the array surface revealed the variability of vibration patterns and crosstalk between channels and elements. Electronically steered beam configurations resulting from boundary conditions synthesized from elemental holograms and directly measured holograms were found to be in excellent agreement. The results demonstrate the method's potential in detecting defects and other nonideal array behavior and in rapid and accurate characterization of all relevant beam configurations.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, University of Washington School of Medicine, 1959 Northeast Pacific Street, Box 356510, Seattle, Washington 98195, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
| | - Fedor A Nartov
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Maria M Karzova
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, University of Washington School of Medicine, 1959 Northeast Pacific Street, Box 356510, Seattle, Washington 98195, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
| |
Collapse
|
2
|
Queen H, Ferris SF, Cho CS, Ganguly A. The Emerging Role of Histotripsy in Liver Cancer Treatment: A Scoping Review. Cancers (Basel) 2025; 17:915. [PMID: 40149252 PMCID: PMC11940794 DOI: 10.3390/cancers17060915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVE Hepatocellular carcinoma (HCC) is an aggressive disease that is known to be resistant to conventional chemotherapy and radiotherapy. While surgical resection and transarterial therapy can improve overall survival, the biological aspects of HCC contribute to the complexity of its management and limit the effectiveness of current treatment options. The purpose of this scoping review is to identify the limitations of the currently available therapies for HCC and explore the emerging role that histotripsy could play in addressing these limitations, with the intent of informing the direction of future research and clinical management. METHODS The PRISMA checklist for scoping reviews was followed to structure this review, and a systematic search was conducted in the following online databases: PubMed/MEDLINE (National Library of Medicine), Embase (Elsevier), and Scopus (Elsevier). RESULTS The current evidence supports that histotripsy offers several key advantages that address the limitations of the current treatment strategies for HCC. Clinical trials have highlighted the ability of this technology to destroy solid tumors and induce remission with minimal side effects. In addition, current preclinical studies point to the potent immunostimulatory effects of histotripsy, including the induction of abscopal effects. This poses significant promise in treating tumor metastasis as well as improving clinical regimens by combining histotripsy with immunotherapy. Future research should aim to overcome the current limitations of histotripsy and enhance clinical outcomes for patients. This review examines existing treatments for HCC, emphasizing the promising potential of combining histotripsy with immunotherapy to target the metastatic and advanced stages of the disease.
Collapse
Affiliation(s)
- Heineken Queen
- Research Service, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA; (H.Q.); (S.F.F.)
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MA 48109, USA
| | - Sarah F. Ferris
- Research Service, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA; (H.Q.); (S.F.F.)
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Clifford S. Cho
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MA 48109, USA
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Anutosh Ganguly
- Research Service, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA; (H.Q.); (S.F.F.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
4
|
Kisting AL, Zlevor AM, Falk KL, Kisting MA, Laklouk IA, Wagner MG, White JK, Winterholler JE, Jentink MS, Abel EJ, Knavel Koepsel EM, Hinshaw JL, Swietlik JF, Mao L, Minesinger GM, Laeseke PF, Ziemlewicz TJ, Lee FT. Histotripsy of the Proximal Ureter and Renal Pelvis: Evaluation of Urothelial Injury in a Porcine Survival Model. J Vasc Interv Radiol 2025; 36:512-520.e1. [PMID: 39662616 DOI: 10.1016/j.jvir.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE To evaluate the response of the ureter and renal pelvis to direct targeting by histotripsy guided by cone-beam computed tomography (CT) in a human-scale porcine chronic-survival model. MATERIALS AND METHODS Bilateral ureteral histotripsy treatments were completed on 6 female swine (n = 12). Animals were divided into 2 groups: (a) acute (n = 2 animals, 4 treatments, sacrificed at Day 0) and (b) chronic (n = 4 animals, 8 treatments, sacrificed at Day 7 [n = 2] and Day 28 [n = 2]). For each treatment, a 2.5-cm sphere (ureter/renal pelvis and renal parenchyma) was targeted using cone-beam CT guidance. CT urography imaging was performed immediately after treatment for all animals, and on Days 7 and 28 for chronic animals, followed by sacrifice, necropsy, and histopathology. Serum chemistries were drawn before treatment and at Days 7 and 28. RESULTS All 12 treatments were successful in targeting the renal pelvis/ureter and renal parenchyma. CT urography findings at Day 0 included ureteral thickening (9/12), delayed parenchymal enhancement (3/12), and mild hydronephrosis (5/12), all resolving by Day 7. Histologic findings of low-grade damage resolved by Day 7. No urine leaks or ureteral strictures were observed. Renal function (creatinine and estimated glomerular filtration rate) remained within the normal range throughout the study. CONCLUSIONS Histotripsy treatment of the ureter and renal pelvis results in transient injuries, suggesting that treatment of central renal tumors adjacent to the ureter and renal pelvis is safe. The results of this study could help expand the range of renal tumors that can be treated with histotripsy.
Collapse
Affiliation(s)
- Adrienne L Kisting
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Annie M Zlevor
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Katrina L Falk
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Meridith A Kisting
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Israa A Laklouk
- Department of Anatomic Pathology, University of California, Los Angeles, Los Angeles, California
| | - Martin G Wagner
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jim K White
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - J Erik Winterholler
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Madeline S Jentink
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - E Jason Abel
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - J Louis Hinshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - John F Swietlik
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lu Mao
- Department of Biostatistics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grace M Minesinger
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Fred T Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
5
|
Falk KL, Laeseke PF, Minesinger GM, Ozkan OG, Speidel MA, Ziemlewicz TJ, Lee FT, Wagner MG. Calibration correction to improve registration during cone-beam CT guided histotripsy. Med Phys 2025. [PMID: 39865624 DOI: 10.1002/mp.17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Histotripsy is a non-invasive, non-ionizing, non-thermal focused ultrasound technique. High amplitude short acoustic pulses converge to create high negative pressures that cavitate endogenous gas into a bubble cloud leading to mechanical tissue destruction. In the United States, histotripsy is approved to treat liver tumors under diagnostic ultrasound guidance but in initial clinical cases, some areas of the liver have not been treated due to bone or gas obstructing the acoustic window for targeting. To address this limitation in visualization, cone-beam computed tomography (CBCT) guided histotripsy was developed to expand the number of tumors and patients that can be treated with histotripsy. PURPOSE The purpose of this work is to improve the accuracy of CBCT guided histotripsy by calibrating the therapeutic bubble cloud location relative to the histotripsy robot arm. METHODS The calibration correction involves creating a bubble cloud sized treatment (a few mm) in an agar-based phantom consisting of 11 layers with alternating high and low x-ray attenuation. The layers were spaced ∼3 mm apart to allow visualization of mixing after mechanical disintegration from the histotripsy treatment. Bubble cloud treatments were localized using an automated algorithm that minimized a cost function based on the intensity difference within the treatment region on the pre- and post-treatment CBCT. The actual treatment location can be compared to the theoretical bubble cloud location (focal point based on the CAD model of the transducer assembly) to calculate a 3D offset (X, Y, Z), which is used as the calibration correction between the therapeutic bubble cloud location and the histotripsy robot arm. The phantom and algorithm were analyzed to determine parameters that maximized bubble cloud treatment detection (treatment duration, localization accuracy of the phantom, number of bubble clouds) and were tested on four different histotripsy transducers. RESULTS Bubble cloud locations were accurately identified with the automated algorithm from post-treatment CBCT images of the multilayer agar phantom. Treating the phantom for 20 seconds was associated with the greatest change in CBCT intensity. The phantom and algorithm were able to localize changes in bubble cloud location with mean residual errors (MRE) between the measured and planned translations of 0.3 ± 0.3 mm in X, -0.2 ± 0.6 mm in Y, and 0.1 ± 1.0 mm in Z. A multi-bubble cloud calibration approach with four adjacent bubble clouds provided a statistically significant lower mean absolute deviation (MAD) in measured 3D offset (0.1, 0.0 and 0.2 mm in X, Y, and Z, respectively) compared to using a single bubble cloud (MAD of 0.2, 1.1 and 1.2 mm in X, Y, and Z, respectively). The calibration correction method measured statistically significantly different 3D transducer offsets between the four histotripsy transducers. CONCLUSIONS Creating and analyzing four adjacent bubble clouds together produced more accurate and reproducible 3D offset measurements than analyzing individual bubble clouds. The presented histotripsy bubble cloud calibration correction method is automated, accurate, and can be easily integrated in the current histotripsy workflow to improve accuracy of CBCT guided histotripsy.
Collapse
Affiliation(s)
- Katrina L Falk
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Grace M Minesinger
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Orhan G Ozkan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael A Speidel
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin G Wagner
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Ponomarchuk E, Thomas G, Song M, Wang YN, Totten S, Schade G, Thiel J, Bruce M, Khokhlova V, Khokhlova T. Advancing Boiling Histotripsy Dose in Ex Vivo And In Vivo Renal Tissues Via Quantitative Histological Analysis and Shear Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1936-1944. [PMID: 39317625 DOI: 10.1016/j.ultrasmedbio.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE In the context of developing boiling histotripsy (BH) as a potential clinical approach for non-invasive mechanical ablation of kidney tumors, the concept of BH dose (BHD) was quantitatively investigated in porcine and canine kidney models in vivo and ex vivo. METHODS Volumetric lesions were produced in renal tissue using a 1.5-MHz 256-element HIFU-array with various pulsing protocols: pulse duration tp = 1-10 ms, number of pulses per point ppp = 1-15. Two BHD metrics were evaluated: BHD1 = ppp, BHD2 = tp × ppp. Quantitative assessment of lesion completeness was performed by their histological analysis and assignment of damage score to different renal compartments (i.e., cortex, medulla, and sinus). Shear wave elastography (SWE) was used to measure the Young's modulus of renal compartments in vivo vs ex vivo, and before vs after BH treatments. RESULTS In vivo tissue required lower BH doses to achieve identical degree of fractionation as compared to ex vivo. Renal cortex (homogeneous, low in collagen) was equal or higher in stiffness than medulla (anisotropic, collagenous), 5.8-12.2 kPa vs 4.7-9.6 kPa, but required lower BH doses to be fully fractionated. Renal sinus (fatty, irregular, with abundant collagenous structures) was significantly softer ex vivo vs in vivo, 4.9-5.1 kPa vs 9.7-15.2 kPa, but was barely damaged in either case with any tested BH protocols. BHD1 was shown to be relevant for planning the treatment of renal cortex (sufficient BHD1 = 5 pulses in vivo and 10 pulses ex vivo), while none of the tested doses resulted in complete fractionation of medulla or sinus. Post-treatment SWE imaging revealed reduction of tissue stiffness ex vivo by 27-58%, increasing with the applied dose, and complete absence of shear waves within in vivo lesions, both indicative of tissue liquefaction. CONCLUSION The results imply that tissue resistance to mechanical fractionation, and hence required BH dose, are not solely determined by tissue stiffness but also depend on its composition and structural arrangement, as well as presence of perfusion. The SWE-derived reduction of tissue stiffness with increasing BH doses correlated with tissue damage score, indicating potential of SWE for post-treatment confirmation of BH lesion completeness.
Collapse
Affiliation(s)
| | - Gilles Thomas
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Minho Song
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Stephanie Totten
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - George Schade
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jeff Thiel
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Tatiana Khokhlova
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Ambekar PA, Wang YN, Khokhlova TD, Thomas GPL, Rosnitskiy PB, Contreras K, Leotta DF, Maxwell AD, Bruce M, Pierson S, Totten S, Kumar YN, Thiel J, Chan K, Liles WC, Dellinger EP, Adedipe A, Monsky WL, Matula TJ. Histotripsy-Induced Bactericidal Activity Correlates to Size of Cavitation Cloud In Vitro. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1868-1878. [PMID: 39383065 PMCID: PMC11875908 DOI: 10.1109/tuffc.2024.3476438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Large abscesses are walled-off collections of pus and bacteria that often do not respond to antibiotic therapy. Standard of care involves percutaneous placement of indwelling catheter(s) for drainage, a long and uncomfortable process with high rehospitalization rates. The long-term goal of this work is to develop therapeutic ultrasound approaches to eradicate bacteria within abscesses as a noninvasive therapeutic alternative. Inertial cavitation induced by short pulses of focused ultrasound (histotripsy) is known to generate lethal mechanical damage in bacteria. Prior studies with Escherichia coli (E. coli) in suspension demonstrated that bactericidal effects increase with increasing peak negative amplitude, treatment time, and duty cycle. The current study investigated correlates of bactericidal activity with histotripsy cavitation cloud size. Histotripsy was applied to E. coli suspensions in 10-mL sample vials at 810 kHz, 1.2 MHz, or 3.25 MHz for 40 min. The cavitation activity in the sample vials was separately observed with high-speed photography. The cavitation cloud area was quantified from those images. A linear relationship was observed between bacterial inactivation and cavitation cloud size ( ), regardless of the acoustic parameters (specifically frequency, pulse duration, and power) used to produce the cloud.Index Terms- Abscess, bacterial inactivation, bactericidal activity, cavitation, high intensity focused ultrasound (HIFU), histotripsy, therapeutic ultrasound.
Collapse
|
8
|
Song M, Sapozhnikov OA, Khokhlova VA, Son H, Totten S, Wang YN, Khokhlova TD. Dynamic mode decomposition based Doppler monitoring of de novo cavitation induced by pulsed HIFU: an in vivo feasibility study. Sci Rep 2024; 14:22295. [PMID: 39333771 PMCID: PMC11436727 DOI: 10.1038/s41598-024-73787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) has the capability to induce de novo cavitation bubbles, offering potential applications for enhancing drug delivery and modulating tissue microenvironments. However, imaging and monitoring these cavitation bubbles during the treatment presents a challenge due to their transient nature immediately following pHIFU pulses. A planewave bubble Doppler technique demonstrated its potential, yet this Doppler technique used conventional clutter filter that was originally designed for blood flow imaging. Our recent study introduced a new approach employing dynamic mode decomposition (DMD) to address this in an ex vivo setting. This study demonstrates the feasibility of the application of DMD for in vivo Doppler monitoring of the cavitation bubbles in porcine liver and identifies the candidate monitoring metrics for pHIFU treatment. We propose a fully automated bubble mode identification method using k-means clustering and an image contrast-based algorithm, leading to the generation of DMD-filtered bubble images and corresponding Doppler power maps after each HIFU pulse. These power Doppler maps are then correlated with the extent of tissue damage determined by histological analysis. The results indicate that DMD-enhanced power Doppler map can effectively visualize the bubble distribution with high contrast, and the Doppler power level correlates with the severity of tissue damage by cavitation. Further, the temporal characteristics of the bubble modes, specifically the decay rates derived from DMD, provide information of the bubble dissolution rate, which are correlated with tissue damage level-slower rates imply more severe tissue damage.
Collapse
Affiliation(s)
- Minho Song
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Radiology, Stanford University, Stanford, USA.
| | - Oleg A Sapozhnikov
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Vera A Khokhlova
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Helena Son
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie Totten
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
O'Reilly MA. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 2024; 385:eadp7206. [PMID: 39265013 DOI: 10.1126/science.adp7206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Focused ultrasound is a platform technology capable of eliciting a wide range of biological responses with high spatial precision deep within the body. Although focused ultrasound is already in clinical use for focal thermal ablation of tissue, there has been a recent growth in development and translation of ultrasound-mediated nonthermal therapies. These approaches exploit the physical forces of ultrasound to produce a range of biological responses dependent on exposure conditions. This review discusses recent advances in four application areas that have seen particular growth and have immense clinical potential: brain drug delivery, neuromodulation, focal tissue destruction, and endogenous immune system activation. Owing to the maturation of transcranial ultrasound technology, the brain is a major target organ; however, clinical indications outside the brain are also discussed.
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Ponomarchuk E, Tsysar S, Kvashennikova A, Chupova D, Pestova P, Danilova N, Malkov P, Buravkov S, Khokhlova V. Pilot Study on Boiling Histotripsy Treatment of Human Leiomyoma Ex Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1255-1261. [PMID: 38762389 DOI: 10.1016/j.ultrasmedbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE As an alternative to surgical excision and magnetic resonance-guided thermal high-intensity focused ultrasound ablation of uterine leiomyoma, this work was aimed at pilot feasibility demonstration of use of ultrasound-guided boiling histotripsy for non-invasive non-thermal fractionation of human uterine leiomyoma ex vivo. METHODS A custom-made sector ultrasound transducer of 1.5-MHz operating frequency and nominal f-number F# = 0.75 was used to produce a volumetric lesion (two layers of 5 × 5 foci with a 1 mm step) in surgically resected human leiomyoma ex vivo. A sequence of 10 ms pulses (P+/P-/As = 157/-25/170 MPa in situ) with 1% duty cycle was delivered N = 30 times per focus under B-mode guidance. The treatment outcome was evaluated via B-mode imaging and histologically with hematoxylin and eosin and Masson's trichrome staining. RESULTS The treatment was successfully performed in less than 30 min and resulted in formation of a rectangular lesion visualized on B-mode images during the sonication as an echogenic region, which sustained for about 10 min post-treatment. Histology revealed loss of cellular structure, necrotic debris and globules of degenerated collagen in the target volume surrounded by injured smooth muscle cells. CONCLUSION The pilot experiment described here indicates that boiling histotripsy is feasible for non-invasive mechanical disintegration of human uterine leiomyoma ex vivo under B-mode guidance, encouraging further investigation and optimization of this potential clinical application of boiling histotripsy.
Collapse
Affiliation(s)
| | - Sergey Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Daria Chupova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Pestova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Danilova
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Pavel Malkov
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Sergey Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Ponomarchuk EM, Rosnitskiy PB, Tsysar SA, Khokhlova TD, Karzova MM, Kvashennikova AV, Tumanova KD, Kadrev AV, Buravkov SV, Trakhtman PE, Starostin NN, Sapozhnikov OA, Khokhlova VA. Elastic Properties of Aging Human Hematoma Model In Vitro and Its Susceptibility to Histotripsy Liquefaction. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:927-938. [PMID: 38514363 DOI: 10.1016/j.ultrasmedbio.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Tissue susceptibility to histotripsy disintegration has been reported to depend on its elastic properties. This work was aimed at investigation of histotripsy efficiency for liquefaction of human hematomas, depending on their stiffness and degree of retraction over time (0-10 d). METHODS As an in vitro hematoma model, anticoagulated human blood samples (200 mL) were recalcified at different temperatures. In one set of samples, the shear modulus was measured by shear wave elastography during blood clotting at 10℃, 22℃ and 37℃, and then daily during further aging. The ultrastructure of the samples was analyzed daily with scanning electron microscopy (SEM). Another set of blood samples (50-200 mL) were recalcified at 37℃ for density and retraction measurements over aging and exposed to histotripsy at varying time points. Boiling histotripsy (2.5 ms pulses) and hybrid histotripsy (0.2 ms pulses) exposures (2 MHz, 1% dc, P+/P-/As = 182/-27/207 MPa in situ) were used to produce either individual cigar-shaped or volumetric (0.8-3 mL) lesions in samples incubated for 3 h, 5 d and 10 d. The obtained lesions were sized, then the lysate aspirated under B-mode guidance was analyzed ultrastructurally and diluted in distilled water for sizing of residual fragments. RESULTS It was found that clotting time decreased from 113 to 25 min with the increase in blood temperature from 10℃ to 37℃. The shear modulus increased to 0.53 ± 0.17 kPa during clotting and remained constant within 8 d of incubation at 2℃. Sample volumes decreased by 57% because of retraction within 10 d. SEM revealed significant echinocytosis but unchanged ultrastructure of the fibrin meshwork. Liquefaction rate and lesion dimensions produced with the same histotripsy protocols correlated with the increase in the degree of retraction and were lower in retracted samples versus freshly clotted samples. More than 80% of residual fibrin fragments after histotripsy treatment were shorter than 150 µm; the maximum length was 208 µm, allowing for unobstructed aspiration of the lysate with most clinically used needles. CONCLUSION The results indicate that hematoma susceptibility to histotripsy liquefaction is not entirely determined by its stiffness, and correlates with the retraction degree.
Collapse
Affiliation(s)
| | - Pavel B Rosnitskiy
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey A Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria M Karzova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexey V Kadrev
- Department of Urology and Andrology, Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia; Diagnostic Ultrasound Division, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel E Trakhtman
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nicolay N Starostin
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Oleg A Sapozhnikov
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Vera A Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Ponomarchuk EM, Tsysar SA, Chupova DD, Pestova PA, Kvashennikova AV, Danilova NV, Malkov PG, Chernyaev AL, Buravkov SV, Khokhlova VA. Pilot Experiment on Non-Invasive Non-Thermal Disintegration of Human Mucinous Breast Carcinoma Ex Vivo Using Boiling Histotripsy. Bull Exp Biol Med 2024; 177:133-136. [PMID: 38960959 DOI: 10.1007/s10517-024-06144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 07/05/2024]
Abstract
We present the results of a pilot study demonstrating the feasibility of non-invasive non-thermal disintegration of human mucinous carcinoma of the breast ex vivo using sequences of high-intensity focused ultrasound pulses in boiling histotripsy regimen. The target volume was sonicated by focusing ultrasound pulses (n=20) of 1.5 MHz frequency, 10-msec duration and 1-sec pulse repetition period, 517 W acoustic power within the pulse, and 103 MPa shock front amplitude at the focus into each node of a volumetric grid 4×4×1 mm. Sonication was visualized and controlled using B-mode ultrasound imaging, total time of the treatment was 21 min. Histological hematoxylin and eosin and Masson's trichrome staining revealed the absence of tumor elements in the treated region confirming destruction of cancer cells and their nuclei after boiling histotripsy procedure.
Collapse
Affiliation(s)
| | - S A Tsysar
- Lomonosov Moscow State University, Moscow, Russia
| | - D D Chupova
- Lomonosov Moscow State University, Moscow, Russia
| | - P A Pestova
- Lomonosov Moscow State University, Moscow, Russia
| | | | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| | - P G Malkov
- Lomonosov Moscow State University, Moscow, Russia
| | - A L Chernyaev
- Research Institute of Pulmonology, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - S V Buravkov
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
13
|
Iqbal MF, Shafique MA, Abdur Raqib M, Fadlalla Ahmad TK, Haseeb A, M. A. Mhjoob A, Raja A. Histotripsy: an innovative approach for minimally invasive tumour and disease treatment. Ann Med Surg (Lond) 2024; 86:2081-2087. [PMID: 38576932 PMCID: PMC10990312 DOI: 10.1097/ms9.0000000000001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Histotripsy is a noninvasive medical technique that uses high-intensity focused ultrasound (HIFU) to treat liver tumours. The two main histotripsy methods are boiling histotripsy and cavitation cloud histotripsy. Boiling histotripsy uses prolonged ultrasound pulses to create small boiling bubbles in the tissue, which leads to the breakdown of the tissue into smaller subcellular fragments. Cavitation cloud histotripsy uses the ultrasonic cavitation effect to disintegrate target tissue into precisely defined liquefied lesions. Both methods show similar treatment effectiveness; however, boiling histotripsy ensures treatment stability by producing a stable boiling bubble with each pulse. The therapeutic effect is ascribed to mechanical damage at the subcellular level rather than thermal damage. This article discusses the mechanisms, treatment parameters, and potential of histotripsy as a minimally invasive procedure that provides precise and controlled subcellular damage.
Collapse
Affiliation(s)
| | | | | | | | - Abdul Haseeb
- Department of Medicine, Jinnah Sindh Medical University
| | | | - Adarsh Raja
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| |
Collapse
|
14
|
Rosnitskiy PB, Khokhlova TD, Schade GR, Sapozhnikov OA, Khokhlova VA. Treatment Planning and Aberration Correction Algorithm for HIFU Ablation of Renal Tumors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:341-353. [PMID: 38231825 PMCID: PMC11003458 DOI: 10.1109/tuffc.2024.3355390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-intensity focused ultrasound (HIFU) applications for thermal or mechanical ablation of renal tumors often encounter challenges due to significant beam aberration and refraction caused by oblique beam incidence, inhomogeneous tissue layers, and presence of gas and bones within the beam. These losses can be significantly mitigated through sonication geometry planning, patient positioning, and aberration correction using multielement phased arrays. Here, a sonication planning algorithm is introduced, which uses the simulations to select the optimal transducer position and evaluate the effect of aberrations and acoustic field quality at the target region after aberration correction. Optimization of transducer positioning is implemented using a graphical user interface (GUI) to visualize a segmented 3-D computed tomography (CT)-based acoustic model of the body and to select sonication geometry through a combination of manual and automated approaches. An HIFU array (1.5 MHz, 256 elements) and three renal cell carcinoma (RCC) cases with different tumor locations and patient body habitus were considered. After array positioning, the correction of aberrations was performed using a combination of backpropagation from the focus with an ordinary least squares (OLS) optimization of phases at the array elements. The forward propagation was simulated using a combination of the Rayleigh integral and k-space pseudospectral method (k-Wave toolbox). After correction, simulated HIFU fields showed tight focusing and up to threefold higher maximum pressure within the target region. The addition of OLS optimization to the aberration correction method yielded up to 30% higher maximum pressure compared to the conventional backpropagation and up to 250% higher maximum pressure compared to the ray-tracing method, particularly in strongly distorted cases.
Collapse
|
15
|
Ponomarchuk E, Thomas G, Song M, Krokhmal A, Kvashennikova A, Wang YN, Khokhlova V, Khokhlova T. Histology-based quantification of boiling histotripsy outcomes via ResNet-18 network: Towards mechanical dose metrics. ULTRASONICS 2024; 138:107225. [PMID: 38141356 DOI: 10.1016/j.ultras.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
This work was focused on the newly developed ultrasonic approach for non-invasive surgery - boiling histotripsy (BH) - recently proposed for mechanical ablation of tissues using pulsed high intensity focused ultrasound (HIFU). The BH lesion is known to depend in size and shape on exposure parameters and mechanical properties, structure and composition of tissue being treated. The aim of this work was to advance the concept of BH dose by investigating quantitative relationships between the parameters of the lesion, pulsing protocols, and targeted tissue properties. A HIFU focus of a 1.5 MHz 256-element array driven by power-enhanced Verasonics system was electronically steered along the grid within 12 × 4 × 12 mm volume to produce volumetric lesions in porcine liver (soft, with abundant collagenous structures) and bovine myocardium (stiff, homogenous cellular) ex vivo tissues with various pulsing protocols (1-10 ms pulses, 1-15 pulses per point). Quantification of the lesion size and completeness was performed through serial histological sectioning, and a computer vision approach using a combination of manual and automated detection of fully fractionated and residual tissue based on neural network ResNet-18 was developed. Histological sample fixation led to underestimation of BH ablation rate compared to the ultrasound-based estimations, and provided similar qualitative feedback as did gross inspection. This suggests that gross observation may be sufficient for qualitatively evaluating the BH treatment completeness. BH efficiency in liver tissue was shown to be insensitive to the changes in pulsing protocol within the tested parameter range, whereas in bovine myocardium the efficiency increased with either increasing pulse length or number of pulses per point or both. The results imply that one universal mechanical dose metric applicable to an arbitrary tissue type is unlikely to be established. The dose metric as a product of the BH pulse duration and the number of pulses per sonication point (BHD1) was shown to be more relevant for initial planning of fractionation of collagenous tissues. The dose metric as a number of pulses per point (BHD2) is more suitable for the treatment planning of softer targets primarily containing cellular tissue, allowing for significant acceleration of treatment using shorter pulses.
Collapse
Affiliation(s)
| | - Gilles Thomas
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Minho Song
- Department of Gastroenterology, University of Washington, Seattle, USA
| | - Alisa Krokhmal
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Tatiana Khokhlova
- Department of Gastroenterology, University of Washington, Seattle, USA
| |
Collapse
|
16
|
LeBlang S, Ziemlewicz TJ. The art of histotripsy: a focused ultrasound application that has the potential to treat from head to toe! Int J Hyperthermia 2024; 41:2312608. [PMID: 38323559 DOI: 10.1080/02656736.2024.2312608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Suzanne LeBlang
- Neuroradiologist, Director of Clinical Relationships-Focused Ultrasound Foundation, Charlottesville, VA, USA
| | | |
Collapse
|
17
|
Nakla T, Chow JJ, Pham K, Abi-Jaoudeh N. Non-Thermal Liver Ablation: Existing and New Technology. Semin Intervent Radiol 2023; 40:497-504. [PMID: 38274216 PMCID: PMC10807968 DOI: 10.1055/s-0043-1777844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cancer has and continues to be a complex health crisis plaguing millions around the world. Alcohol ablation was one of the initial methods used for the treatment of liver lesions. It was surpassed by thermal ablation which has played a big role in the therapeutic arsenal for primary and metastatic liver tumors. However, thermal ablation has several shortcomings and limitations that prompted the development of alternative technologies including electroporation and histotripsy. Percutaneous alcohol injection in the liver lesion leads to dehydration and coagulative necrosis. This technology is limited to the lesion with relative sparing of the surrounding tissue, making it safe to use adjacent to sensitive structures. Electroporation utilizes short high-voltage pulses to permeabilize the cell membrane and can result in cell death dependent on the threshold reached. It can effectively target the tumor margins and has lower damage rates to surrounding structures due to the short pulse duration. Histotripsy is a novel technology, and although the first human trial was just completed, its results are encouraging, given the sharp demarcation of the targeted tissue, lack of thermal damage, and potential for immunomodulation of the tumor microenvironment. Herein, we discuss these techniques, their uses, and overall clinical benefit.
Collapse
Affiliation(s)
- Tiffany Nakla
- College of Osteopathic Medicine, Touro University Nevada, Henderson, Nevada
| | - Jacqueline J. Chow
- School of Medicine, University of California, Irvine, Irvine, California
| | - Kathleen Pham
- Department of Radiological Sciences, University of California, Irvine, Irvine, California
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, University of California, Irvine, Irvine, California
| |
Collapse
|
18
|
Hay AN, Ruger L, Hsueh A, Vickers E, Klahn S, Vlaisavljevich E, Tuohy J. A review of the development of histotripsy for extremity tumor ablation with a canine comparative oncology model to inform human treatments. Int J Hyperthermia 2023; 40:2274802. [PMID: 37994796 PMCID: PMC10669778 DOI: 10.1080/02656736.2023.2274802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Cancer is a devasting disease resulting in millions of deaths worldwide in both humans and companion animals, including dogs. Treatment of cancer is complex and challenging and therefore often multifaceted, as in the case of osteosarcoma (OS) and soft tissue sarcoma (STS). OS predominantly involves the appendicular skeleton and STS commonly develops in the extremities, resulting in treatment challenges due to the need to balance wide-margin resections to achieve local oncological control against the functional outcomes for the patient. To achieve wide tumor resection, invasive limb salvage surgery is often required, and the patient is at risk for numerous complications which can ultimately lead to impaired limb function and mobility. The advent of tumor ablation techniques offers the exciting potential of developing noninvasive or minimally invasive treatment options for extremity tumors. One promising innovative tumor ablation technique with strong potential to serve as a noninvasive limb salvage treatment for extremity tumor patients is histotripsy. Histotripsy is a novel, noninvasive, non-thermal, and non-ionizing focused ultrasound technique which uses controlled acoustic cavitation to mechanically disintegrate tissue with high precision. In this review, we present the ongoing development of histotripsy as a non-surgical alternative for extremity tumors and highlight the value of spontaneously occurring OS and STS in the pet dog as a comparative oncology research model to advance this field of histotripsy research.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Elliana Vickers
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Graduate program in Translation Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| |
Collapse
|