1
|
Song J, Chen L, Xiong H, Ma Y, Pombo-Rodrigues S, MacGregor GA, He FJ. Blood Pressure-Lowering Medications, Sodium Reduction, and Blood Pressure. Hypertension 2024; 81:e149-e160. [PMID: 39236753 DOI: 10.1161/hypertensionaha.124.23382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Both blood pressure-lowering medication and sodium reduction are effective in hypertension control, but whether the effect of sodium reduction differ across blood pressure-lowering medications is unclear. This study aims to evaluate the dose-response effect of sodium intake reduction on blood pressure in treated hypertensive individuals and the impact of different classes of blood pressure-lowering drugs. METHODS We searched multiple databases and reference lists up to July 9, 2024. Randomized controlled trials with a duration of ≥2 weeks comparing the effect of different levels of sodium intake (measured by 24-hour urinary sodium excretion) on blood pressure in hypertensive individuals treated with constant blood pressure-lowering medications were included. Instrumental variable meta-analyses based on random-effects models were conducted to evaluate the dose effect of sodium reduction on blood pressure. Subgroup analyses were performed based on the class of blood pressure-lowering drugs, age, baseline sodium and blood pressure levels, and study duration. RESULTS We included 35 studies (median duration of 28 days) with a total of 2885 participants. For every 100 mmol reduction in 24-hour urinary sodium excretion, systolic blood pressure decreased by 6.81 mm Hg (95% CI, 4.96-8.66), diastolic blood pressure decreased by 3.85 mm Hg (95% CI, 2.26-5.43), and mean arterial pressure decreased by 4.83 mm Hg (95% CI, 3.22-6.44). The dose-response effects varied across classes of blood pressure-lowering medications, with greater effects observed in the β-blockers, renin-angiotensin-aldosterone system inhibitors, and dual therapy groups. No significant subgroup differences were observed across subgroups defined by age, baseline 24-hour urinary sodium excretion, blood pressure levels, or study duration. CONCLUSIONS Pooled evidence suggests a dose-response relationship between sodium reduction and blood pressure in treated individuals with hypertension, influenced by the class of blood pressure-lowering medications.
Collapse
Affiliation(s)
- Jing Song
- Centre for Public Health and Policy, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (J.S., S.P.-R., G.A.M., F.J.H.)
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (L.C.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health (L.C.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xiong
- Department of Cardiovascular Medicine, Wuhan Wuchang Hospital, China (H.X.)
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (Y.M.)
| | - Sonia Pombo-Rodrigues
- Centre for Public Health and Policy, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (J.S., S.P.-R., G.A.M., F.J.H.)
| | - Graham A MacGregor
- Centre for Public Health and Policy, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (J.S., S.P.-R., G.A.M., F.J.H.)
| | - Feng J He
- Centre for Public Health and Policy, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (J.S., S.P.-R., G.A.M., F.J.H.)
| |
Collapse
|
2
|
Ming L, Wang D, Zhu Y. Association of sodium intake with diabetes in adults without hypertension: evidence from the National Health and Nutrition Examination Survey 2009-2018. Front Public Health 2023; 11:1118364. [PMID: 37727604 PMCID: PMC10506081 DOI: 10.3389/fpubh.2023.1118364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Background Sodium is essential for human health, however the prevalence of various diseases is associated with excessive sodium intake, particularly cardiovascular disorders. However, in most countries, salt intake is much higher than the World Health Organization recommends. Several studies in recent years have revealed that high salt intake is associated with diabetes in the general population, but the association is uncertain in people who do not have hypertension. In this study, we aimed to find out whether high sodium intake increases the risk of diabetes in this particular population. Method Data were extracted from the National Health and Nutrition Examination Survey (NHANES; 2009-2018). Participants included adults aged over 20 years old who have undergone the diabetes questionnaire, and the hypertension population was excluded. In order to adjust the confounders, multivariate analysis models were built. Finally, subgroup analysis were conducted to investigate the association between sodium intake and diabetes separately. Result In the present study, 7,907 participants are included (3,920 female and 3,987 male), and 512 (6.48%) individuals reported diabetes. The median sodium intake of the participants was 3,341 mg/d (IQR: 2498, 4,364 mg/d). A linear association between sodium intake and the prevalence of diabetes was found (p = 0.003). According to the multivariate analysis models, the odds ratio of diabetes for every 1,000 mg sodium intake increment is 1.20 (OR: 1.20, 95% CI 1.07-1.35). The highest sodium intake quartile was 1.80-fold more likely to have diabetes than the lowest quartile (OR: 1.80, 95% CI 1.17-2.76). Conclusion Our results suggest that higher sodium intake is associated with an increased risk of diabetes in the population without hypertension, and for every 1,000 mg sodium intake increment, the risk of diabetes increased by 1.20-fold. To sum up, we have provided the clue to the etiology of diabetes and further prospective research is needed to contribute recommendations for the primary prevention of diabetes in the US.
Collapse
Affiliation(s)
- Li Ming
- Department of Pediatrics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Duan Wang
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhu
- Department of Pediatric Intensive Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
3
|
Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M. Blood Pressure Effects of Sodium Reduction: Dose-Response Meta-Analysis of Experimental Studies. Circulation 2021; 143:1542-1567. [PMID: 33586450 PMCID: PMC8055199 DOI: 10.1161/circulationaha.120.050371] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. Background: The relationship between dietary sodium intake and blood pressure (BP) has been tested in clinical trials and nonexperimental human studies, indicating a direct association. The exact shape of the dose–response relationship has been difficult to assess in clinical trials because of the lack of random-effects dose–response statistical models that can include 2-arm comparisons. Methods: After performing a comprehensive literature search for experimental studies that investigated the BP effects of changes in dietary sodium intake, we conducted a dose–response meta-analysis using the new 1-stage cubic spline mixed-effects model. We included trials with at least 4 weeks of follow-up; 24-hour urinary sodium excretion measurements; sodium manipulation through dietary change or supplementation, or both; and measurements of systolic and diastolic BP at the beginning and end of treatment. Results: We identified 85 eligible trials with sodium intake ranging from 0.4 to 7.6 g/d and follow-up from 4 weeks to 36 months. The trials were conducted in participants with hypertension (n=65), without hypertension (n=11), or a combination (n=9). Overall, the pooled data were compatible with an approximately linear relationship between achieved sodium intake and mean systolic as well as diastolic BP, with no indication of a flattening of the curve at either the lowest or highest levels of sodium exposure. Results were similar for participants with or without hypertension, but the former group showed a steeper decrease in BP after sodium reduction. Intervention duration (≥12 weeks versus 4 to 11 weeks), type of study design (parallel or crossover), use of antihypertensive medication, and participants’ sex had little influence on the BP effects of sodium reduction. Additional analyses based on the BP effect of difference in sodium exposure between study arms at the end of the trial confirmed the results on the basis of achieved sodium intake. Conclusions: In this dose–response analysis of sodium reduction in clinical trials, we identified an approximately linear relationship between sodium intake and reduction in both systolic and diastolic BP across the entire range of dietary sodium exposure. Although this occurred independently of baseline BP, the effect of sodium reduction on level of BP was more pronounced in participants with a higher BP level.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (T.F., M.M., M.V.)
| | - Marcella Malavolti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (T.F., M.M., M.V.)
| | - Paul K Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, and School of Medicine, Tulane University, New Orleans, LA (P.K.W.)
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece (A.N.)
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden (N.O.)
| | - Marco Vinceti
- Department of Epidemiology, Boston University School of Public Health, MA (M.V.)
| |
Collapse
|
4
|
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2020; 12:CD004022. [PMID: 33314019 PMCID: PMC8094404 DOI: 10.1002/14651858.cd004022.pub5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent cohort studies show that salt intake below 6 g is associated with increased mortality. These findings have not changed public recommendations to lower salt intake below 6 g, which are based on assumed blood pressure (BP) effects and no side-effects. OBJECTIVES To assess the effects of sodium reduction on BP, and on potential side-effects (hormones and lipids) SEARCH METHODS: The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to April 2018 and a top-up search in March 2020: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also contacted authors of relevant papers regarding further published and unpublished work. The searches had no language restrictions. The top-up search articles are recorded under "awaiting assessment." SELECTION CRITERIA Studies randomizing persons to low-sodium and high-sodium diets were included if they evaluated at least one of the outcome parameters (BP, renin, aldosterone, noradrenalin, adrenalin, cholesterol, high-density lipoprotein, low-density lipoprotein and triglyceride,. DATA COLLECTION AND ANALYSIS Two review authors independently collected data, which were analysed with Review Manager 5.3. Certainty of evidence was assessed using GRADE. MAIN RESULTS Since the first review in 2003 the number of included references has increased from 96 to 195 (174 were in white participants). As a previous study found different BP outcomes in black and white study populations, we stratified the BP outcomes by race. The effect of sodium reduction (from 203 to 65 mmol/day) on BP in white participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.14 mmHg (95% confidence interval (CI): -1.65 to -0.63), 5982 participants, 95 trials; DBP: MD + 0.01 mmHg (95% CI: -0.37 to 0.39), 6276 participants, 96 trials. Hypertension: SBP: MD -5.71 mmHg (95% CI: -6.67 to -4.74), 3998 participants,88 trials; DBP: MD -2.87 mmHg (95% CI: -3.41 to -2.32), 4032 participants, 89 trials (all high-quality evidence). The largest bias contrast across studies was recorded for the detection bias element. A comparison of detection bias low-risk studies versus high/unclear risk studies showed no differences. The effect of sodium reduction (from 195 to 66 mmol/day) on BP in black participants was as follows: Normal blood pressure: SBP: mean difference (MD) -4.02 mmHg (95% CI:-7.37 to -0.68); DBP: MD -2.01 mmHg (95% CI:-4.37, 0.35), 253 participants, 7 trials. Hypertension: SBP: MD -6.64 mmHg (95% CI:-9.00, -4.27); DBP: MD -2.91 mmHg (95% CI:-4.52, -1.30), 398 participants, 8 trials (low-quality evidence). The effect of sodium reduction (from 217 to 103 mmol/day) on BP in Asian participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.50 mmHg (95% CI: -3.09, 0.10); DBP: MD -1.06 mmHg (95% CI:-2.53 to 0.41), 950 participants, 5 trials. Hypertension: SBP: MD -7.75 mmHg (95% CI:-11.44, -4.07); DBP: MD -2.68 mmHg (95% CI: -4.21 to -1.15), 254 participants, 8 trials (moderate-low-quality evidence). During sodium reduction renin increased 1.56 ng/mL/hour (95%CI:1.39, 1.73) in 2904 participants (82 trials); aldosterone increased 104 pg/mL (95%CI:88.4,119.7) in 2506 participants (66 trials); noradrenalin increased 62.3 pg/mL: (95%CI: 41.9, 82.8) in 878 participants (35 trials); adrenalin increased 7.55 pg/mL (95%CI: 0.85, 14.26) in 331 participants (15 trials); cholesterol increased 5.19 mg/dL (95%CI:2.1, 8.3) in 917 participants (27 trials); triglyceride increased 7.10 mg/dL (95%CI: 3.1,11.1) in 712 participants (20 trials); LDL tended to increase 2.46 mg/dl (95%CI: -1, 5.9) in 696 participants (18 trials); HDL was unchanged -0.3 mg/dl (95%CI: -1.66,1.05) in 738 participants (20 trials) (All high-quality evidence except the evidence for adrenalin). AUTHORS' CONCLUSIONS In white participants, sodium reduction in accordance with the public recommendations resulted in mean arterial pressure (MAP) decrease of about 0.4 mmHg in participants with normal blood pressure and a MAP decrease of about 4 mmHg in participants with hypertension. Weak evidence indicated that these effects may be a little greater in black and Asian participants. The effects of sodium reduction on potential side effects (hormones and lipids) were more consistent than the effect on BP, especially in people with normal BP.
Collapse
Affiliation(s)
- Niels Albert Graudal
- Department of Rheumatology VRR4242, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Gesche Jurgens
- Clinical Pharmacology Unit, Roskilde Hospital, Roskilde, Denmark
| |
Collapse
|
5
|
Huang L, Trieu K, Yoshimura S, Neal B, Woodward M, Campbell NRC, Li Q, Lackland DT, Leung AA, Anderson CAM, MacGregor GA, He FJ. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 2020; 368:m315. [PMID: 32094151 PMCID: PMC7190039 DOI: 10.1136/bmj.m315] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To examine the dose-response relation between reduction in dietary sodium and blood pressure change and to explore the impact of intervention duration. DESIGN Systematic review and meta-analysis following PRISMA guidelines. DATA SOURCES Ovid MEDLINE(R), EMBASE, and Cochrane Central Register of Controlled Trials (Wiley) and reference lists of relevant articles up to 21 January 2019. INCLUSION CRITERIA Randomised trials comparing different levels of sodium intake undertaken among adult populations with estimates of intake made using 24 hour urinary sodium excretion. DATA EXTRACTION AND ANALYSIS Two of three reviewers screened the records independently for eligibility. One reviewer extracted all data and the other two reviewed the data for accuracy. Reviewers performed random effects meta-analyses, subgroup analyses, and meta-regression. RESULTS 133 studies with 12 197 participants were included. The mean reductions (reduced sodium v usual sodium) of 24 hour urinary sodium, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were 130 mmol (95% confidence interval 115 to 145, P<0.001), 4.26 mm Hg (3.62 to 4.89, P<0.001), and 2.07 mm Hg (1.67 to 2.48, P<0.001), respectively. Each 50 mmol reduction in 24 hour sodium excretion was associated with a 1.10 mm Hg (0.66 to 1.54; P<0.001) reduction in SBP and a 0.33 mm Hg (0.04 to 0.63; P=0.03) reduction in DBP. Reductions in blood pressure were observed in diverse population subsets examined, including hypertensive and non-hypertensive individuals. For the same reduction in 24 hour urinary sodium there was greater SBP reduction in older people, non-white populations, and those with higher baseline SBP levels. In trials of less than 15 days' duration, each 50 mmol reduction in 24 hour urinary sodium excretion was associated with a 1.05 mm Hg (0.40 to 1.70; P=0.002) SBP fall, less than half the effect observed in studies of longer duration (2.13 mm Hg; 0.85 to 3.40; P=0.002). Otherwise, there was no association between trial duration and SBP reduction. CONCLUSIONS The magnitude of blood pressure lowering achieved with sodium reduction showed a dose-response relation and was greater for older populations, non-white populations, and those with higher blood pressure. Short term studies underestimate the effect of sodium reduction on blood pressure. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019140812.
Collapse
Affiliation(s)
- Liping Huang
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kathy Trieu
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sohei Yoshimura
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Bruce Neal
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Mark Woodward
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Norm R C Campbell
- Departments of Medicine and Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Qiang Li
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Alexander A Leung
- Departments of Medicine and Community Health Science, University of Calgary, Calgary, AB, Canada
| | | | - Graham A MacGregor
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Feng J He
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
6
|
Graudal NA, Hubeck‐Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2017; 4:CD004022. [PMID: 28391629 PMCID: PMC6478144 DOI: 10.1002/14651858.cd004022.pub4] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In spite of more than 100 years of investigations the question of whether a reduced sodium intake improves health is still unsolved. OBJECTIVES To estimate the effects of low sodium intake versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to March 2016: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also searched the reference lists of relevant articles. SELECTION CRITERIA Studies randomising persons to low-sodium and high-sodium diets were included if they evaluated at least one of the above outcome parameters. DATA COLLECTION AND ANALYSIS Two review authors independently collected data, which were analysed with Review Manager 5.3. MAIN RESULTS A total of 185 studies were included. The average sodium intake was reduced from 201 mmol/day (corresponding to high usual level) to 66 mmol/day (corresponding to the recommended level).The effect of sodium reduction on blood pressure (BP) was as follows: white people with normotension: SBP: mean difference (MD) -1.09 mmHg (95% confidence interval (CI): -1.63 to -0.56; P = 0.0001); 89 studies, 8569 participants; DBP: + 0.03 mmHg (MD 95% CI: -0.37 to 0.43; P = 0.89); 90 studies, 8833 participants. High-quality evidence. Black people with normotension: SBP: MD -4.02 mmHg (95% CI:-7.37 to -0.68; P = 0.002); seven studies, 506 participants; DBP: MD -2.01 mmHg (95% CI:-4.37 to 0.35; P = 0.09); seven studies, 506 participants. Moderate-quality evidence. Asian people with normotension: SBP: MD -0.72 mmHg (95% CI: -3.86 to 2.41; P = 0.65); DBP: MD -1.63 mmHg (95% CI:-3.35 to 0.08; P =0.06); three studies, 393 participants. Moderate-quality evidence.White people with hypertension: SBP: MD -5.51 mmHg (95% CI: -6.45 to -4.57; P < 0.00001); 84 studies, 5925 participants; DBP: MD -2.88 mmHg (95% CI: -3.44 to -2.32; P < 0.00001); 85 studies, 6001 participants. High-quality evidence. Black people with hypertension: SBP MD -6.64 mmHg (95% CI:-9.00 to -4.27; P = 0.00001); eight studies, 619 participants; DBP -2.91 mmHg (95% CI:-4.52, -1.30; P = 0.0004); eight studies, 619 participants. Moderate-quality evidence. Asian people with hypertension: SBP: MD -7.75 mmHg (95% CI:-11,44 to -4.07; P < 0.0001) nine studies, 501 participants; DBP: MD -2.68 mmHg (95% CI: -4.21 to -1.15; P = 0.0006). Moderate-quality evidence.In plasma or serum, there was a significant increase in renin (P < 0.00001), aldosterone (P < 0.00001), noradrenaline (P < 0.00001), adrenaline (P < 0.03), cholesterol (P < 0.0005) and triglyceride (P < 0.0006) with low sodium intake as compared with high sodium intake. All effects were stable in 125 study populations with a sodium intake below 250 mmol/day and a sodium reduction intervention of at least one week. AUTHORS' CONCLUSIONS Sodium reduction from an average high usual sodium intake level (201 mmol/day) to an average level of 66 mmol/day, which is below the recommended upper level of 100 mmol/day (5.8 g salt), resulted in a decrease in SBP/DBP of 1/0 mmHg in white participants with normotension and a decrease in SBP/DBP of 5.5/2.9 mmHg in white participants with hypertension. A few studies showed that these effects in black and Asian populations were greater. The effects on hormones and lipids were similar in people with normotension and hypertension. Renin increased 1.60 ng/mL/hour (55%); aldosterone increased 97.81 pg/mL (127%); adrenalin increased 7.55 pg/mL (14%); noradrenalin increased 63.56 pg/mL: (27%); cholesterol increased 5.59 mg/dL (2.9%); triglyceride increased 7.04 mg/dL (6.3%).
Collapse
Affiliation(s)
- Niels Albert Graudal
- Copenhagen University Hospital RigshospitaletDepartment of Rheumatology VRR4242Blegdamsvej 9CopenhagenDenmarkDK‐2100 Ø
| | | | - Gesche Jurgens
- Roskilde HospitalClinical Pharmacology UnitRoskildeDenmark
| | | |
Collapse
|
7
|
Cai A, Feng Y, Zhou Y. A comprehensive review of an unmet public health issue: resistant hypertension. Clin Exp Hypertens 2017; 39:101-107. [PMID: 28287887 DOI: 10.1080/10641963.2016.1226892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistant hypertension is an intractable problem to patients and physicians. In recent decades, a substantial amount of basic and epidemiological studies provide us a vast number of valuable evidence and information about this once elusive disease. Better understanding about this entity could help physicians improve diagnostic and therapeutic accuracy. In present review, therefore, we first will detail the definition and diagnosis of resistant hypertension between cardiology societies, and followed by the information of prevalence of resistant hypertension around the world, and then briefly discuss currently used different nomenclature of resistant hypertension, and finally present diagnostic and therapeutic strategies of resistant hypertension.
Collapse
Affiliation(s)
- Anping Cai
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention , Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China.,b Jinwan Hospital of Zhuhai, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yingqing Feng
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention , Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yingling Zhou
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention , Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China.,b Jinwan Hospital of Zhuhai, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| |
Collapse
|
8
|
Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol 2016; 65:1042-50. [PMID: 25766952 DOI: 10.1016/j.jacc.2014.12.039] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt sensitivity of BP varies widely, but certain subgroups tend to be more salt sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood but may involve alterations in renal function, fluid volume, fluid-regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, the investigators review these issues and the epidemiological research relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. They also provide information and strategies for reducing dietary sodium.
Collapse
Affiliation(s)
- William B Farquhar
- Department of Kinesiology & Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology & Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Claudine T Jurkovitz
- Department of Medicine, Section of Cardiology, Christiana Care Outcomes Research Center, Christiana Care Health System, Newark, Delaware
| | - William S Weintraub
- Department of Medicine, Section of Cardiology, Christiana Care Outcomes Research Center, Christiana Care Health System, Newark, Delaware.
| |
Collapse
|
9
|
Abstract
There are no long-term interventions examining the effects of salt reduction in people with diabetes, and these are urgently required. Sodium reduction is controversial as it appears that an intake below 2.5 g and above 6 g/day of salt is associated with increased cardiovascular disease risk. However, pre-existing illness leading to a lower salt intake may confound the findings. Only a few studies have prospectively collected data on the sodium intake and excretion of people with diabetes and examined hard end points. In addition, future studies need to collect more data on food intake as well as coexistent illnesses to address potential confounding. The World Health Organization recommends a reduction to less than 5 g/day salt in adults. Given that the available evidence suggests that the salt intake of people with type 2 diabetes is generally well above 6 g/day it seems reasonable to ensure individuals with diabetes have an intake below 6 g/day. However, such recommendations need to be individualized.
Collapse
Affiliation(s)
- Peter M Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, P5-16 Playford Building, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia,
| | | |
Collapse
|
10
|
Patel SM, Cobb P, Saydah S, Zhang X, de Jesus JM, Cogswell ME. Dietary sodium reduction does not affect circulating glucose concentrations in fasting children or adults: findings from a systematic review and meta-analysis. J Nutr 2015; 145:505-13. [PMID: 25733466 PMCID: PMC4336531 DOI: 10.3945/jn.114.195982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although evidence shows that reduced sodium intake lowers blood pressure, some studies suggest that sodium reduction may adversely affect insulin resistance and glucose tolerance. OBJECTIVES The objectives were to assess the effects of sodium reduction on glucose tolerance, evaluate strengths and weaknesses of the relevant scientific literature, and provide direction for future research. METHODS We searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, and Web of Science through August 2014. Both randomized and nonrandomized intervention trials were included in our meta-analyses. The effects of sodium reduction on glucose tolerance were evaluated in 37 articles, but because of a lack of comparable data, 8 trials were excluded from the meta-analyses. RESULTS Participants were 10-79 y old, either primarily healthy or with hypertension. In meta-analyses of 20 randomized, crossover trials (n = 504 participants) and 9 nonrandomized crossover trials (n = 337), circulating glucose concentrations of fasting participants were not affected by reduction in sodium intake. In contrast, in meta-analyses of 19 of the 20 randomized, crossover trials (n = 494), fasting insulin concentrations were 9.53 pmol/L higher (95% CI: 5.04, 14.02 pmol/L higher) with sodium reduction. In 9 nonrandomized trials (n = 337), fasting insulin did not differ with reduced sodium intake. Results differed little when the analyses were restricted to studies with a low risk of bias and duration of ≥7 d. CONCLUSIONS This meta-analysis revealed no evidence that, in trials with a short intervention and large reductions in sodium, circulating glucose concentrations differed between groups. Recommendations for future studies include extending intervention durations, ensuring comparability of groups at baseline through randomization, and assessing sodium intakes relevant to population sodium reduction. In addition, analyses on other metabolic variables were limited because of the number of trials reporting these outcomes and lack of consistency across measures, suggesting a need for comparable measures of glucose tolerance across studies.
Collapse
Affiliation(s)
- Sheena M Patel
- Divisions of Heart Disease and Stroke Prevention and Oak Ridge Institute for Science and Education, Atlanta, GA; and
| | - Paul Cobb
- Divisions of Heart Disease and Stroke Prevention and
| | | | | | | | | |
Collapse
|
11
|
Sigurdsson EL. Salt: a taste of death? Scand J Prim Health Care 2014; 32:53-4. [PMID: 24939739 PMCID: PMC4075016 DOI: 10.3109/02813432.2014.921381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emil L Sigurdsson
- Associate Professor, Department of Family Medicine, University of Iceland E-mail:
| |
Collapse
|
12
|
Abstract
BACKGROUND A reduction in salt intake lowers blood pressure (BP) and, thereby, reduces cardiovascular risk. A recent meta-analysis by Graudal implied that salt reduction had adverse effects on hormones and lipids which might mitigate any benefit that occurs with BP reduction. However, Graudal's meta-analysis included a large number of very short-term trials with a large change in salt intake, and such studies are irrelevant to the public health recommendations for a longer-term modest reduction in salt intake. We have updated our Cochrane meta-analysis. OBJECTIVES To assess (1) the effect of a longer-term modest reduction in salt intake (i.e. of public health relevance) on BP and whether there was a dose-response relationship; (2) the effect on BP by sex and ethnic group; (3) the effect on plasma renin activity, aldosterone, noradrenaline, adrenaline, cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglycerides. SEARCH METHODS We searched MEDLINE, EMBASE, Cochrane Hypertension Group Specialised Register, Cochrane Central Register of Controlled Trials, and reference list of relevant articles. SELECTION CRITERIA We included randomised trials with a modest reduction in salt intake and duration of at least 4 weeks. DATA COLLECTION AND ANALYSIS Data were extracted independently by two reviewers. Random effects meta-analyses, subgroup analyses and meta-regression were performed. MAIN RESULTS Thirty-four trials (3230 participants) were included. Meta-analysis showed that the mean change in urinary sodium (reduced salt vs usual salt) was -75 mmol/24-h (equivalent to a reduction of 4.4 g/d salt), the mean change in BP was -4.18 mmHg (95% CI: -5.18 to -3.18, I (2)=75%) for systolic and -2.06 mmHg (95% CI: -2.67 to -1.45, I (2)=68%) for diastolic BP. Meta-regression showed that age, ethnic group, BP status (hypertensive or normotensive) and the change in 24-h urinary sodium were all significantly associated with the fall in systolic BP, explaining 68% of the variance between studies. A 100 mmol reduction in 24 hour urinary sodium (6 g/day salt) was associated with a fall in systolic BP of 5.8 mmHg (95%CI: 2.5 to 9.2, P=0.001) after adjusting for age, ethnic group and BP status. For diastolic BP, age, ethnic group, BP status and the change in 24-h urinary sodium explained 41% of the variance between studies. Meta-analysis by subgroup showed that, in hypertensives, the mean effect was -5.39 mmHg (95% CI: -6.62 to -4.15, I (2)=61%) for systolic and -2.82 mmHg (95% CI: -3.54 to -2.11, I (2)=52%) for diastolic BP. In normotensives, the mean effect was -2.42 mmHg (95% CI: -3.56 to -1.29, I (2)=66%) for systolic and -1.00 mmHg (95% CI: -1.85 to -0.15, I (2)=66%) for diastolic BP. Further subgroup analysis showed that the decrease in systolic BP was significant in both whites and blacks, men and women. Meta-analysis of hormone and lipid data showed that the mean effect was 0.26 ng/ml/hr (95% CI: 0.17 to 0.36, I (2)=70%) for plasma renin activity, 73.20 pmol/l (95% CI: 44.92 to 101.48, I (2)=62%) for aldosterone, 31.67 pg/ml (95% CI: 6.57 to 56.77, I (2)=5%) for noradrenaline, 6.70 pg/ml (95% CI: -0.25 to 13.64, I (2)=12%) for adrenaline, 0.05 mmol/l (95% CI: -0.02 to 0.11, I (2)=0%) for cholesterol, 0.05 mmol/l (95% CI: -0.01 to 0.12, I (2)=0%) for LDL, -0.02 mmol/l (95% CI: -0.06 to 0.01, I (2)=16%) for HDL, and 0.04 mmol/l (95% CI: -0.02 to 0.09, I (2)=0%) for triglycerides. AUTHORS' CONCLUSIONS A modest reduction in salt intake for 4 or more weeks causes significant and, from a population viewpoint, important falls in BP in both hypertensive and normotensive individuals, irrespective of sex and ethnic group. With salt reduction, there is a small physiological increase in plasma renin activity, aldosterone and noradrenaline. There is no significant change in lipid levels. These results provide further strong support for a reduction in population salt intake. This will likely lower population BP and, thereby, reduce cardiovascular disease. Additionally, our analysis demonstrates a significant association between the reduction in 24-h urinary sodium and the fall in systolic BP, indicating the greater the reduction in salt intake, the greater the fall in systolic BP. The current recommendations to reduce salt intake from 9-12 to 5-6 g/d will have a major effect on BP, but are not ideal. A further reduction to 3 g/d will have a greater effect and should become the long term target for population salt intake.
Collapse
Affiliation(s)
- Feng J He
- Wolfson Institute of PreventiveMedicine, Barts and The London School of Medicine & Dentistry, QueenMary University of London, London, UK.
| | | | | |
Collapse
|
13
|
Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 2013; 346:f1326. [PMID: 23558163 PMCID: PMC4816261 DOI: 10.1136/bmj.f1326] [Citation(s) in RCA: 834] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2013] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the effect of decreased sodium intake on blood pressure, related cardiovascular diseases, and potential adverse effects such as changes in blood lipids, catecholamine levels, and renal function. DESIGN Systematic review and meta-analysis. DATA SOURCES Cochrane Central Register of Controlled Trials, Medline, Embase, WHO International Clinical Trials Registry Platform, the Latin American and Caribbean health science literature database, and the reference lists of previous reviews. STUDY SELECTION Randomised controlled trials and prospective cohort studies in non-acutely ill adults and children assessing the relations between sodium intake and blood pressure, renal function, blood lipids, and catecholamine levels, and in non-acutely ill adults all cause mortality, cardiovascular disease, stroke, and coronary heart disease. STUDY APPRAISAL AND SYNTHESIS Potential studies were screened independently and in duplicate and study characteristics and outcomes extracted. When possible we conducted a meta-analysis to estimate the effect of lower sodium intake using the inverse variance method and a random effects model. We present results as mean differences or risk ratios, with 95% confidence intervals. RESULTS We included 14 cohort studies and five randomised controlled trials reporting all cause mortality, cardiovascular disease, stroke, or coronary heart disease; and 37 randomised controlled trials measuring blood pressure, renal function, blood lipids, and catecholamine levels in adults. Nine controlled trials and one cohort study in children reporting on blood pressure were also included. In adults a reduction in sodium intake significantly reduced resting systolic blood pressure by 3.39 mm Hg (95% confidence interval 2.46 to 4.31) and resting diastolic blood pressure by 1.54 mm Hg (0.98 to 2.11). When sodium intake was <2 g/day versus ≥ 2 g/day, systolic blood pressure was reduced by 3.47 mm Hg (0.76 to 6.18) and diastolic blood pressure by 1.81 mm Hg (0.54 to 3.08). Decreased sodium intake had no significant adverse effect on blood lipids, catecholamine levels, or renal function in adults (P>0.05). There were insufficient randomised controlled trials to assess the effects of reduced sodium intake on mortality and morbidity. The associations in cohort studies between sodium intake and all cause mortality, incident fatal and non-fatal cardiovascular disease, and coronary heart disease were non-significant (P>0.05). Increased sodium intake was associated with an increased risk of stroke (risk ratio 1.24, 95% confidence interval 1.08 to 1.43), stroke mortality (1.63, 1.27 to 2.10), and coronary heart disease mortality (1.32, 1.13 to 1.53). In children, a reduction in sodium intake significantly reduced systolic blood pressure by 0.84 mm Hg (0.25 to 1.43) and diastolic blood pressure by 0.87 mm Hg (0.14 to 1.60). CONCLUSIONS High quality evidence in non-acutely ill adults shows that reduced sodium intake reduces blood pressure and has no adverse effect on blood lipids, catecholamine levels, or renal function, and moderate quality evidence in children shows that a reduction in sodium intake reduces blood pressure. Lower sodium intake is also associated with a reduced risk of stroke and fatal coronary heart disease in adults. The totality of evidence suggests that most people will likely benefit from reducing sodium intake.
Collapse
Affiliation(s)
- Nancy J Aburto
- Nutrition Policy and Scientific Advice Unit, Department of Nutrition for Health and Development, World Health Organization, 1211 Geneva 27, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens 2012; 25:1-15. [PMID: 22068710 DOI: 10.1038/ajh.2011.210] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The question of whether reduced sodium intake is effective as a health prophylaxis initiative is unsolved. The purpose was to estimate the effects of low-sodium vs. high-sodium intake on blood pressure (BP), renin, aldosterone, catecholamines, and lipids. METHODS Studies randomizing persons to low-sodium and high-sodium diets evaluating at least one of the above outcome parameters were included. Data were analyzed with Review Manager 5.1. RESULTS A total of 167 studies were included. The effect of sodium reduction in: (i) Normotensives: Caucasians: systolic BP (SBP) -1.27 mm Hg (95% confidence interval (CI): -1.88, -0.66; P = 0.0001), diastolic BP (DBP) -0.05 mm Hg (95% CI: -0.51, 0.42; P = 0.85). Blacks: SBP -4.02 mm Hg (95% CI: -7.37, -0.68; P = 0.002), DBP -2.01 mm Hg (95% CI: -4.37, 0.35; P = 0.09). Asians: SBP -1.27 mm Hg (95% CI: -3.07, 0.54; P = 0.17), DBP -1.68 mm Hg (95% CI: -3.29, -0.06; P = 0.04). (ii) Hypertensives: Caucasians: SBP -5.48 mm Hg (95% CI: -6.53, -4.43; P < 0.00001), DBP -2.75 mm Hg (95% CI: -3.34, -2.17; P < 0.00001). Blacks: SBP -6.44 mm Hg (95% CI: -8.85, -4.03; P = 0.00001), DBP -2.40 mm Hg (95% CI: -4.68, -0.12; P = 0.04). Asians: SBP -10.21 mm Hg (95% CI: -16.98, -3.44; P = 0.003), DBP -2.60 mm Hg (95% CI: -4.03, -1.16; P = 0.0004). Sodium reduction resulted in significant increases in renin (P < 0.00001), aldosterone (P < 0.00001), noradrenaline (P < 0.00001), adrenaline (P < 0.0002), cholesterol (P < 0.001), and triglyceride (P < 0.0008). CONCLUSIONS Sodium reduction resulted in a significant decrease in BP of 1% (normotensives), 3.5% (hypertensives), and a significant increase in plasma renin, plasma aldosterone, plasma adrenaline, and plasma noradrenaline, a 2.5% increase in cholesterol, and a 7% increase in triglyceride.
Collapse
|
15
|
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2011:CD004022. [PMID: 22071811 DOI: 10.1002/14651858.cd004022.pub3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In spite of more than 100 years of investigations the question of reduced sodium intake as a health prophylaxis initiative is still unsolved. OBJECTIVES To estimate the effects of low sodium versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides. SEARCH METHODS PUBMED, EMBASE and Cochrane Central and reference lists of relevant articles were searched from 1950 to July 2011. SELECTION CRITERIA Studies randomizing persons to low sodium and high sodium diets were included if they evaluated at least one of the above outcome parameters. DATA COLLECTION AND ANALYSIS Two authors independently collected data, which were analysed with Review Manager 5.1. MAIN RESULTS A total of 167 studies were included in this 2011 update.The effect of sodium reduction in normotensive Caucasians was SBP -1.27 mmHg (95% CI: -1.88, -0.66; p=0.0001), DBP -0.05 mmHg (95% CI: -0.51, 0.42; p=0.85). The effect of sodium reduction in normotensive Blacks was SBP -4.02 mmHg (95% CI:-7.37, -0.68; p=0.002), DBP -2.01 mmHg (95% CI:-4.37, 0.35; p=0.09). The effect of sodium reduction in normotensive Asians was SBP -1.27 mmHg (95% CI: -3.07, 0.54; p=0.17), DBP -1.68 mmHg (95% CI:-3.29, -0.06; p=0.04). The effect of sodium reduction in hypertensive Caucasians was SBP -5.48 mmHg (95% CI: -6.53, -4.43; p<0.00001), DBP -2.75 mmHg (95% CI: -3.34, -2.17; p<0.00001). The effect of sodium reduction in hypertensive Blacks was SBP -6.44 mmHg (95% CI:-8.85, -4.03; p=0.00001), DBP -2.40 mmHg (95% CI:-4.68, -0.12; p=0.04). The effect of sodium reduction in hypertensive Asians was SBP -10.21 mmHg (95% CI:-16.98, -3.44; p=0.003), DBP -2.60 mmHg (95% CI: -4.03, -1.16; p=0.0004).In plasma or serum there was a significant increase in renin (p<0.00001), aldosterone (p<0.00001), noradrenaline (p<0.00001), adrenaline (p<0.0002), cholesterol (p<0.001) and triglyceride (p<0.0008) with low sodium intake as compared with high sodium intake. In general the results were similar in studies with a duration of at least 2 weeks. AUTHORS' CONCLUSIONS Sodium reduction resulted in a 1% decrease in blood pressure in normotensives, a 3.5% decrease in hypertensives, a significant increase in plasma renin, plasma aldosterone, plasma adrenaline and plasma noradrenaline, a 2.5% increase in cholesterol, and a 7% increase in triglyceride. In general, these effects were stable in studies lasting for 2 weeks or more.
Collapse
Affiliation(s)
- Niels Albert Graudal
- Department of Rheumatology TA4242/Internal Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | |
Collapse
|
16
|
Benefit assessment of salt reduction in patients with hypertension: systematic overview. J Hypertens 2011; 29:821-8. [DOI: 10.1097/hjh.0b013e3283442840] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Abstract
In the setting of primary aldosteronism, elevated aldosterone levels are associated with increased blood pressure. Aldosterone concentrations within the normal range, however, can also alter blood pressure. Furthermore, the aldosterone-to-renin ratio, an indicator of aldosterone excess, is associated with hypertension, even in patients without excessive absolute aldosterone levels. In this Review we assess the data on the role of aldosterone in the development and maintenance of hypertension. We provide an overview of the complex crosstalk between genetic and environmental factors, and about aldosterone-mediated arterial hypertension and target organ damage. The discussion is organized according to major targets of aldosterone action: the collecting duct in the kidney, the vasculature and the central nervous system. The antihypertensive efficacy of mineralocorticoid-receptor blockers, even in patients with aldosterone values in the normal range, supports the evidence that aldosterone plays a part in blood pressure elevation in the absence of primary aldosteronism.
Collapse
Affiliation(s)
- Andreas Tomaschitz
- Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | | | | | | | | |
Collapse
|