1
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M. Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 2024:1-14. [PMID: 39544140 DOI: 10.1080/13816810.2024.2423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based therapy has gained importance over the past decades due to huge advances in science and technology behind the generation and directed differentiation of pluripotent cells from embryos and adult cells. Preclinical proof-of-concept studies have been followed by clinical trials showing efficacy and safety of transplantation of stem cell-based therapy, which are beginning to establish this as a modality of treatment. Disease candidates of interest are primarily conditions that may benefit from replacing dead or dying cells, including advanced inherited retinal dystrophies and age-related macular degeneration, and predominantly seek to transplant either RPE or photoreceptors, although neurotrophic approaches have also been trialed. Whilst a consensus has yet to be reached about the best stage/type of cells for transplantation (stem cells, progenitor cells, differentiated RPE and photoreceptors) and the methods of implantation (sheet, suspension), several CTs have shown safety. There remain potential concerns regarding tumorigenicity and immune rejection; however, with ongoing improvements in cell generation, selection, and delivery, these can be minimized. Earlier studies showed efficacy with immunosuppressive drugs to prevent rejection, and recent donor-matched transplants have avoided the need for immunosuppression. Retinal regenerative medicine is a challenging field and is in a nascent stage but holds tremendous promise. This narrative review delves into the current understanding of stem cells and the latest clinical trials of retinal cell transplantation.
Collapse
Affiliation(s)
- Sagnik Sen
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Michel Michaelides
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
da Silva Costa SM, Ito MT, da Cruz PRS, De Souza BB, Rios VM, Bertozzo VDHE, Camargo ACL, Viturino MGM, Lanaro C, de Albuquerque DM, do Canto AM, Saad STO, Ospina-Prieto S, Ozelo MC, Costa FF, de Melo MB. The molecular mechanism responsible for HbSC retinopathy may depend on the action of the angiogenesis-related genes ROBO1 and SLC38A5. Exp Biol Med (Maywood) 2024; 249:10070. [PMID: 39114443 PMCID: PMC11303203 DOI: 10.3389/ebm.2024.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
HbSC disease, a less severe form of sickle cell disease, affects the retina more frequently and patients have higher rates of proliferative retinopathy that can progress to vision loss. This study aimed to identify differences in the expression of endothelial cell-derived molecules associated with the pathophysiology of proliferative sickle cell retinopathy (PSCR). RNAseq was used to compare the gene expression profile of circulating endothelial colony-forming cells from patients with SC hemoglobinopathy and proliferative retinopathy (n = 5), versus SC patients without retinopathy (n = 3). Real-time polymerase chain reaction (qRT-PCR) was used to validate the RNAseq results. A total of 134 differentially expressed genes (DEGs) were found. DEGs were mainly associated with vasodilatation, type I interferon signaling, innate immunity and angiogenesis. Among the DEGs identified, we highlight the most up-regulated genes ROBO1 (log2FoldChange = 4.32, FDR = 1.35E-11) and SLC38A5 (log2FoldChange = 3.36 FDR = 1.59E-07). ROBO1, an axon-guided receptor, promotes endothelial cell migration and contributes to the development of retinal angiogenesis and pathological ocular neovascularization. Endothelial SLC38A5, an amino acid (AA) transporter, regulates developmental and pathological retinal angiogenesis by controlling the uptake of AA nutrient, which may serve as metabolic fuel for the proliferation of endothelial cells (ECs) and consequent promotion of angiogenesis. Our data provide an important step towards elucidating the molecular pathophysiology of PSCR that may explain the differences in ocular manifestations between individuals with hemoglobinopathies and afford insights for new alternative strategies to inhibit pathological angiogenesis.
Collapse
Affiliation(s)
| | - Mirta Tomie Ito
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Bruno Batista De Souza
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Vinicius Mandolesi Rios
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Victor de Haidar e Bertozzo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Ana Carolina Lima Camargo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Carolina Lanaro
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Amanda Morato do Canto
- Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Stephanie Ospina-Prieto
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Margareth Castro Ozelo
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Fernando Ferreira Costa
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| |
Collapse
|
4
|
Marra KV, Chen JS, Robles-Holmes HK, Miller J, Wei G, Aguilar E, Ideguchi Y, Ly KB, Prenner S, Erdogmus D, Ferrara N, Campbell JP, Friedlander M, Nudleman E. Development of a Semi-automated Computer-based Tool for the Quantification of Vascular Tortuosity in the Murine Retina. OPHTHALMOLOGY SCIENCE 2024; 4:100439. [PMID: 38361912 PMCID: PMC10867761 DOI: 10.1016/j.xops.2023.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 02/17/2024]
Abstract
Purpose The murine oxygen-induced retinopathy (OIR) model is one of the most widely used animal models of ischemic retinopathy, mimicking hallmark pathophysiology of initial vaso-obliteration (VO) resulting in ischemia that drives neovascularization (NV). In addition to NV and VO, human ischemic retinopathies, including retinopathy of prematurity (ROP), are characterized by increased vascular tortuosity. Vascular tortuosity is an indicator of disease severity, need to treat, and treatment response in ROP. Current literature investigating novel therapeutics in the OIR model often report their effects on NV and VO, and measurements of vascular tortuosity are less commonly performed. No standardized quantification of vascular tortuosity exists to date despite this metric's relevance to human disease. This proof-of-concept study aimed to apply a previously published semi-automated computer-based image analysis approach (iROP-Assist) to develop a new tool to quantify vascular tortuosity in mouse models. Design Experimental study. Subjects C57BL/6J mice subjected to the OIR model. Methods In a pilot study, vasculature was manually segmented on flat-mount images of OIR and normoxic (NOX) mice retinas and segmentations were analyzed with iROP-Assist to quantify vascular tortuosity metrics. In a large cohort of age-matched (postnatal day 12 [P12], P17, P25) NOX and OIR mice retinas, NV, VO, and vascular tortuosity were quantified and compared. In a third experiment, vascular tortuosity in OIR mice retinas was quantified on P17 following intravitreal injection with anti-VEGF (aflibercept) or Immunoglobulin G isotype control on P12. Main Outcome Measures Vascular tortuosity. Results Cumulative tortuosity index was the best metric produced by iROP-Assist for discriminating between OIR mice and NOX controls. Increased vascular tortuosity correlated with disease activity in OIR. Treatment of OIR mice with aflibercept rescued vascular tortuosity. Conclusions Vascular tortuosity is a quantifiable feature of the OIR model that correlates with disease severity and may be quickly and accurately quantified using the iROP-Assist algorithm. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kyle V. Marra
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
- School of Medicine, University of California San Diego, San Diego, California
| | - Jimmy S. Chen
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Hailey K. Robles-Holmes
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Joseph Miller
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Guoqin Wei
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Yoichiro Ideguchi
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Kristine B. Ly
- College of Optometry, Pacific University, Forest Grove, Oregon
| | - Sofia Prenner
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Deniz Erdogmus
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Napoleone Ferrara
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - J. Peter Campbell
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Martin Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Eric Nudleman
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| |
Collapse
|
5
|
Alva N, Martínez AR, Ortiz-Saavedra B, Montes-Madariaga ES, Cotrina A, Caballero-Alvarado JA, Sah R, Barboza JJ. Ranibizumab for the treatment of retinopathy of prematurity: systematic review and meta-analysis. Front Pediatr 2023; 11:1202927. [PMID: 37601137 PMCID: PMC10436596 DOI: 10.3389/fped.2023.1202927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Anti-VEGF drugs like ranibizumab can be used to treat retinopathy of prematurity (ROP) by halting the formation of abnormal blood vessels, or lasers can be used to burn the edges of the retina where these vessels are present. The objective is to compare the efficacy for ROP between ranibizumab and laser therapy. Material and methods Electronic searches will be carried out in medical databases with key words and controlled vocabulary terms. Randomized controlled trials (RCT) will be assessed. The primary outcome will be the full ROP regression. Two reviewers will extract the data using predefined forms and, to assess the quality of the study, we will use RoB 2.0, the tool for randomized controlled trials developed by the Cochrane Collaboration. We used a combination of the inverse-variance approach and random-effects models for the meta-analysis. Results The eyes of 182 preterm infants who had ranibizumab treatment were assessed in a total of 364 eyes, and 135 infants received laser therapy. The follow-up period was between 6 and 24 months. Ranibizumab was not associated with greater regression of ROP compared to laser therapy in preterm infants (RR: 1.09, CI 95%: 0.95-1.24; p: 0.22). Also, ranibizumab was not associated with recurrence of ROP compared to laser therapy in preterm infants (RR: 3.77, CI 95%: 0.55-25.81; p: 0.22). Conclusions The efficacy of ranibizumab compared to laser is very uncertain in terms of ROP regression and decreased ROP recurrence in preterm infants. Systematic Review Registration identifier PROSPERO (CRD42022324150).
Collapse
Affiliation(s)
- Niza Alva
- Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Unidad de Revisiones Sistemáticas y Meta-Análisis, Tau-Relaped Group, Lima, Peru
| | - Alex R. Martínez
- Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Unidad de Revisiones Sistemáticas y Meta-Análisis, Tau-Relaped Group, Lima, Peru
| | - Brando Ortiz-Saavedra
- Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Elizbet S. Montes-Madariaga
- Unidad de Revisiones Sistemáticas y Meta-Análisis, Tau-Relaped Group, Lima, Peru
- Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Alonso Cotrina
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | | |
Collapse
|
6
|
Bertozzo VDHE, da Silva Costa SM, Ito MT, da Cruz PRS, Souza BB, Rios VM, Viturino MGM, de Castro JNP, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Olalla Saad ST, Ozelo MC, Costa FF, de Melo MB. Comparative transcriptome analysis of endothelial progenitor cells of HbSS patients with and without proliferative retinopathy. Exp Biol Med (Maywood) 2023; 248:677-684. [PMID: 37012663 PMCID: PMC10408552 DOI: 10.1177/15353702231157927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/18/2023] [Indexed: 04/05/2023] Open
Abstract
Among sickle cell anemia (SCA) complications, proliferative sickle cell retinopathy (PSCR) is one of the most important, being responsible for visual impairment in 10-20% of affected eyes. The aim of this study was to identify differentially expressed genes (DEGs) present in pathways that may be implicated in the pathophysiology of PSCR from the transcriptome profile analysis of endothelial progenitor cells. RNA-Seq was used to compare gene expression profile of circulating endothelial colony-forming cells (ECFCs) from HbSS patients with and without PSCR. Furthermore, functional enrichment analysis and protein-protein interaction (PPI) networks were performed to gain further insights into biological functions. The differential expression analysis identified 501 DEGs, when comparing the groups with and without PSCR. Furthermore, functional enrichment analysis showed associations of the DEGs in 200 biological processes. Among these, regulation of mitogen-activated protein (MAP) kinase activity, positive regulation of phosphatidylinositol 3-kinase (PI3K), and positive regulation of Signal Transducer and Activator of Transcription (STAT) receptor signaling pathway were observed. These pathways are associated with angiogenesis, cell migration, adhesion, differentiation, and proliferation, important processes involved in PSCR pathophysiology. Moreover, our results showed an over-expression of VEGFC (vascular endothelial growth factor-C) and FLT1 (Fms-Related Receptor Tyrosine Kinase 1) genes, when comparing HbSS patients with and without PSCR. These results may indicate a possible association between VEGFC and FLT1 receptor, which may activate signaling pathways such as PI3K/AKT and MAPK/ERK and contribute to the mechanisms implicated in neovascularization. Thus, our findings contain preliminary results that may guide future studies in the field, since the molecular mechanisms of PSCR are still poorly understood.
Collapse
Affiliation(s)
- Victor de Haidar e Bertozzo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Sueli Matilde da Silva Costa
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Mirta Tomie Ito
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Pedro Rodrigues Sousa da Cruz
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Bruno Batista Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Vinicius Mandolesi Rios
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | | | | | - Thiago Adalton Rosa Rodrigues
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| |
Collapse
|
7
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
8
|
Huang X, Gao H, Xu H. Editorial: Stem Cell-Based Therapy in Retinal Degeneration. Front Neurosci 2022; 16:879659. [PMID: 35401093 PMCID: PMC8990161 DOI: 10.3389/fnins.2022.879659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
- *Correspondence: Haiwei Xu
| |
Collapse
|
9
|
Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases. Int J Mol Sci 2021; 23:ijms23010249. [PMID: 35008675 PMCID: PMC8745455 DOI: 10.3390/ijms23010249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells are multipotent stem cells isolated from various tissue sources, including but not limited to bone marrow, adipose, umbilical cord, and Wharton Jelly. Although cell-mediated mechanisms have been reported, the therapeutic effect of MSCs is now recognized to be primarily mediated via paracrine effects through the secretion of bioactive molecules, known as the “secretome”. The regenerative benefit of the secretome has been attributed to trophic factors and cytokines that play neuroprotective, anti-angiogenic/pro-angiogenic, anti-inflammatory, and immune-modulatory roles. The advancement of autologous MSCs therapy can be hindered when introduced back into a hostile/disease environment. Barriers include impaired endogenous MSCs function, limited post-transplantation cell viability, and altered immune-modulatory efficiency. Although secretome-based therapeutics have gained popularity, many translational hurdles, including the heterogeneity of MSCs, limited proliferation potential, and the complex nature of the secretome, have impeded the progress. This review will discuss the experimental and clinical impact of restoring the functional capabilities of MSCs prior to transplantation and the progress in secretome therapies involving extracellular vesicles. Modulation and utilization of MSCs–secretome are most likely to serve as an effective strategy for promoting their ultimate success as therapeutic modulators.
Collapse
|
10
|
Agrawal M, Rasiah PK, Bajwa A, Rajasingh J, Gangaraju R. Mesenchymal Stem Cell Induced Foxp3(+) Tregs Suppress Effector T Cells and Protect against Retinal Ischemic Injury. Cells 2021; 10:3006. [PMID: 34831229 PMCID: PMC8616393 DOI: 10.3390/cells10113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are well known for immunomodulation; however, the mechanisms involved in their benefits in the ischemic retina are unknown. This study tested the hypothesis that MSC induces upregulation of transcription factor forkhead box protein P3 (Foxp3) in T cells to elicit immune modulation, and thus, protect against retinal damage. Induced MSCs (iMSCs) were generated by differentiating the induced pluripotent stem cells (iPSC) derived from urinary epithelial cells through a noninsertional reprogramming approach. In in-vitro cultures, iMSC transferred mitochondria to immune cells via F-actin nanotubes significantly increased oxygen consumption rate (OCR) for basal respiration and ATP production, suppressed effector T cells, and promoted differentiation of CD4+CD25+ T regulatory cells (Tregs) in coculture with mouse splenocytes. In in-vivo studies, iMSCs transplanted in ischemia-reperfusion (I/R) injured eye significantly increased Foxp3+ Tregs in the retina compared to that of saline-injected I/R eyes. Furthermore, iMSC injected I/R eyes significantly decreased retinal inflammation as evidenced by reduced gene expression of IL1β, VCAM1, LAMA5, and CCL2 and improved b-wave amplitudes compared to that of saline-injected I/R eyes. Our study demonstrates that iMSCs can transfer mitochondria to immune cells to suppress the effector T cell population. Additionally, our current data indicate that iMSC can enhance differentiation of T cells into Foxp3 Tregs in vitro and therapeutically improve the retina's immune function by upregulation of Tregs to decrease inflammation and reduce I/R injury-induced retinal degeneration in vivo.
Collapse
Affiliation(s)
- Mona Agrawal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Pratheepa Kumari Rasiah
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Amandeep Bajwa
- James D. Eason Transplant Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Johnson Rajasingh
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Herrera JL, Komatsu M. R-Ras Deficiency in Pericytes Causes Frequent Microphthalmia and Perturbs Retinal Vascular Development. J Vasc Res 2021; 58:252-266. [PMID: 33873190 PMCID: PMC8263468 DOI: 10.1159/000514555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The retinal vasculature is heavily invested by pericytes. Small GTPase R-Ras is highly expressed in endothelial cells and pericytes, suggesting importance of this Ras homolog for the regulation of the blood vessel wall. We investigated the specific contribution of pericyte-expressed R-Ras to the development of the retinal vasculature. METHODS The effect of R-Ras deficiency in pericytes was analyzed in pericyte-targeted conditional Rras knockout mice at birth and during the capillary plexus formation in the neonatal retina. RESULTS The offspring of these mice frequently exhibited unilateral microphthalmia. Analyses of the developing retinal vasculature in the eyes without microphthalmia revealed excessive endothelial cell proliferation, sprouting, and branching of the capillary plexus in these animals. These vessels were structurally defective with diminished pericyte coverage and basement membrane formation. Furthermore, these vessels showed reduced VE-cadherin staining and significantly elevated plasma leakage indicating the breakdown of the blood-retinal barrier. This defect was associated with considerable macrophage infiltration in the retina. CONCLUSIONS The normal retinal vascular development is dependent on R-Ras expression in pericytes, and the absence of it leads to unattenuated angiogenesis and significantly weakens the blood-retinal barrier. Our findings underscore the importance of R-Ras for pericyte function during the normal eye development.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Cancer and Blood Disorders Institute, Institute for Fundamental Biomedical Research, and Department of Surgery, Johns Hopkins All Children's Hospital, and Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute, Institute for Fundamental Biomedical Research, and Department of Surgery, Johns Hopkins All Children's Hospital, and Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida, USA
| |
Collapse
|
12
|
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021; 17:195-206. [PMID: 33469209 PMCID: PMC9053333 DOI: 10.1038/s41574-020-00451-4] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus has profound effects on multiple organ systems; however, the loss of vision caused by diabetic retinopathy might be one of the most impactful in a patient's life. The retina is a highly metabolically active tissue that requires a complex interaction of cells, spanning light sensing photoreceptors to neurons that transfer the electrochemical signal to the brain with support by glia and vascular tissue. Neuronal function depends on a complex inter-dependency of retinal cells that includes the formation of a blood-retinal barrier. This dynamic system is negatively affected by diabetes mellitus, which alters normal cell-cell interactions and leads to profound vascular abnormalities, loss of the blood-retinal barrier and impaired neuronal function. Understanding the normal cell signalling interactions and how they are altered by diabetes mellitus has already led to novel therapies that have improved visual outcomes in many patients. Research highlighted in this Review has led to a new understanding of retinal pathophysiology during diabetes mellitus and has uncovered potential new therapeutic avenues to treat this debilitating disease.
Collapse
Affiliation(s)
- David A Antonetti
- Department of Ophthalmology and Visual Sciences, Department of Molecular and Integrative Physiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Paolo S Silva
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
13
|
Noueihed B, Rivera JC, Dabouz R, Abram P, Omri S, Lahaie I, Chemtob S. Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Front Cell Dev Biol 2021; 9:630645. [PMID: 33553187 PMCID: PMC7859341 DOI: 10.3389/fcell.2021.630645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity and diabetic retinopathy, are characterized by an initial phase of microvascular degeneration that results in retinal ischemia, followed by exaggerated pathologic neovascularization (NV). Mesenchymal stromal cells (MSCs) have potent pro-angiogenic and anti-inflammatory properties associated with tissue repair and regeneration, and in this regard exert protection to neurons in ischemic and degenerative conditions; however, the exact mechanisms underlying these functions remain largely unknown. Class III Semaphorins (A–G) are particularly implicated in regulating neural blood supply (as well as neurogenesis) by suppressing angiogenesis and affecting myeloid cell function; this is the case for distinct neuropillin-activating Sema3A as well as PlexinD1-activating Sema3E; but during IR the former Sema3A increases while Sema3E decreases. We investigated whether retinal vascular repair actions of MSCs are exerted by normalizing Semaphorin and downstream cytokines in IR. Intravitreal administration of MSCs or their secretome (MSCs-conditioned media [MSCs-CM]) significantly curtailed vasoobliteration as well as aberrant preretinal NV in a model of oxygen-induced retinopathy (OIR). The vascular repair effects of MSCs-CM in the ischemic retina were associated with restored levels of Sema3E. Vascular benefits of MSCs-CM were reversed by anti-Sema3E; while intravitreal injection of anti-angiogenic recombinant Sema3E (rSema3E) in OIR-subjected mice reproduced effects of MSCs-CM by inhibiting as expected preretinal NV but also by decreasing vasoobliteration. To explain these opposing vascular effects of Sema3E we found in OIR high retinal levels, respectively, of the pro- and anti-angiogenic IL-17A and Sema3A-regulating IL-1β; IL-17A positively affected expression of IL-1β. rSema3E decreased concentrations of these myeloid cell-derived pro-inflammatory cytokines in vitro and in vivo. Importantly, IL-17A suppression by MSCs-CM was abrogated by anti-Sema3E neutralizing antibody. Collectively, our findings provide novel evidence by which MSCs inhibit aberrant NV and diminish vasoobliteration (promoting revascularization) in retinopathy by restoring (at least in part) neuronal Sema3E levels that reduce pathological levels of IL-17A (and in turn other proinflammatory factors) in myeloid cells. The ability of MSCs to generate a microenvironment permissive for vascular regeneration by controlling the production of neuronal factors involved in immunomodulatory activities is a promising opportunity for stem cell therapy in ocular degenerative diseases.
Collapse
Affiliation(s)
- Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
14
|
Dourado LFN, Oliveira LG, da Silva CN, Toledo CR, Fialho SL, Jorge R, Silva-Cunha A. Intravitreal ketamine promotes neuroprotection in rat eyes after experimental ischemia. Biomed Pharmacother 2021; 133:110948. [PMID: 33249278 DOI: 10.1016/j.biopha.2020.110948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Retinal ischemia, one of the most common cause of visual loss, is associated with blood flow inadequacy and subsequent tissue injury. In this setting, some treatments that can counteract glutamate increase, arouse interest in ischemic pathogenesis. Ketamine, a potent N-methyl-d-aspartate (NMDA) receptor antagonist, provides a neuroprotective pathway via decreasing the excitotoxicity triggered by excess glutamatergic. Thus, the goal of this study was to evaluate the safety of intravitreal use of ketamine and their potential protective effects on retinal cells in retinal ischemia/reperfusion model. Initially, ketamine toxicity was evaluated by cytotoxicity assay and Hen's egg chorioallantoic membrane (HET-CAM) method. Afterward, some ketamine concentrations were tested in rat's eyes to verify the safety of the intravitreal use. To investigate the neuroprotective effect on retinal, a single intravitreal injection of ketamine in concentrations of 0.059 mmol.L-1 and 0.118 mmol.L-1 was performed one day before the retinal injury by ischemia/reperfusion model. After 7 and 15 days, the retina activity was evaluated by electroretinogram (ERG) records and, lastly, by morphological analyzes. Cytotoxicity assay reveals that the maximum ketamine concentration that could reach retinal pigmented epithelium cells is 0.353 mmol.L-1. HET-CAM assay showed that concentrations above 0.237 mmol.L-1 are irritants to the eye. Thus, Ketamine in concentrations of 0.0237 mmol.L-1, 0.118 mmol.L-1, and 0.059 mmol.L-1 were selected for in vivo toxicity test. ERG records reveal a tendency of b-wave amplitude to decrease as the luminous intensity increased, in the group receiving ketamine at 0.237 mmol.L-1. Therefore, ketamine in concentrations at 0.059 mmol.L-1 and 0.118 mmol.L-1 were chosen for the following tests. In the ischemia retinal degeneration model, pretreatment with ketamine was capable to promote a recovery of retinal electrophysiological function minimizing the ischemic effects. In histological analysis, the groups that received intravitreal ketamine showed a number of retinal cells significantly higher than the vehicle group. In TUNEL assay a reduction on TUNEL-positive cells was observed in all the layers for both concentrations which allow to affirm that ketamine contributes to reducing cell death in the retina. Transmission electron microscopy (TEM) reaffirms this finding. Ketamine intravitreal pretreatment showed reduced ultrastructural changes. Our findings demonstrate that ketamine is safe for intravitreal use in doses up to 0.118 mmol.L-1. They seem to be particularly efficient to protect the retina from ischemic injury.
Collapse
Affiliation(s)
- Lays Fernanda Nunes Dourado
- Faculty of Pharmacy, Federal University of Minas Gerais, Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lucas Gomes Oliveira
- Faculty of Pharmacy, Federal University of Minas Gerais, Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Carolina Nunes da Silva
- Faculty of Pharmacy, Federal University of Minas Gerais, Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Cibele Rodrigues Toledo
- Faculty of Pharmacy, Federal University of Minas Gerais, Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro, 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Rodrigo Jorge
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Federal University of Minas Gerais, Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
15
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
16
|
Yu B, Li XR, Zhang XM. Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J Stem Cells 2020; 12:178-187. [PMID: 32266050 PMCID: PMC7118288 DOI: 10.4252/wjsc.v12.i3.178] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted considerable attention for their activity in the treatment of refractory visual disorders. Since MSCs were found to possess the beneficial effects by secreting paracrine factors rather than direct differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in various disease models. MSCs generate abundant EVs, which act as important mediators by exchanging protein and genetic information between MSCs and target cells. It has been confirmed that MSC-derived EVs possess unique anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties, similar to their parent cells. Upon intravitreal injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal injury or inflammation. Due to possible risks associated with MSC transplantation, such as vitreous opacity and pathological proliferation, EVs appear to be a better choice for intravitreal injection. Small size EVs can pass through biological barriers easily and their contents can be modified genetically for optimal therapeutic effect. Hence, currently, they are also explored for the possibility of serving as drug delivery vehicles. In the current review, we describe the characteristics of MSC-derived EVs briefly, comprehensively summarize their biological functions in ocular diseases, and discuss their potential applications in clinical settings.
Collapse
Affiliation(s)
- Bo Yu
- Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Rong Li
- Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| |
Collapse
|