1
|
Patton AP, Boogaard H, Vienneau D, Brook JR, Smargiassi A, Kutlar Joss M, Szpiro AA, Sagiv SK, Samoli E, Hoffmann B, Chang HH, Atkinson RW, Weuve J, Forastiere F, Lurmann FW, Hoek G. Assessment of long-term exposure to traffic-related air pollution: An exposure framework. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00731-5. [PMID: 39550493 DOI: 10.1038/s41370-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with morbidity and mortality, making it an important public health concern. Emissions from motorized traffic are a common source of air pollution but evaluating the contribution of traffic-related air pollution (TRAP) emissions to health risks is challenging because it is difficult to disentangle the contribution of individual air pollution sources to exposure contrasts in an epidemiological study. OBJECTIVE This paper describes a new framework to identify whether air pollution differences reflect contrasts in TRAP exposures. Because no commonly measured pollutant is entirely specific to on-road motor vehicles, this exposure framework combined information on pollutants, spatial scale (i.e., geographic extent), and exposure assessment methods and their spatial scale to determine whether the estimated effect of air pollution in a given study was related to differences in TRAP. METHODS The exposure framework extended beyond the near-road environment to include differences in exposure to TRAP at neighborhood resolution ( ≤ 5 km) across urban, regional, and national scales. It also embedded a stricter set of criteria to identify studies that provided the strongest evidence that exposure contrasts were related to differences in traffic emissions. RESULTS Application of the framework to the transparent selection of epidemiological studies for a systematic review produced insights on assessing and improving comparability of TRAP exposure measures, particularly for indirect measures such as distances from roads. It also highlighted study design challenges related to the duration of measurements and the structure of epidemiological models. IMPACT STATEMENT This manuscript describes a new exposure framework to identify studies of traffic-related air pollution, a case study of its application in an HEI systematic review, and its implications for exposure science and air pollution epidemiology experts. It identifies challenges and provides recommendations for the field going forward. It is important to bring this information to the attention of researchers in air pollution exposure science and epidemiology because applying the broader lessons learned will improve the conduct and reporting of studies going forward.
Collapse
Affiliation(s)
| | | | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeffrey R Brook
- Dalla Lana School of Public Health and Dept. of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal (CReSP), Montréal, QC, Canada
| | - Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health, Division of Epidemiology, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard W Atkinson
- Population Health Research Institute, St. George's University of London, London, UK
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Francesco Forastiere
- Environmental Health Group, School of Public Health, Imperial College, London, UK
| | | | - Gerard Hoek
- Institute for Risk Assessment Sciences, Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Lu C, Liu Z, Yang W, Liao H, Liu Q, Li Q, Deng Q. Early life exposure to outdoor air pollution and indoor environmental factors on the development of childhood allergy from early symptoms to diseases. ENVIRONMENTAL RESEARCH 2023; 216:114538. [PMID: 36252839 DOI: 10.1016/j.envres.2022.114538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prevalence of childhood allergies has increased during past decades leading to serious hospitalization and heavy burden worldwide, yet the key factors responsible for the onset of early symptoms and development of diagnosed diseases are unclear. OBJECTIVE To explore the role of early life exposure to ambient air pollution and indoor environmental factors on early allergic symptoms and doctor diagnosed allergic diseases. METHODS A retrospective cohort study of 2598 preschool children was conducted at 36 kindergartens in Changsha, China from September of 2011 to February of 2012. A questionnaire was developed to survey each child's early onset of allergic symptoms (wheeze and rhinitis-like symptoms) and doctor diagnosis of allergic diseases (asthma and rhinitis) as well as home environments. Each mother's and child's exposures to ambient air pollutants (PM10, SO2, and NO2) and temperature were estimated for in utero and postnatal periods. The associations of early symptoms and diagnosed diseases with outdoor air pollution and indoor environmental variables were examined by logistic regression models. RESULTS Childhood early allergic symptoms (33.9%) including wheeze (14.7%) and rhinitis-like symptoms (25.4%) before 2 years old were not associated with outdoor air pollution exposure but was significantly associated with maternal exposure of window condensation at home in pregnancy with ORs (95% CI) of 1.33 (1.11-1.59), 1.30 (1.01-1.67) and 1.27 (1.04-1.55) respectively, and was associated with new furniture during first year after birth with OR (95% CI) of 1.43 (1.02-2.02) for early wheeze. Childhood diagnosed allergic diseases (28.4%) containing asthma (6.7%) and allergic rhinitis (AR) (7.2%) were significantly associated with both outdoor air pollutants (mainly for SO2 and NO2) during first 3 years and indoor new furniture, redecoration, and window condensation. We found that sex, age, parental atopy, maternal productive age, environmental tobacco smoke (ETS), antibiotics use, economic stress, early and late introduction of complementary foods, and outdoor air pollution modified the effects of home environmental exposure in early life on early allergic symptoms and diagnosed allergic diseases. CONCLUSION Our study indicates that early life exposure to indoor environmental factors plays a key role in early onset of allergic symptoms in children, and further exposure to ambient air pollution and indoor environmental factors contribute to the later development of asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Li
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Louis H, Egemonye TC, Unimuke TO, Inah BE, Edet HO, Eno EA, Adalikwu SA, Adeyinka AS. Detection of Carbon, Sulfur, and Nitrogen Dioxide Pollutants with a 2D Ca 12O 12 Nanostructured Material. ACS OMEGA 2022; 7:34929-34943. [PMID: 36211081 PMCID: PMC9535646 DOI: 10.1021/acsomega.2c03512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 05/24/2023]
Abstract
In recent times, nanomaterials have been applied for the detection and sensing of toxic gases in the environment owing to their large surface-to-volume ratio and efficiency. CO2 is a toxic gas that is associated with causing global warming, while SO2 and NO2 are also characterized as nonbenign gases in the sense that when inhaled, they increase the rate of respiratory infections. Therefore, there is an explicit reason to develop efficient nanosensors for monitoring and sensing of these gases in the environment. Herein, we performed quantum chemical simulation on a Ca12O12 nanocage as an efficient nanosensor for sensing and monitoring of these gases (CO2, SO2, NO2) by employing high-level density functional theory modeling at the B3LYP-GD3(BJ)/6-311+G(d,p) level of theory. The results obtained from our studies revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage with adsorption energies of -2.01 and -5.85 eV, respectively, is chemisorption in nature, while that of NO2 possessing an adsorption energy of -0.69 eV is related to physisorption. Moreover, frontier molecular orbital (FMO), global reactivity descriptors, and noncovalent interaction (NCI) analysis revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage is stable adsorption, while that of NO2 is unstable adsorption. Thus, we can infer that the Ca12O12 nanocage is more efficient as a nanosensor in sensing CO2 and SO2 gases than in sensing NO2 gas.
Collapse
Affiliation(s)
- Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - ThankGod C. Egemonye
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Tomsmith O. Unimuke
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Bassey E. Inah
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Henry O. Edet
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Ededet A. Eno
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Stephen A. Adalikwu
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Adedapo S. Adeyinka
- Research
Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Zhou X, Gao Y, Wang D, Chen W, Zhang X. Association Between Sulfur Dioxide and Daily Inpatient Visits With Respiratory Diseases in Ganzhou, China: A Time Series Study Based on Hospital Data. Front Public Health 2022; 10:854922. [PMID: 35433609 PMCID: PMC9008542 DOI: 10.3389/fpubh.2022.854922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Background Sulfur dioxide (SO2) has been reported to be related to the mortality of respiratory diseases, but the relationship between SO2 and hospital inpatient visits with respiratory diseases and the potential impact of different seasons on this relationship is still unclear. Methods The daily average concentrations of air pollutants, including SO2 and meteorological data in Ganzhou, China, from 2017 to 2019 were collected. The data on daily hospitalization for respiratory diseases from the biggest hospital in the city were extracted. The generalized additive models (GAM) and the distributed lag non-linear model (DLNM) were employed to evaluate the association between ambient SO2 and daily inpatient visits for respiratory diseases. Stratified analyses by gender, age, and season were performed to find their potential effects on this association. Results There is a positive exposure-response relationship between SO2 concentration and relative risk of respiratory inpatient visits. Every 10 μg/m3 increase in SO2 was related to a 3.2% (95% CI: 0.6–6.7%) exaltation in daily respiratory inpatient visits at lag3. In addition, SO2 had a stronger association with respiratory inpatient visits in women, older adults (≥65 years), and warmer season (May-Oct) subgroups. The relationship between SO2 and inpatient visits for respiratory diseases was robust after adjusting for other air pollutants, including PM10, NO2, O3, and CO. Conclusion This time-series study showed that there is a positive association between short-term SO2 exposure and daily respiratory inpatient visits. These results are important for local administrators to formulate environmental public health policies.
Collapse
Affiliation(s)
- Xingye Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanfang Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokang Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Relationships between Long-Term Ozone Exposure and Allergic Rhinitis and Bronchitic Symptoms in Chinese Children. TOXICS 2021; 9:toxics9090221. [PMID: 34564372 PMCID: PMC8472948 DOI: 10.3390/toxics9090221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
Numerous studies have demonstrated that exposure to ambient ozone (O3) could have adverse effects on children's respiratory health. However, previous studies mainly focused on asthma and wheezing. Evidence for allergic rhinitis and bronchitic symptoms (e.g., persistent cough and phlegm) associated with O3 is limited, and results from existing studies are inconsistent. This study included a total of 59,754 children from the seven northeastern cities study (SNEC), who were aged 2 to 17 years and from 94 kindergarten, elementary and middle schools. Information on doctor-diagnosed allergic rhinitis (AR), persistent cough, and persistent phlegm was collected during 2012-2013 using a standardized questionnaire developed by the American Thoracic Society (ATS). Information for potential confounders was also collected via questionnaire. Individuals' exposure to ambient ozone (O3) during the four years before the investigation was estimated using a satellite-based random forest model. A higher level of O3 was significantly associated with increased risk of AR and bronchitic symptoms. After controlling for potential confounders, the OR (95% CI) were 1.13 (1.07-1.18), 1.10 (1.06-1.16), and 1.12 (1.05-1.20) for AR, persistent cough, and persistent phlegm, respectively, associated with each interquartile range (IQR) rise in O3 concentration. Interaction analyses showed stronger adverse effects of O3 on AR in children aged 7-17 years than those aged 2-6 years, while the adverse association of O3 with cough was more prominent in females and children aged 7-12 years than in males and children aged 2-6 and 13-17 years. This study showed that long-term exposure to ambient O3 was significantly associated with higher risk of AR and bronchitic symptoms in children, and the association varies across age and gender. Our findings contribute additional evidence for the importance of controlling O3 pollution and protecting children from O3 exposure.
Collapse
|
6
|
Zhang L, Yi H, Sang N. Sulfur dioxide-induced exacerbation of airway inflammation via reactive oxygen species production and the toll-like receptor 4/nuclear factor-κB pathway in asthmatic mice. Toxicol Ind Health 2021; 37:564-572. [PMID: 34448417 DOI: 10.1177/07482337211033136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfur dioxide (SO2) is a common air pollutant that can exacerbate asthmatic airway inflammation. The mechanisms underlying these effects are not yet fully understood. In this study, we investigated the effects of SO2 exposure (10 mg/m3) on asthmatic airway inflammation in ovalbumin-induced asthmatic mice. Our results showed that SO2 exposure alone induced slight airway injury, decreased superoxide dismutase activity, and increased nuclear factor-κB (NF-κB) expression in the lungs of mice. Moreover, SO2 exposure in asthmatic mice induced marked pathological damage, significantly increased the counts of inflammatory cells (e.g., macrophages, lymphocytes, and eosinophils) in bronchoalveolar lavage fluid, and significantly enhanced malondialdehyde and glutathione levels in the lungs. Moreover, the expression of toll-like receptor 4 (TLR4), NF-κB, pro-inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), and type II T-helper cell (Th2) cytokines was found to be elevated in the mice exposed to SO2 and ovalbumin compared to those exposed to ovalbumin alone. These results suggest that SO2 amplifies Th2-mediated inflammatory responses, which involve reactive oxygen species and TLR4/NF-κB pathway activation; these can further enhance Th2 cytokine expression and eosinophilic inflammation. Thus, our findings provide important evidence to understand a potential mechanism through which SO2 may exacerbate airway asthmatic inflammation.
Collapse
Affiliation(s)
- Lingxiu Zhang
- School of Life Science, 12441Shanxi University, Taiyuan, China.,College of Environment and Resource Sciences, 12441Shanxi University, Taiyuan, China.,Department of Biology, 66353Xinzhou Teachers University, Xinzhou, China
| | - Huilan Yi
- School of Life Science, 12441Shanxi University, Taiyuan, China
| | - Nan Sang
- College of Environment and Resource Sciences, 12441Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
Norbäck D, Zhang X, Tian L, Zhang Y, Zhang Z, Yang L, Chen X, Zeng Z, Lu C, Zhao Z. Prenatal and perinatal home environment and reported onset of wheeze, rhinitis and eczema symptoms in preschool children in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145700. [PMID: 33609817 DOI: 10.1016/j.scitotenv.2021.145700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Early life environment can affect asthma and allergies but few cohort studies on this issue are available from China. Our aim was to investigate reported onset of childhood wheeze, rhinitis and eczema symptoms in relation to prenatal, perinatal and postnatal home environment. Data on home environment and symptoms (ISAAC based questions) in first two years of life and in the past 12 months were reported by parents of the children (3-6 y) in a cross-sectional questionnaire survey in ten day care centers in Taiyuan, northern China (N = 3606). Changes of symptoms from the first 2 years of life to the past 12 months (recall period) were calculated retrospectively. Multilevel logistic regression analysis was applied. Reported onset of wheeze, rhinitis and eczema were 11.8%, 22.2% and 3.3%, respectively. Redecorating during pregnancy increased reported onset of rhinitis (OR = 2.29) and eczema (OR = 4.91). New furniture during pregnancy increased reported onset of rhinitis (OR = 1.47). Perinatal indoor mould increased reported onset of wheeze (OR = 1.51), rhinitis (OR = 1.65) and eczema (OR = 1.91). Perinatal mould odour increased reported onset of wheeze (OR = 1.85). Perinatal window pane condensation increased reported onset of wheeze (OR = 1.54) and rhinitis (OR = 1.24). Perinatal stuffy air and dry air in the home increased reported onset of all three symptoms (ORs 1.46-2.24). Dog keeping increased reported onset of wheeze (OR = 1.69) and eczema (OR = 2.13). Based on principal component analysis, four exposure scores were calculated (renovation, new furniture, mould and indoor air quality scores). Dose-response relationships were observed between these exposure scores and reported onset of symptoms. In conclusion, prenatal and postnatal exposure to emissions from renovation and new furniture can increase reported onset of childhood wheeze, rhinitis and eczema. Perinatal indoor mould, mould odour, condensation on window panes and impaired indoor air quality at home can be associated with reported development of wheeze, rhinitis and eczema in preschoolers in northern China.
Collapse
Affiliation(s)
- Dan Norbäck
- Institute of Environmental Science, Shanxi University, Taiyuan, China; Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| | - Li Tian
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yifei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zefei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Xingyi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zhaohua Zeng
- School of Public Health, Xiamen University, Xiamen, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Norbäck D, Hashim Z, Ali F, Hashim JH. Asthma symptoms and respiratory infections in Malaysian students-associations with ethnicity and chemical exposure at home and school. ENVIRONMENTAL RESEARCH 2021; 197:111061. [PMID: 33785322 DOI: 10.1016/j.envres.2021.111061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Little is known on respiratory effects of indoor chemicals in the tropics. We investigated associations between asthma and respiratory infections in Malaysian students and chemical exposure at home and at school. Moreover, we investigated differences in home environment between the three main ethnic groups in Malaysia (Malay, Chinese, Indian). Totally, 462 students from 8 junior high schools in Johor Bahru participated (96% participation rate). The students answered a questionnaire on health and home environment. Climate, carbon dioxide (CO2), volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) were measured inside and outside the schools. Multilevel logistic regression was applied to study associations between exposure and health. Totally 4.8% were smokers, 10.3% had wheeze, 9.3% current asthma, and had 18.8% any respiratory infection in the past 3 months. Malay students had more dampness or mould (p < 0.001), more environmental tobacco smoke (ETS) (p < 0.001) and more cats (p < 0.001) at home as compared to Chinese or Indian students. Wheeze was associated with ethnicity (p = 0.02; lower in Indian), atopy (p = 0.002), current smoking (p = 0.02) and recent indoor painting at home (p = 0.03). Current asthma was associated with ethnicity (p = 0.001; lower in Chinese) and para-dichlorobenzene in classroom air (p = 0.008). Respiratory infections were related to atopy (p = 0.002), ethylbenzene (p = 0.02) and para-dichlorobenzene (p = 0.01) in classroom air. Para-dichlorobenzene is used in Asia against insects. In conclusion, chemical emissions from recent indoor painting at home can increase the risk of wheeze. In schools, para-dichlorobenzene can increase the risk of current asthma and respiratory infections while ethylbenzene can increase the risk of respiratory infections.
Collapse
Affiliation(s)
- Dan Norbäck
- Uppsala University, Department of Medical Science, Occupational and Environmental Medicine, University Hospital, 75185, Uppsala, Sweden.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Faridah Ali
- Primary Care Unit, Johor State Health Department, 80100, Johor Bahru, Malaysia
| | - Jamal Hisham Hashim
- Faculty of Health Sciences, Universiti Selangor, 40000, Shah Alam, Malaysia; Department of Community Health, National University of Malaysia, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Sopeyin A, Hornsey E, Okwor T, Alimi Y, Raji T, Mohammed A, Moges H, Onwuekwe EVC, Minja FJ, Gon G, Ogbuagu O, Ogunsola F, Paintsil E. Transmission risk of respiratory viruses in natural and mechanical ventilation environments: implications for SARS-CoV-2 transmission in Africa. BMJ Glob Health 2020; 5:bmjgh-2020-003522. [PMID: 32863269 PMCID: PMC7462043 DOI: 10.1136/bmjgh-2020-003522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory viruses can be transmitted through contact, droplet and airborne routes. Viruses that are not naturally airborne may be aerosolised during medical procedures and transmitted to healthcare workers. Most resource-limited healthcare settings lack complex air handling systems to filter air and create pressure gradients that are necessary for minimising viral transmission. This review explores the association between ventilation and the transmission of respiratory viruses like SAR-CoV-2. When used appropriately, both natural and mechanical ventilation can decrease the concentration of viral aerosols, thereby reducing transmission. Although mechanical ventilation systems are more efficient, installation and maintenance costs limit their use in resource-limited settings, whereas the prevailing climate conditions make natural ventilation less desirable. Cost-effective hybrid systems of natural and mechanical ventilation may overcome these limitations.
Collapse
Affiliation(s)
- Anuoluwapo Sopeyin
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emilio Hornsey
- UK Public Health Rapid Support Team, PUblic Health England, London, UK
| | - Tochi Okwor
- Prevention Programmes and Knowledge Management, Nigeria Centre for Disease Control, Abuja, Federal Capital Territory, Nigeria
| | - Yewande Alimi
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Tajudeen Raji
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Abdulaziz Mohammed
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Hiwot Moges
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | | | - Frank J Minja
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Giorgia Gon
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Onyema Ogbuagu
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Folasade Ogunsola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Akoka, Nigeria
| | - Elijah Paintsil
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA .,Departmemt of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|