1
|
Coding-complete genome sequencing suggests that Newcastle disease virus challenge strain Herts'33 (IVMP) may represent a distinct genotype. Arch Virol 2019; 165:245-248. [PMID: 31705209 PMCID: PMC6954893 DOI: 10.1007/s00705-019-04441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/15/2019] [Indexed: 11/24/2022]
Abstract
We determined the genomic sequence of a Newcastle disease virus (NDV) line obtained directly from the first NDV isolate, named Herts’33. This strain shared ≤ 90% nucleotide sequence identity with the NDV sequences available in the GenBank database, and formed a distinct branch in a phylogenetic tree. This branch may be considered to represent a separate NDV genotype. Our study indicates that investigation of the genomic sequences of old NDV strains that originated from the early outbreaks of Newcastle disease may alter the phylogenetic grouping of the NDV strains and provide data on the evolution of viral genomes over time.
Collapse
|
2
|
|
3
|
Li J, Meng C, Ren T, Wang W, Zhang Y, Yuan W, Xu S, Sun Y, Tan L, Song C, Liao Y, Nair V, Munir M, Ding Z, Liu X, Qiu X, Ding C. Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. J Virol Methods 2018; 260:88-97. [PMID: 30026051 DOI: 10.1016/j.jviromet.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 11/25/2022]
Abstract
Newcastle disease virus (NDV) V protein is crucial for viral interferon (IFN) antagonism and virulence, determining its host range restriction. However, little information is available on the B cell epitopes of V protein and the subcellular movement of V protein in the process of NDV infection. In this study, the monoclonal antibody (mAb) clone 3D7 against genotype VII NDV V protein was generated by immunizing mice with a purified recombinant His-tagged carboxyl-terminal domain (CTD) region of V protein. Fine epitope mapping analysis and B-cell epitope prediction indicated that mAb 3D7 recognized a linear epitope 152RGPAELWK159, which is located in the V protein CTD region. Sequence alignment showed that the mAb clone 3D7-recognized epitope is highly conserved among Class II genotype VII NDV strains, but not among other genotypes, suggesting it could serve as a genetic marker to differentiate NDV genotypes. Furthermore, the movement of V protein during NDV replication in infected cells were determined by using this mAb. It was found that V protein localized around the nucleus during virus replication. The establishment of V protein-specific mAb and identification of its epitope extend our understanding of the antigenic characteristics of V protein and provide a basis for the development of epitope-based diagnostic assays.
Collapse
Affiliation(s)
- Jihong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tingting Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yaodan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Weifeng Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shuqin Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | | | | | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Qiu X, Meng C, Zhan Y, Yu S, Li S, Ren T, Yuan W, Xu S, Sun Y, Tan L, Song C, Liao Y, Ding Z, Liu X, Ding C. Phylogenetic, antigenic and biological characterization of pigeon paramyxovirus type 1 circulating in China. Virol J 2017; 14:186. [PMID: 28962631 PMCID: PMC5622419 DOI: 10.1186/s12985-017-0857-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/22/2017] [Indexed: 11/11/2022] Open
Abstract
Background For many years, ND has been one of the most important infectious pigeon diseases in China. In recent years, a high mortality has been observed in ND-infected pigeons in China. Mortality is from 40% to 80% or 100% in some cases. Methods The full-length genomes of four pigeon paramyxovirus type 1 (PPMV-1) strains, which were isolated from infected pigeons in China in 2012 and 2013, were sequenced and analyzed to determine the phylogenetic characteristics of PPMV-1 circulating in pigeons of China in recent years. Furthermore, cross hemagglutination inhibition and cross virus neutralization assays, as well as animal experiments were conducted to determine the antigenicity and pathogenicity of those viruses. Proteolytic cleavage sites (residues 112–117) of the F proteins were identified as the typical virulence motif, 112RRQKR↓F117 for all four PPMV-1 strains investigated. Results Phylogenetic analysis based on sequences of complete genomes and F gene revealed that the four PPMV-1 isolates and most of recent isolates in China were highly homologous to European isolates from 1998 to 2011. All those isolates were clustered in one clade of genotype VI NDV, termed as subgroup 4bii f. The R value was calculated based on cross hemagglutination inhibition and cross virus neutralization results, and confirmed antigenic difference of the PPMV-1 strains isolated in 2013 from the LaSota vaccine strain. Several mutations were identified in the surface glycoproteins F and HN, which probably gave rise to those antigenic differences. Conclusion Our result suggested that the PPMV-1 strain prevailing in China in the last decade diverged from a common ancestor and was presumably transmitted from Europe. PPMV-1 isolates displayed obvious antigenic differences from vaccine strain LaSota. Even though PPMV-1 did not cause high mortality in experimental pigeons, the infected pigeons were exhibiting viral shedding for 3 weeks after infection, suggesting PPMV-1 is a potential threat to NDV control worldwide. Electronic supplementary material The online version of this article (10.1186/s12985-017-0857-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yuan Zhan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shichao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Tingting Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Weifeng Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shuqin Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| |
Collapse
|
5
|
Jin J, Zhao J, Ren Y, Zhong Q, Zhang G. Contribution of HN protein length diversity to Newcastle disease virus virulence, replication and biological activities. Sci Rep 2016; 6:36890. [PMID: 27833149 PMCID: PMC5105081 DOI: 10.1038/srep36890] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
To evaluate the contribution of length diversity in the hemagglutinin-neuraminidase (HN) protein to the pathogenicity, replication and biological characteristics of Newcastle disease virus (NDV), we used reverse genetics to generate a series of recombinant NDVs containing truncated or extended HN proteins based on an infectious clone of genotype VII NDV (SG10 strain). The mean death times and intracerebral pathogenicity indices of these viruses showed that the different length mutations in the HN protein did not alter the virulence of NDV. In vitro studies of recombinant NDVs containing truncated or extended HN proteins revealed that the extension of HN protein increased its hemagglutination titer, receptor-binding ability and impaired its neuraminidase activity, fusogenic activity and replication ability. Furthermore, the hemadsorption, neuraminidase and fusogenic promotion activities at the protein level were consistent with those of viral level. Taken together, our results demonstrate that the HN biological activities affected by the C-terminal extension are associated with NDV replication but not the virulence.
Collapse
Affiliation(s)
- Jihui Jin
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingchao Ren
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qi Zhong
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
6
|
Fan S, Wang T, Gao X, Ying Y, Li X, Li Y, Li Y, Ma J, Sun H, Chu D, Xu Y, Yang S, Li Q, Gao Y, Xia X. Phylogenetic analysis of Newcastle disease viruses isolated from wild birds in the Poyang Lake region of China. J Vet Med Sci 2015; 77:1143-9. [PMID: 25843743 PMCID: PMC4591157 DOI: 10.1292/jvms.14-0080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Newcastle disease virus (NDV) causes a highly contagious viral disease in poultry and wild birds, and it can cause significant economic loss worldwide. Eight viral strains were isolated by inoculating embryonated chicken eggs from the Poyang Lake region of China with swab samples. All eight of the NDV isolates were identified as class I genotype 3 strains, but they diverged notablely from class II viruses. Further analysis revealed that all eight NDV isolates were lentogenic strains containing the (112)ERQER↓L(117) motif at the F protein cleavage site. The strains were highly identical and were more species specific (chicken and waterfowl) than site specific (Nanchang and Duchang regions). The close phylogenetic proximity of these isolates indicates that viral transmission may happen between poultry and wild birds. Our study demonstrates that lentogenic class I NDVs exist in clinically healthy wild waterfowl and poultry within the Poyang Lake region. Active surveillance of these viruses to determine their evolution and origin is one of the most realistic strategies for preventing and controlling NDV outbreaks.
Collapse
Affiliation(s)
- Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hussein H, Emara M, Rohaim M. Molecular Characterization of Newcastle Disease Virus Genotype VIID in Avian
influenza H5N1 Infected Broiler Flock in Egypt. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ijv.2014.46.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Murulitharan K, Yusoff K, Omar AR, Molouki A. Characterization of Malaysian velogenic NDV strain AF2240-I genomic sequence: a comparative study. Virus Genes 2013; 46:431-40. [PMID: 23306943 DOI: 10.1007/s11262-012-0874-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
Newcastle disease virus (NDV) strain AF2240 is a viscerotropic velogenic strain that is used as a vaccine challenge virus in Malaysia. The identification of the full length genome will be a crucial platform for further studies of this isolate. In this study, we fully sequenced the genome of a derivative of this strain named AF2240-I. The 15,192 nt long genome contains a 55-nt leader sequence at the 3' whereas the trailer region consists of 114 nt at the 5'. The intergenic sequences between the NP-P, P-M, M-F, F-HN, and HN-L genes comprise 1, 1, 1, 31, and 47 nt, respectively. The acknowledged cleavage site of fusion protein showed amino acid sequence of 112-R-R-Q-K-R-F-117, which corresponds to those of virulent NDV strains. Phylogenetic analysis of the whole virus genome shows that the strain AF2240-I belongs to genotype VIII and is more closely related to velogenic strains QH1, QH4, Fontana, Largo, and Italienas compared to other strains of NDV. Differences are noticed in the hemagglutinin-neuraminidase (HN) and matrix (M) gene between AF2240 and its derivative AF2240-I. This is the first report of a complete genome sequence of an NDV strain isolated in Malaysia.
Collapse
Affiliation(s)
- Kavitha Murulitharan
- Institute of Biosciences, Universiti Putra Malaysia, 43400, Serdang, Selangor DE, Malaysia
| | | | | | | |
Collapse
|
9
|
HN gene C-terminal extension of Newcastle disease virus is not the determinant of the enteric tropism. Virus Genes 2013; 47:27-33. [PMID: 23549884 DOI: 10.1007/s11262-013-0903-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/11/2013] [Indexed: 01/22/2023]
Abstract
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays an important role in virus pathogenicity and tissue tropism. Sequence analysis revealed that the HN gene of many asymptomatic enteric NDV strains encodes a larger open reading frame (616 amino acids, aa) with additional 39 aa at its C-terminus when compared with that (577 aa) of respirotropic NDV strains. Therefore, it has been suspected that the HN C-terminal extension may contribute to the enteric tropism. In the present study, we generated a NDV respirotropic strain LaSota-based recombinant virus with a HN C-terminal extension of 39 aa derived from an enterotropic NDV strain using reverse genetics technology. The biological characterization of the recombinant virus, rLS-HN-ex, showed that the HN C-terminal extension slightly attenuated the virus pathogenicity in embryonated eggs and in day-old chicks when compared to the parental LaSota virus. However, the HN C-terminal extension did not alter virus tissue tropism. In infected chickens, the recombinant virus was detected and re-isolated from the tracheal tissue, but not from the intestinal tissue, exhibiting a similar respirotropic tissue preference as its parental LaSota strain. These results demonstrated that the HN protein C-terminal extension of NDV is not the determinant of the virus enteric tropism.
Collapse
|
10
|
Multiplex nested RT-PCR for detecting avian influenza virus, infectious bronchitis virus and Newcastle disease virus. J Virol Methods 2012; 188:41-6. [PMID: 23261801 DOI: 10.1016/j.jviromet.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/04/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022]
Abstract
In this study, multiplex nested RT-PCR (mnRT-PCR) was applied to simultaneous detect multiplex PCR with the higher sensitivity of nested PCR that is required for avian influenza, infectious bronchitis and Newcastle disease virus using two steps of amplification. For the first PCR, primers that were specific for each virus were newly designed from the nucleoprotein gene of AIV, the nucleocapsid protein gene of IBV and the fusion protein gene of NDV to amplify products of 665, 386 and 236 nucleotides, respectively. The multiplex PCR step provides mass amplification using common primers, which increased markedly the sensitivity of the test. Non-specific reactions were not observed when other viruses and bacteria were used for evaluating the mnRT-PCR. As a field application, 172 samples were tested by RT-PCR and mnRT-PCR. Among these samples, the concordance rates for mnRT-PCR and the single conventional RT-PCR showed 98.9% (kappa=0.98) and 98.8% (kappa=0.96) similarity for IBV and AIV, respectively. As a result, it is recommended the multiplex nested PCR as an effective tool for detecting and studying the molecular epidemiology of various mixed infections of one or more of these viruses in poultry.
Collapse
|
11
|
Nayak B, Nayak S, Paldurai A, Kumar S, De Nardi R, Terregino C, Collins PL, Samal SK. Evaluation of the genetic diversity of avian paramyxovirus type 4. Virus Res 2012. [PMID: 23178589 DOI: 10.1016/j.virusres.2012.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Avian paramyxoviruses (APMVs) belong to the genus Avulavirus in the family Paramyxoviridae and include at least nine serotypes, APMV-1 to -9, as well as two additional provisional serotypes. Newcastle disease virus (NDV), which comprises APMV-1, is the most extensively studied APMV because it is an important poultry pathogen. A moderate level of antigenic and genetic diversity is recognized for APMV-1 isolates, but our knowledge of the antigenic and genetic diversity of the other APMV serotypes is limited. APMV-4 is frequently isolated from waterfowl around the world. To date complete genome sequences of APMV-4 are available for only strains, which were isolated from ducks in Hong Kong, Korea and Belgium over a period of 37 years. We have carried out genome sequencing from the nucleocapsid (N) gene-end signal to the polymerase (L) gene-start signal of five APMV-4 strains recently isolated from Italy. Each of the eight APMV-4 strains has the same F protein cleavage site, DIQPR↓F. They also share a high level of nucleotide and amino acid sequence identity: for example, the F and HN glycoproteins have greater than 97% sequence identity between the various strains. Thus, comparison of these eight strains of APMV-4 did not provide evidence of substantial diversity, in contrast to similar studies with APMV-2, -3, and -6, in which the F and HN glycoproteins exhibited up to 20-30% amino acid sequence variation within a subgroup. Reciprocal cross-HI assay using post infection chicken sera also failed to detect significant antigenic variation among the available APMV-4 strains.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Molecular epidemiology of outbreak-associated and wild-waterfowl-derived newcastle disease virus strains in Finland, including a novel class I genotype. J Clin Microbiol 2012; 50:3664-73. [PMID: 22972821 DOI: 10.1128/jcm.01427-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease (ND) is a highly contagious, severe disease of poultry caused by pathogenic strains of Newcastle disease virus (NDV; or avian paramyxovirus-1). NDV is endemic in wild birds worldwide and one of the economically most important poultry pathogens. Most of the published strains are outbreak-associated strains, while the apathogenic NDV strains that occur in wild birds, posing a constant threat to poultry with their capability to convert into more virulent forms, have remained less studied. We screened for NDV RNA in cloacal and oropharyngeal samples from wild waterfowl in Finland during the years 2006 to 2010: 39 of 715 birds were positive (prevalence, 5.5%). The partial or full-length F genes of 37 strains were sequenced for phylogenetic purposes. We also characterized viruses derived from three NDV outbreaks in Finland and discuss the relationships between these outbreak-associated and the wild-bird-associated strains. We found that all waterfowl NDV isolates were lentogenic strains of class I or class II genotype I. We also isolated a genetically distinct class I strain (teal/Finland/13111/2008) grouping phylogenetically together with only strain HIECK87191, isolated in Northern Ireland in 1987. Together they seem to form a novel class I genotype genetically differing from other known NDVs by at least 12%.
Collapse
|
13
|
Yu Y, Qiu X, Xu D, Zhan Y, Meng C, Wei N, Chen H, Tan L, Yu S, Liu X, Qin A, Ding C. Rescue of virulent class I Newcastle disease virus variant 9a5b-D5C1. Virol J 2012; 9:120. [PMID: 22709603 PMCID: PMC3464933 DOI: 10.1186/1743-422x-9-120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 06/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background The virulent class I Newcastle disease virus (NDV) variant 9a5b was generated from a nonvirulent NDV isolate Goose/Alaska/415/91 via nine consecutive passages in the chicken air sac, followed by five passages in the chick brain. The evolutionary mechanism of virulence in the class I NDV isolate is not fully understood. To elucidate this evolutionary mechanism, a reverse genetics manipulation specific for class I NDV is indispensable. Results A full-length cDNA clone of 9a5b and the helper plasmids pCI-NP, pCI-P, and pCI-L were constructed from segments of cDNA. After these plasmids were co-transfected into BSR T7/5 cells, infectious viral particles were obtained. The rescued viruses were genetically and biologically identical to the parental strain and showed similar pathogenicity in chickens. Conclusion A stable recovery method for class I NDV was established. Reverse genetics of the class I NDV variant 9a5b allowed for the generation of genetically altered and virulent NDV, and can be used as a foundation for research on the evolution of virulence in class I NDV isolates.
Collapse
Affiliation(s)
- Yang Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yongolo MG, Christensen H, Handberg K, Minga U, Olsen JE. On the origin and diversity of Newcastle disease virus in Tanzania. ACTA ACUST UNITED AC 2011; 78:312. [PMID: 23327213 DOI: 10.4102/ojvr.v78i1.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/19/2011] [Accepted: 04/08/2011] [Indexed: 11/01/2022]
Abstract
Free-range rural chickens (FRCs) dominate the poultry industry in developing countries and chickens are exposed to multi-host infections, including Newcastle disease virus (NDV). The knowledge about the characteristics of NDV from FRCs is limited. This study investigated the persistence, spread and risks of NDV from FRCs. NDV isolates (n = 21) from unvaccinated FRCs in Tanzania were characterised by conventional intracerebral pathogenicity index (ICPI) and sequence analysis of a partial region of the deduced fusion protein encompassing the cleavage site. Results showed that five isolates were screened as lentogenic, nine as mesogenic and six as velogenic. Phylogenetic analysis of the 21 isolates compared to reference sequences revealed three, four, nine and five isolates in genotypes 1, 2, 3c and 4a, respectively. Genotype 3c also included published sequences of Tanzanian isolates obtained from exotic birds and chicken isolates from Uganda. The analysis showed that NDV were persistently present among chicken populations and possibly spread through live chicken markets or migration of wild birds. Differences in amino acid sequences detected around the cleavage site separated the isolates in six types. However, cleavage site pattern could not fully differentiate mesogenic isolates from velogenic isolates.
Collapse
Affiliation(s)
- Mmeta G Yongolo
- Department of Veterinary Disease Biology, University of Copenhagen.
| | | | | | | | | |
Collapse
|
15
|
Whole genome sequencing and characterization of a virulent Newcastle disease virus isolated from an outbreak in Sweden. Virus Genes 2011; 43:261-71. [PMID: 21667282 DOI: 10.1007/s11262-011-0636-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
In this study, the complete genome sequence of a Newcastle disease virus (NDV) isolate collected from an outbreak in 1995 in chickens was fully characterized and compared with other NDV sequences. The genome was found to be 15,192 nucleotides long and to consist of six genes in the order 3'-NP-P-M-F-HN-L-5', similar to other avian paramyxoviruses type-I. However, a six-nucleotide insertion was observed in the 5' non-coding regions of the nucleoprotein (NP) gene, a feature that is unique to some NDV isolates. The isolate shows the amino acid sequence (112)RRQKRF(117) at the cleavage site of the F protein, which is identical to a known motif for virulent pathotypes of NDV. The phylogenetic analysis of the coding region of the F gene indicated that this isolate belongs to genotype VI, more specifically to genotype VId, along with isolates from the other European countries (Denmark, Switzerland and Austria). The same genotype caused outbreaks in the Middle East and Greece in the late 1960s, and in Hungary, in the early 1980s, suggesting a common source for these outbreaks.
Collapse
|
16
|
Qiu X, Sun Q, Wu S, Dong L, Hu S, Meng C, Wu Y, Liu X. Entire genome sequence analysis of genotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position and recent-genotype genome size. Virol J 2011; 8:117. [PMID: 21396134 PMCID: PMC3063233 DOI: 10.1186/1743-422x-8-117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/14/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Six nucleotide (nt) insertion in the 5'-noncoding region (NCR) of the nucleoprotein (NP) gene of Newcaslte disease virus (NDV) is considered to be a genetic marker for recent genotypes of NDV, which emerged after 1960. However, F48-like NDVs from China, identified a 6-nt insert in the NP gene, have been previously classified into genotype III or genotype IX. RESULTS In order to clarify their phylogenetic position and explore the origin of NDVs with the 6-nt insert and its significance in NDV evolution, we determined the entire genome sequences of five F48-like viruses isolated in China between 1946 and 2002 by RT-PCR amplification of overlapping fragments of full-length genome and rapid amplification of cDNA ends. All the five NDV isolates shared the same genome size of 15,192-nt with the recent genotype V-VIII viruses whereas they had the highest homology with early genotype III and IV isolates. CONCLUSIONS The unique characteristic of the genome size and phylogenetic position of F48-like viruses warrants placing them in a separate geno-group, genotype IX. Results in this study also suggest that genotype IX viruses most likely originate from a genotype III virus by insertion of a 6-nt motif in the 5'-NCR of the NP gene which had occurred as early as in 1940 s, and might be the common origin of genotype V-VIII viruses.
Collapse
Affiliation(s)
- Xusheng Qiu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou 225009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mahmood S, Alexander DJ, Slomka MJ, Manvell RJ, Hanna A, Fuller CM, Brown IH. Phylogenetic analysis of the nucleotide sequences for the HN gene of 22 avian paramyxovirus type 2 viruses reveals marked heterogeneity. Avian Pathol 2011; 39:453-8. [PMID: 21154054 DOI: 10.1080/03079457.2010.517514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nucleotide sequence of the HN gene was determined for 21 isolates of avian paramyxovirus type 2 virus and compared with the published HN gene of APMV-2/chicken/California/Yucaipa/56. The HN gene of the 22 viruses had five different lengths in the range of 1737 to 1755 nucleotides coding for 579 to 585 amino acids. Phylogenetic analysis of a corresponding 1734-nucleotide sequence from the HN gene of each virus established five genetic groups (I to V), two of which (II and IV) could be divided into two sub-groups (IIa and IIb; and IVa and IVb). Although there were some exceptions, generally isolates placed in the same genetic group had >80% similarity in nucleotide sequence and <80% with the other isolates; while those in the same sub-group had >90% nucleotide sequence similarity.
Collapse
Affiliation(s)
- Sahar Mahmood
- Virology Department, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Yin Y, Cortey M, Zhang Y, Cui S, Dolz R, Wang J, Gong Z. Molecular characterization of Newcastle disease viruses in Ostriches (Struthio camelus L.): further evidences of recombination within avian paramyxovirus type 1. Vet Microbiol 2010; 149:324-9. [PMID: 21215532 DOI: 10.1016/j.vetmic.2010.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 11/22/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Abstract
Newcastle disease virus (NDV) strains isolated from ostriches have been genotyped for the first time by partial sequencing of the F gene to determine the epidemiologic role that this species can play within ND outbreaks. Fifteen additional NDV strains, mostly isolated from chickens but also from pigeons and penguins, were also included in the study to determine genetic relationships with ostriches NDV isolates. High genetic diversity was demonstrated in ostrich NDV isolates, as the 10 isolates were grouped in four distinct NDV genotypes. In agreement with the results obtained when chicken isolates have been molecularly characterized, the predominant genotype in ostriches was the genotype VII. More interestingly, evidences of recombination between genotype II and VII were observed in one ostrich isolate and in two further chicken isolates. Therefore, it seems that ostriches may play a relevant role in the ecology and epidemiology of ND particularly in those regions where they have an increasing farming importance as minor poultry species.
Collapse
Affiliation(s)
- Yanbo Yin
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266019, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Mase M, Murayama K, Karino A, Inoue T. Analysis of the fusion protein gene of Newcastle disease viruses isolated in Japan. J Vet Med Sci 2010; 73:47-54. [PMID: 20736513 DOI: 10.1292/jvms.10-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complete nucleotide sequences of the fusion (F) protein gene of Newcastle disease viruses (NDV) isolated in Japan from 1930 to 2007 (45 strains total) were determined and genetically analyzed. In the deduced amino acid sequences of fusion protein, the 5 potential asparagine-linked glycosylation sites and 10 cysteine residues were all conserved in the NDV examined in this study. The major epitopes involved in virus neutralization are conserved in most of the NDV strains isolated in Japan except a few strains. By virus neutralization test, no major antigenic differences were observed among representative strains of each genotype in Japan. All chickens vaccinated with the B1 strain survived without clinical signs after challenge with 2 NDV strains isolated in Japan (velogenic strains, JP/Ibaraki/2000 and JP/Kagoshima/91), which possess amino acids substitutions involved in virus neutralization in the F protein gene.
Collapse
Affiliation(s)
- Masaji Mase
- National Institute of Animal Health, Ibaraki, Japan.
| | | | | | | |
Collapse
|
20
|
Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia. Virol J 2010; 7:183. [PMID: 20691110 PMCID: PMC2927529 DOI: 10.1186/1743-422x-7-183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/08/2010] [Indexed: 11/12/2022] Open
Abstract
Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene. Results The coding region of eleven NDV isolates fusion (F) gene and carboxyl terminal region of haemagglutinin-neuraminidase (HN) gene including extensions were amplified by reverse transcriptase PCR and directly sequenced. All the isolates have shown to have non-synonymous to synonymous base substitution rate ranging between 0.081 - 0.264 demonstrating presence of negative selection. Analysis based on F gene showed the characterized isolates possess three different types of protease cleavage site motifs; namely 112RRQKRF117, 112RRRKRF117 and 112GRQGRL117 and appear to show maximum identities with isolates in the region such as cockatoo/14698/90 (Indonesia), Ch/2000 (China), local isolate AF2240 indicating the high similarity of isolates circulating in the South East Asian countries. Meanwhile, one of the isolates resembles commonly used lentogenic vaccine strains. On further characterization of the HN gene, Malaysian isolates had C-terminus extensions of 0, 6 and 11 amino acids. Analysis of the phylogenetic tree revealed that the existence of three genetic groups; namely, genotype II, VII and VIII. Conclusions The study concluded that the occurrence of three types of NDV genotypes and presence of varied carboxyl terminus extension lengths among Malaysian isolates incriminated for sporadic cases.
Collapse
|
21
|
Liu X, Wang X, Wu S, Hu S, Peng Y, Xue F, Liu X. Surveillance for avirulent Newcastle disease viruses in domestic ducks (Anas platyrhynchos and Cairina moschata) at live bird markets in Eastern China and characterization of the viruses isolated. Avian Pathol 2010; 38:377-91. [PMID: 19937525 DOI: 10.1080/03079450903183637] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We isolated and identified 201 Newcastle disease viruses (NDVs) from domestic ducks in a 5-year surveillance study at live bird markets in Eastern China. Seventy-three of these isolates were characterized biologically and genetically. Fusion protein (F) genes of these isolates were amplified by reverse transcription-polymerase chain reaction and sequenced. Intracerebral pathogenicity index tests in 1-day-old specific-pathogen-free chickens and the mean death time of embryonated fowl eggs in addition to the cleavage site analysis of the F-protein precursor for these viruses showed that they were all avirulent NDVs. Phylogenetic analysis based on partial sequences of the F gene showed that 30 isolates clustered into the class I clade and the other 43 isolates clustered into genotype I of class II, but diverged from the vaccine virus Queensland V4, which is extensively used in China. Most class I viruses (18/30) formed a separate branch closest to the Hong Kong live bird market strains that have been recently designated as genotype 3, while the rest (12/30) were closely related to some European viruses within genotype 2. All of the 43 class II genotype I viruses diverged from viruses originally assigned to genotype Ia and formed a separate sublineage designated as Ib with water bird isolates from the Far East, suggesting the possible transmission between the wild and domestic waterfowl. The results in the present study clearly showed that the domestic duck population carries avirulent NDVs with genetic divergence regularly and may act as one of the important reservoirs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kattenbelt JA, Stevens MP, Selleck PW, Gould AR. Analysis of Newcastle disease virus quasispecies and factors affecting the emergence of virulent virus. Arch Virol 2010; 155:1607-15. [PMID: 20602243 PMCID: PMC7086669 DOI: 10.1007/s00705-010-0739-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 06/24/2010] [Indexed: 11/27/2022]
Abstract
Genome sequence analysis of a number of avirulent field isolates of Newcastle disease virus revealed the presence of viruses (within their quasispecies) that contained virulent F0 sequences. Detection of these virulent sequences below the ~1% level, using standard cloning and sequence analysis, proved difficult, and thus a more sensitive reverse-transcription real-time PCR procedure was developed to detect both virulent and avirulent NDV F0 sequences. Reverse-transcription real-time PCR analysis of the quasispecies of a number of Newcastle disease virus field isolates, revealed variable ratios (approximately 1:4–1:4,000) of virulent to avirulent viral F0 sequences. Since the ratios of these sequences generally remained constant in the quasispecies population during replication, factors that could affect the balance of virulent to avirulent sequences during viral infection of birds were investigated. It was shown both in vitro and in vivo that virulent virus present in the quasispecies did not emerge from the “avirulent background” unless a direct selection pressure was placed on the quasispecies, either by growth conditions or by transient immunosuppression. The effect of a prior infection of the host by infectious bronchitis virus or infectious bursal disease virus on the subsequent emergence of virulent Newcastle disease virus was examined.
Collapse
Affiliation(s)
- Jacqueline A Kattenbelt
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Private Bag 24, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
23
|
Genetic variation of Italian avian paramyxoviruses serotype 9. Virus Genes 2010; 41:43-6. [DOI: 10.1007/s11262-010-0479-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
|
24
|
Genomic characterization of the first class I Newcastle disease virus isolated from the mainland of China. Virus Genes 2010; 40:365-71. [PMID: 20146094 DOI: 10.1007/s11262-010-0452-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/22/2010] [Indexed: 01/08/2023]
Abstract
The complete genomic sequence of Newcastle disease virus (NDV) strain NDV08-004, isolated from domestic ducks in China, was determined in this study. The genome is 15198 nucleotides (nt) in length, follows the "rule of six" and contains a 55-nt leader sequence at the 3' end and a 114-nt trailer sequence at the 5' end. Compared with the full genome sequences of Class II NDV strains, the NDV08-004 isolate has a 12-nt insertion (TGGGAGACGGGG) in the phosphoprotein gene between nucleotides 2381 and 2382 of the genome (numbered according to the genomic sequence of the La Sota strain, which consists of 15186 nt). Strain NDV08-004 has the motif (112)E-Q-Q-E-R-L(117) at the cleavage site of the fusion protein, which is typical of lentogenic NDV strains, and this is in agreement with the results of pathogenic tests based on the mean death time (MDT) and the intracerebral pathogenicity index (ICPI). Phylogenetic analysis based on the full genome revealed that all the NDV strains studied could be divided into two distinct clades, namely class I and class II, and the NDV08-004 isolate characterized in this study was grouped in class I. Further phylogenetic analysis based on a 374-bp fragment of the F gene in class I strains of NDV demonstrated that NDV08-004 belongs to genotype 3, and should be therefore similar to strains obtained from live bird markets in Hong Kong in recent years.
Collapse
|
25
|
Avian influenza virus and Newcastle disease virus (NDV) surveillance in commercial breeding farm in China and the characterization of Class I NDV isolates. Vet Microbiol 2010; 144:82-6. [PMID: 20133090 DOI: 10.1016/j.vetmic.2010.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/19/2009] [Accepted: 01/06/2010] [Indexed: 11/22/2022]
Abstract
In order to determine the actual prevalence of avian influenza virus (AIV) and Newcastle disease virus (NDV) in ducks in Shandong province of China, extensive surveillance studies were carried out in the breeding ducks of an intensive farm from July 2007 to September 2008. Each month cloacal and tracheal swabs were taken from 30 randomly selected birds that appeared healthy. All of the swabs were negative for influenza A virus recovery, whereas 87.5% of tracheal swabs and 100% cloacal swabs collected in September 2007, were positive for Newcastle disease virus isolation. Several NDV isolates were recovered from tracheal and cloacal swabs of apparently healthy ducks. All of the isolates were apathogenic as determined by the MDT and ICPI. The HN gene and the variable region of F gene (nt 47-420) of four isolates selected at random were sequenced. A 374 bp region of F gene and the full length of HN gene were used for phylogenetic analysis. Four isolates were identified as the same isolate based on nucleotide sequences identities of 99.2-100%, displaying a closer phylogenetic relationship to lentogenic Class I viruses. There were 1.9-9.9% nucleotide differences between the isolates and other Class I virus in the variable region of F gene (nt 47-420), whereas there were 38.5-41.2% nucleotide difference between the isolates and Class II viruses. The amino acid sequences of the F protein cleavage sites in these isolates were 112-ERQERL-117. The full length of HN gene of these isolates was 1851 bp, coding 585 amino acids. The homology analysis of the nucleotide sequence of HN gene indicated that there were 2.0-4.2% nucleotide differences between the isolates and other Class I viruses, whereas there were 29.5-40.9% differences between the isolates and Class II viruses. The results shows that these isolates are not phylogenetically related to the vaccine strain (LaSota). This study adds to the understanding of the ecology of influenza viruses and Newcastle disease viruses in ducks and emphasizes the need for constant surveillance in times of an ongoing and expanding epidemic of AIV and NDV.
Collapse
|
26
|
Liang JW, Tian FL, Lan ZR, Huang B, Zhuang WZ. Selection characterization on overlapping reading frame of multiple-protein-encoding P gene in Newcastle disease virus. Vet Microbiol 2009; 144:257-63. [PMID: 20079581 DOI: 10.1016/j.vetmic.2009.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/21/2009] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize the molecular evolution of P and V protein genes of the Newcastle disease virus (NDV). The P gene sequences of 55 NDV isolates, representing different chronological and geographic origins, were obtained from GenBank. In this paper, the evolution of the specific regions of the NDV P gene, encoding the P and V proteins, was analyzed. The nucleotides from the shared P/V region encoded the co-amino terminus of the two proteins, while the P-V/V-P region was respectively encoded by the nucleotides within the P ORF or the V ORF in the common sequence (after the mRNA editing site). As well, the P-cut region exclusively encoded the P protein. Finally, the P-V and V-P regions were further broken down into P1 and P2 fragments with the corresponding V1 and V2 fragments. In the P gene, the P-cut portion corresponding to the C-terminal of the P protein was the most highly conserved, while the P-V region was the most variable. This was interpreted as a lower constraint for function in the common sequence than in the unique P sequence that is known to contain an important function. Interestingly, in the common P-V/V-P function, variability of V1 was compensated by a higher conservation of the corresponding P1, and conversely for the P2/V2, which suggested that the flexibility of one ORF with less function served the purpose of allowing positive selection in the other overlapping ORF that exhibited more function.
Collapse
Affiliation(s)
- Jun-Wen Liang
- College of Life Science, Shandong Normal University, Wenhua East Road, Shandong Province, Jinan 250014, China
| | | | | | | | | |
Collapse
|
27
|
Adi AAAM, Astawa NM, Putra KSA, Hayashi Y, Matsumoto Y. Isolation and characterization of a pathogenic Newcastle disease virus from a natural case in indonesia. J Vet Med Sci 2009; 72:313-9. [PMID: 19996566 DOI: 10.1292/jvms.09-0303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was performed to isolate a velogenic Newcastle disease virus (NDV) strain currently found in Indonesia for establishing a domestic reference virus for future pathological and molecular epidemiological studies. A chicken suspected to have contracted Newcastle disease (ND) in a local outbreak in Bali was selected for NDV isolation. Atrophy of lymphoid tissues such as the bursa of Fabricius, thymus, and spleen; intestinal haemorrhage; and oedema of the brain were observed in the chicken. Histopathological examination revealed severe non-suppurative meningoencephalomyelitis characterised by neuronal necrosis, multifocal to diffuse gliosis, and perivascular cuffing of mononuclear cells, hemorrhagic necrosis of the trachea, intestines and bursa of Fabricius, and various degree of lymphoid depletion and necrosis of the lymphoid tissues. After ND was confirmed immunohistochemically, the NDV was propagated by inoculating tissue homogenate of the diseased chicken in embryonated eggs. Phylogenetic analysis based on the F gene nucleotide sequence revealed that this isolate belonged to genotype VII. The deduced amino acid sequence of the isolated NDV F protein at the cleavage site was (112)RRQKRF(117), which is typically found in virulent NDV isolates. Pathogenicity indexes such as the mean death time (MDT) and intracerebral pathogenicity index (ICPI) were 54 hr and 1.77, respectively. Pathological findings, phylogenetic analysis, amino acid sequence of the F protein cleavage site, and pathogenicity index test results revealed the NDV isolate, designated as NDV/Bali-1/07, to be a novel Indonesian velogenic NDV strain belonging to group VII.
Collapse
Affiliation(s)
- Anak Agung Ayu Mirah Adi
- Pathology Laboratory, Department of Animal Disease, Faculty of Veterinary Medicine, Udayana University, Jln. PB Sudirman Denpasar, Bali, Indonesia
| | | | | | | | | |
Collapse
|
28
|
Newcastle disease: evolution of genotypes and the related diagnostic challenges. INFECTION GENETICS AND EVOLUTION 2009; 10:26-35. [PMID: 19800028 DOI: 10.1016/j.meegid.2009.09.012] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 11/20/2022]
Abstract
Since the discovery of Newcastle disease virus (NDV) in 1926, nine genotypes of class I viruses and ten of class II have been identified, representing a diverse and continually evolving group of viruses. The emergence of new virulent genotypes from global epizootics and the year-to-year changes observed in the genomic sequence of NDV of low and high virulence implies that distinct genotypes of NDV are simultaneously evolving at different geographic locations across the globe. This vast genomic diversity may be favored by the large variety of avian species susceptible to NDV infection and by the availability of highly mobile wild bird reservoirs. The genomic diversity of NDV increases the possibility of diagnostic failures, resulting in unidentified infections. Constant epidemiological surveillance and pro-active characterization of circulating strains are needed to ensure that the immunological and PCR reagents are effective in identifying NDV circulating worldwide. For example, in the United States, the widely used real-time reverse transcription polymerase chain reaction (RRT-PCR) matrix gene assay for the identification of NDV often fails to detect low virulence APMV-1 from waterfowl, while the RRT-PCR fusion gene assay, used to identify virulent isolates, often fails to detect certain virulent NDV genotypes. A new matrix-polymerase multiplex test that detects most of the viruses currently circulating worldwide and a modified fusion test for the identification of virulent pigeon viruses circulating in the U.S. and Europe have recently been developed. For newly isolated viruses with unknown sequences, recently developed random priming sequencing methods need to be incorporated into the diagnostic arsenal. In addition, the current system of classifying NDV into genotypes or lineages is inadequate. Here, we review the molecular epidemiology and recent diagnostic problems related to viral evolution of NDV and explain why a new system, based on objective criteria, is needed to categorize genotypes.
Collapse
|
29
|
Lindh E, Huovilainen A, Rätti O, Ek-Kommonen C, Sironen T, Huhtamo E, Pöysä H, Vaheri A, Vapalahti O. Orthomyxo-, paramyxo- and flavivirus infections in wild waterfowl in Finland. Virol J 2008; 5:35. [PMID: 18307758 PMCID: PMC2292701 DOI: 10.1186/1743-422x-5-35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/28/2008] [Indexed: 12/22/2022] Open
Abstract
Background Screening wild birds for viral pathogens has become increasingly important. We tested a screening approach based on blood and cloacal and tracheal swabs collected by hunters to study the prevalence of influenza A, paramyxo-, flavi-, and alphaviruses in Finnish wild waterfowl, which has been previously unknown. We studied 310 blood samples and 115 mixed tracheal and cloacal swabs collected from hunted waterfowl in 2006. Samples were screened by RT-PCR and serologically by hemagglutination inhibition (HI) test or enzyme-linked immunosorbent assay (ELISA) for influenza A (FLUAV), type 1 avian paramyxo-(APMV-1), Sindbis (SINV), West Nile (WNV) and tick-borne encephalitis (TBEV) virus infections. Results FLUAV RNA was found in 13 tracheal/cloacal swabs and seven strains were isolated. Five blood samples were antibody positive. Six APMV-1 RNA-positive samples were found from which four strains were isolated, while two blood samples were antibody positive. None of the birds were positive for flavivirus RNA but three birds had flavivirus antibodies by HI test. No antibodies to SINV were detected. Conclusion We conclude that circulation of both influenza A virus and avian paramyxovirus-1 in Finnish wild waterfowl was documented. The FLUAV and APMV-1 prevalences in wild waterfowl were 11.3% and 5.2% respectively, by this study. The subtype H3N8 was the only detected FLUAV subtype while APMV-1 strains clustered into two distinct lineages. Notably, antibodies to a likely mosquito-borne flavivirus were detected in three samples. The screening approach based on hunted waterfowl seemed reliable for monitoring FLUAV and APMV by RT-PCR from cloacal or tracheal samples, but antibody testing in this format seemed to be of low sensitivity.
Collapse
Affiliation(s)
- Erika Lindh
- Department of Virology, Haartman Institute, Faculty of Medicine, P,O, Box 21, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim LM, King DJ, Curry PE, Suarez DL, Swayne DE, Stallknecht DE, Slemons RD, Pedersen JC, Senne DA, Winker K, Afonso CL. Phylogenetic diversity among low-virulence newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J Virol 2007; 81:12641-53. [PMID: 17855536 PMCID: PMC2169019 DOI: 10.1128/jvi.00843-07] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-virulence Newcastle disease viruses (loNDV) are frequently recovered from wild bird species, but little is known about their distribution, genetic diversity, or potential to cause disease in poultry. NDV isolates recovered from cloacal samples of apparently healthy waterfowl and shorebirds (WS) in the United States during 1986 to 2005 were examined for genomic diversity and their potential for virulence (n = 249). In addition 19 loNDV isolates from U.S. live bird markets (LBMs) were analyzed and found to be genetically distinct from NDV used in live vaccines but related to WS-origin NDV. Phylogenetic analysis of the fusion protein identified nine novel genotypes among the class I NDV, and new genomic subgroups were identified among genotypes I and II of the class II viruses. The WS-origin viruses exhibited broad genetic and antigenic diversity, and some WS genotypes displayed a closer phylogenetic relationship to LBM-origin NDV. All NDV were predicted to be lentogenic based upon sequencing of the fusion cleavage site, intracerebral pathogenicity index, or mean death time in embryo assays. The USDA real-time reverse transcription-PCR assay, which targets the matrix gene, identified nearly all of the class II NDV tested but failed to detect class I viruses from both LBM and WS. The close phylogenetic proximity of some WS and LBM loNDV suggests that viral transmission may occur among wild birds and poultry; however, these events may occur unnoticed due to the broad genetic diversity of loNDV, the lentogenic presentation in birds, and the limitations of current rapid diagnostic tools.
Collapse
Affiliation(s)
- L Mia Kim
- USDA ARS Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) to review Newcastle disease focussing on vaccination worldwide in order to determine its optimal use for disease control purposes. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Wambura PN, Meers J, Kattenbelt JA, Gould AR, Spradbrow PB. Deduced amino acid sequences surrounding the fusion glycoprotein cleavage site and of the carboxyl-terminus of haemagglutinin-neuraminidase protein of the avirulent thermostable vaccine strain I-2 of Newcastle disease virus. Vet Res Commun 2007; 31:105-12. [PMID: 17195928 DOI: 10.1007/s11259-006-3290-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2005] [Indexed: 09/29/2022]
Abstract
A single-tube RT-PCR technique generated a 387 bp or 300 bp cDNA amplicon covering the F(0) cleavage site or the carboxyl (C)-terminus of the HN gene, respectively, of Newcastle disease virus (NDV) strain I-2. Sequence analysis was used to deduce the amino acid sequences of the cleavage site of F protein and the C-terminus of HN protein, which were then compared with sequences for other NDV strains. The cleavage site of NDV strain I-2 had a sequence motif of (112) RKQGRLIG(119), consistent with an avirulent phenotype. Nucleotide sequencing and deduction of amino acids at the C-terminus of HN revealed that strain I-2 had a 7-amino-acid extension (VEILKDGVREARSSR. This differs from the virulent viruses that caused outbreaks of Newcastle disease in Australia in the 1930s and 1990s, which have HN extensions of 0 and 9 amino acids, respectively. Amino acid sequence analyses of the F and HN genes of strain I-2 confirmed its avirulent nature and its Australian origin.
Collapse
Affiliation(s)
- P N Wambura
- School of Veterinary Science, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
33
|
Czeglédi A, Ujvári D, Somogyi E, Wehmann E, Werner O, Lomniczi B. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 2006; 120:36-48. [PMID: 16766077 DOI: 10.1016/j.virusres.2005.11.009] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 10/24/2022]
Abstract
The goal of the study was to establish if there was a relationship between molecular patterns and virus evolution. Therefore the complete genome sequence of two distinct apathogenic Newcastle disease virus (NDV) strains was determined and a third genome size category, containing 15,198 nucleotides, was recognized. Phylogenetic analysis revealed that two major separations resulting in three genome size categories occurred during the history of NDV. An ancient division in the primordial reservoir (wild waterbird species) led to two basal sister clades, class I and II, with genome sizes 15,198 (due to a 12 nucleotide insert in the phosphoprotein gene) and 15,186 nucleotides, respectively. Ancestors of only class II viruses colonized chicken populations and subsequently converted to virulent forms. These took place more than once and resulted in an early lineage [including genotypes I-IV and H33(W)] with genome size of 15,186 nucleotides. A second division occurred in the 20th century in the secondary (chicken) host. This gave rise to the branching-off of a clade (including recent genotypes V-VIII consisting of only pathogenic viruses) with the concomitant insertion of six nucleotides into the 5' non-coding region of the nucleoprotein gene thereby increasing the genome size to 15,192 nucleotides.
Collapse
Affiliation(s)
- Alíz Czeglédi
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, PO Box 18, Budapest 1581, Hungary
| | | | | | | | | | | |
Collapse
|
34
|
Kattenbelt JA, Stevens MP, Gould AR. Sequence variation in the Newcastle disease virus genome. Virus Res 2006; 116:168-84. [PMID: 16430984 DOI: 10.1016/j.virusres.2005.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 10/05/2005] [Indexed: 12/26/2022]
Abstract
Full-length genome sequences of five virulent and five avirulent strains of Newcastle disease virus isolated between 1998 and 2002 in Victoria and New South Wales, Australia were determined. Comparisons between these strains revealed that coding sequence variability in the haemagglutinin-neuraminidase (HN), matrix (M) and phosphoprotein (P) gene sequences appeared to be more variable than in the fusion (F), nucleocapsid (N) and RNA dependent-RNA replicase (L) genes. Sequence analysis of a number of other isolates made during the recent virulent NDV outbreaks, also identified the presence of a number of variants with altered F gene cleavage sites, which resulted in altered biological properties of those viruses. Quasispecies analysis of a number of field isolates indicated the presence of virulent virus in one particular isolate. Gene sequence analysis of the progenitor virus isolated in 1998 showed very little sequence variation when compared to that of a progenitor-like virus isolated in 2001, demonstrating that in the field, viral genome sequence variation appears to be biologically restricted to that of a consensus sequence.
Collapse
Affiliation(s)
- Jacqueline A Kattenbelt
- CSIRO Livestock Industries, Australian Animal Health Laboratory, P.O. Bag 24, Geelong, Victoria 3220, Australia.
| | | | | |
Collapse
|
35
|
Tsai HJ, Chang KH, Tseng CH, Frost KM, Manvell RJ, Alexander DJ. Antigenic and genotypical characterization of Newcastle disease viruses isolated in Taiwan between 1969 and 1996. Vet Microbiol 2004; 104:19-30. [PMID: 15530736 DOI: 10.1016/j.vetmic.2004.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 09/02/2004] [Accepted: 09/03/2004] [Indexed: 11/26/2022]
Abstract
Three major epidemics of Newcastle disease (ND) occurred in Taiwan over the past three decades (in 1969, 1984, and 1995). In order to gain a better understanding of the relationships between past ND epizootics in Taiwan, 36 ND viruses (NDVs) isolated between 1969 and 1996 were characterized antigenically and genotypically. The antigenicity of these viruses was analysed by their ability to cause binding of mouse monoclonal antibodies (mAbs) to cell cultures infected with the isolate. Using a panel of 22 mAbs to divide NDVs into subgroups, a total of 18 binding patterns were revealed. The sequences covering the cleavage site of the fusion protein gene of these isolates were also determined. The results of the phylogenetic analysis placed 36 NDVs into I, II, VIb, VIIa, VIII and two novel genotypes (provisionally termed X and VIh). The 1969 velogenic isolates were of genotypes X and VIh; the 1984-1985 velogenic isolates were genotyped VIb, VIh, VIIa, and X; while the 1995-1996 velogenic isolates were genotyped VIIa or VIII. Some 1969 and 1984 velogenic isolates were of the same mAbs binding pattern and genotype, and the mAbs binding patterns of the 1995-1996 isolates have not been seen before. It is concluded that velogenic NDVs of different genotype and antigenic type have co-circulated in Taiwan at least since 1969. Also there were epizootiological links between strains isolated in 1969 and 1984, whereas the 1995-1996 epidemic was caused by new antigenic variants.
Collapse
Affiliation(s)
- Hsiang-Jung Tsai
- Graduate Institute of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | | | | | | | | | | |
Collapse
|
36
|
Otim MO, Christensen H, Jørgensen PH, Handberg KJ, Bisgaard M. Molecular characterization and phylogenetic study of newcastle disease virus isolates from recent outbreaks in eastern Uganda. J Clin Microbiol 2004; 42:2802-5. [PMID: 15184476 PMCID: PMC427882 DOI: 10.1128/jcm.42.6.2802-2805.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Newcastle disease virus isolates from chickens in eastern Uganda in 2001 were found to be velogenic by fusion protein cleavage site sequence analysis and biological characterization; the intracerebral pathogenicity index was 1.8. Analysis of their hemagglutinin-neuraminidase protein gene sequences revealed a novel genotype unrelated to those that caused previous outbreaks.
Collapse
Affiliation(s)
- Maxwell O Otim
- Livestock Health Research Institute, P.O. Box 96, Tororo, Uganda.
| | | | | | | | | |
Collapse
|