1
|
Hu Y, Niu Z, Cao C, Gao J, Pan M, Cai Y, Zhao Z. Volatile organic compounds (VOC) metabolites in urine are associated with increased systemic inflammation levels, and smokers are identified as a vulnerable population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117398. [PMID: 39612684 DOI: 10.1016/j.ecoenv.2024.117398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Previous studies indicated that exposure to VOCs was linked to increased systemic inflammation levels. However, the dose-response relationships between urine VOCs metabolites and systemic inflammation have not been established, and the key metabolite of the toxic compounds has not been identified. METHODS We used data in 7007 US adults in the NHANES cycles (2011-2018) across 8 years. Urinary VOC metabolites were measured using ultra-performance liquid chromatography and electrospray tandem mass spectrometry (UPLC-ESI/MSMS). VOC metabolites were adjusted by urinary creatinine level before analysis. Systemic inflammation was assessed by systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) indices. Generalized linear models, restricted cubic splines (RCS), and weighted quantile sum (WQS) regression were applied to evaluate the associations, exposure-response (E-R) curve and identify the key contributor compound, adjusting for gender, age, race, BMI, marital condition, education level, smoking level, alcohol consumption and physical activity. Smoking status was assessed as an effect modifier. RESULTS Significant and robust positive correlations were found between 8 VOC metabolites and both SII and SIRI. They were N-Acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA), N-Acetyl-S-(2-cyanoethyl)-L-cysteine (CYMA), N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-Acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA), mandelic acid (MA), N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine (MHBMA3), phenylglyoxylic acid (PGA), and N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine (HPMMA). The RCS curves showed J-shaped or exponential shaped E-R relationships for most VOC metabolites. WQS regression found that exposure to the mixture of VOC metabolites was related to increased systemic inflammation, and MA was the key VOC metabolite contributing most to systemic inflammation levels. Smokers exhibited higher levels of urinary VOCs and larger susceptibility to VOC-related increases in SII and SIRI compared to non-smokers. CONCLUSION This study demonstrated a strong link between urinary VOC metabolites and increased systemic inflammation, and smokers were more susceptible. Our findings highlighted the significance of reducing VOC exposure to mitigate the inflammation levels, particularly for smokers.
Collapse
Affiliation(s)
- Yuanzhuo Hu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Changsheng Cao
- Institute of HVAC Engineering, School of Mechanical Engineering, Tongji University, Shanghai 200092, China
| | - Jun Gao
- Institute of HVAC Engineering, School of Mechanical Engineering, Tongji University, Shanghai 200092, China
| | - Miaoting Pan
- Shanghai Chemical Monitoring Station for Environment Protection, Shanghai 200050, China.
| | - Yunfei Cai
- Department of General Management, Shanghai Environment Monitoring Center, Shanghai 200235, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Jiang J, Ding X, Coelho P, Wittbrod G, Whelton AJ, Boor BE, Jung N. Rapid screening of volatile chemicals in surface water samples from the East Palestine, Ohio chemical disaster site with proton transfer reaction mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176056. [PMID: 39244060 DOI: 10.1016/j.scitotenv.2024.176056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The increasing prevalence of hazardous chemical incidents in the United States necessitates the implementation of analytically robust, rapid, and reliable screening techniques for toxicant mixture analysis to understand short- and long-term health impacts of environmental exposures. A recent chemical disaster in East Palestine, Ohio has underscored the importance of thorough contamination assessment. On February 03, 2023, a Norfolk Southern train derailment prompted a chemical spill and fires. An open burn involving over 100,000 gal of vinyl chloride was conducted three days later. Hazardous compounds were released into air, water, and soil. To provide time-sensitive exposure data for emergency response, this study outlines a novel methodology for rapid characterization of chemical contamination of environmental media to support disaster response efforts. A controlled static headspace sampling system, in conjunction with a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), was developed to characterize volatile organic compounds (VOCs) in surface water samples collected near the East Palestine train derailment site. Spatial variations were observed in the chemical composition of surface water samples collected at different locations. Hydrocarbons were found to be the most abundant chemical group of all surface water samples, contributing 50 % to 97 % to the total headspace VOC mass. Compounds commonly detected in surface water samples, including benzene, styrene, xylene, and methyl tert-butyl ether (MTBE) were also observed in most surface water samples, with aqueous concentrations typically at ng/L levels. This study demonstrated the potential of the proposed methodology to be applied for rapid field screening of volatile chemicals in water samples in order to enable fast emergency response to chemical disasters and environmental hazards.
Collapse
Affiliation(s)
- Jinglin Jiang
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Xiaosu Ding
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Paula Coelho
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Grayson Wittbrod
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Andrew J Whelton
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, United States; Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Brandon E Boor
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nusrat Jung
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
3
|
Gupta RK, Pipliya S, Karunanithi S, Eswaran U GM, Kumar S, Mandliya S, Srivastav PP, Suthar T, Shaikh AM, Harsányi E, Kovács B. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024; 13:3125. [PMID: 39410160 PMCID: PMC11475518 DOI: 10.3390/foods13193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The migration of chemical compounds from packaging polymers to food presents a multifaceted challenge with implications for food safety and public health. This review explores the interaction between packaging materials and food products, focusing on permeation, migration, and sorption processes. The different migration mechanisms of contact migration, gas phase migration, penetration migration, set-off migration, and condensation/distillation migration have been discussed comprehensively. The major migrating compounds are plasticizers, nanoparticles, antioxidants, light stabilizers, thermal stabilizers, monomers, oligomers, printing inks, and adhesives, posing potential health risks due to their association with endocrine disruption and carcinogenic effects. Advanced analytical methods help in the monitoring of migrated compounds, facilitating compliance with regulatory standards. Regulatory agencies enforce guidelines to limit migration, prompting the development of barrier coatings and safer packaging alternatives. Furthermore, there is a need to decipher the migration mechanism for mitigating it along with advancements in analytical techniques for monitoring the migration of compounds.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sunil Pipliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sangeetha Karunanithi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Gnana Moorthy Eswaran U
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sitesh Kumar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Shubham Mandliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | | | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Food Science & Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- World Food Forum, I-00100 Rome, Italy
| | - Endre Harsányi
- Agricultural Research Institutes and Academic Farming (AKIT), Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Food Science & Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Zou F, Wu MMH, Tan Z, Lu G, Kwok KWH, Leng Z. Ecotoxicological risk of asphalt pavements to aquatic animals associated with pollutant leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173985. [PMID: 38876354 DOI: 10.1016/j.scitotenv.2024.173985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1β, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.
Collapse
Affiliation(s)
- Fuliao Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Margaret M H Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhifei Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Guoyang Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin W H Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zhen Leng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Li X, Xin L, Yang L, Yang Y, Li W, Zhang M, Liao Y, Sun C, Li W, Peng Y, Zheng J. Identification of an Epoxide Metabolite of Amitriptyline In Vitro and In Vivo. Chem Res Toxicol 2024; 37:935-943. [PMID: 38761382 DOI: 10.1021/acs.chemrestox.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.
Collapse
Affiliation(s)
- Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Lihua Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Lan Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Mingyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
6
|
Frank EA, Meek MEB. Procedural application of mode-of-action and human relevance analysis: styrene-induced lung tumors in mice. Crit Rev Toxicol 2024; 54:134-151. [PMID: 38440945 DOI: 10.1080/10408444.2024.2310600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.
Collapse
Affiliation(s)
- Evan A Frank
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - M E Bette Meek
- School of Epidemiology and Public Health in the Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Afewerki S, Edlund U. Engineering an All-Biobased Solvent- and Styrene-Free Curable Resin. ACS POLYMERS AU 2023; 3:447-456. [PMID: 38107415 PMCID: PMC10722568 DOI: 10.1021/acspolymersau.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023]
Abstract
The sustainable production of polymers and materials derived from renewable feedstocks such as biomass is vital to addressing the current climate and environmental challenges. In particular, finding a replacement for current widely used curable resins containing undesired components with both health and environmental issues, such as bisphenol-A and styrene, is of great interest and vital for a sustainable society. In this work, we disclose the preparation and fabrication of an all-biobased curable resin. The devised resin consists of a polyester component based on fumaric acid, itaconic acid, 2,5-furandicarboxylic acid, 1,4-butanediol, and reactive diluents acting as both solvents and viscosity enhancers. Importantly, the complete process was performed solvent-free, thus promoting its industrial applications. The cured biobased resin demonstrates very good thermal properties (stable up to 415 °C), the ability to resist deformation based on the high Young's modulus of ∼775 MPa, and chemical resistance based on the swelling index and gel content. We envision the disclosed biobased resin having tailorable properties suitable for industrial applications.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Narindri Rara Winayu B, Weng WC, Chu H. Introduction of Fe on rGO/TiO2 improves styrene visible light-driven photocatalytic oxidation: Characterization, stability, kinetics, and mechanism. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Vodicka P, Vodenkova S, Horak J, Opattova A, Tomasova K, Vymetalkova V, Stetina R, Hemminki K, Vodickova L. An investigation of DNA damage and DNA repair in chemical carcinogenesis triggered by small-molecule xenobiotics and in cancer: Thirty years with the comet assay. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503564. [PMID: 36669813 DOI: 10.1016/j.mrgentox.2022.503564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
In the present review we addressed the determination of DNA damage induced by small-molecule carcinogens, considered their persistence in DNA and mutagenicity in in vitro and in vivo systems over a period of 30 years. The review spans from the investigation of the role of DNA damage in the cascade of chemical carcinogenesis. In the nineties, this concept evolved into the biomonitoring studies comprising multiple biomarkers that not only reflected DNA/chromosomal damage, but also the potential of the organism for biotransformation/elimination of various xenobiotics. Since first years of the new millennium, dynamic system of DNA repair and host susceptibility factors started to appear in studies and a considerable knowledge has been accumulated on carcinogens and their role in carcinogenesis. It was understood that the final biological links bridging the arising DNA damage and cancer onset remain to be elucidated. In further years the community of scientists learnt that cancer is a multifactorial disease evolving over several decades of individual´s life. Moreover, DNA damage and DNA repair are inseparable players also in treatment of malignant diseases, but affect substantially other processes, such as degeneration. Functional monitoring of DNA repair pathways and DNA damage response may cast some light on above aspects. Very little is currently known about the relationship between telomere homeostasis and DNA damage formation and repair. DNA damage/repair in genomic and mitochondrial DNA and crosstalk between these two entities emerge as a new interesting topic.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Rudolf Stetina
- Department of Research and Development, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Kari Hemminki
- Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 691 20 Heidelberg, Germany
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic.
| |
Collapse
|
10
|
Considerations for Applying Route-to-Route Extrapolation to Assess the Safety of Oral Exposure to Substances. Biomolecules 2022; 13:biom13010005. [PMID: 36671390 PMCID: PMC9855723 DOI: 10.3390/biom13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The safety evaluation of oral exposure to substances, such as food ingredients, additives, and their constituents, relies primarily on a careful evaluation and analysis of data from oral toxicity studies. When relevant oral toxicity studies are unavailable or may have significant data gaps that make them inadequate for use in safety evaluations, data from non-oral toxicity studies in animals, such as studies on inhalation, dermal exposure, etc., might be used in support of or in place of oral toxicity studies through route-to-route (R-t-R) extrapolation. R-t-R extrapolation is applied on a case-by-case basis as it requires attention to and comparison of substance-specific toxicokinetic (TK) and toxicodynamic (TD) data for oral and non-oral exposure routes. This article provides a commentary on the utility of R-t-R extrapolation to assess the safety of oral exposure to substances, with an emphasis on the relevance of TK and systemic toxicity data.
Collapse
|
11
|
Song D, Ji X, Li Y, Wu S, Zhang Y, Wang X, Sun Y, Gao E, Zhu M. Two novel zinc-based MOFs as luminescence sensors to detect phenylglyoxylic acid. Dalton Trans 2022; 51:16266-16273. [PMID: 36218122 DOI: 10.1039/d2dt02406c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Automobile exhaust gases, plastic pollutants, smoking, and other harmful substances can cause serious harm to human beings and the environment. Styrene, as a common airborne toxin, enters the human body through breathing or the skin and is discharged in the form of phenylglyoxylic acid (PGA). Therefore, specific, sensitive and trace detection of PGA is particularly important. Here, two zinc-based metal-organic frameworks {[Zn2L1(DMF)2H2O](DMF)2H2O}n, {[Zn4(L2)2(DMF)2(H2O)3](DMF)8}n (L1 = 2,5-bis((3-carboxylphenyl)amino)terephthalic acid, L2 = 2,5-bis((4-carboxyphenyl)amino)terephthalic acid) have been reported as 1 and 2, respectively. Both 1 and 2 present 3D structures, which can both be simplified as 4,4,4-c net topology. It is worth mentioning that 2 has two different kinds of Zn SBUs as connecting nodes in the structure. Besides, compared with the other materials for the detection of PGA, 1 and 2 exhibit relatively low detection limits (LODs), both in water and in urine (where the LODs for 1 in water and urine were 0.33 μM and 0.43 μM in the range of 0-0.39 mM, and those for 2 were 0.28 μM and 0.49 μM in the range of 0-0.59 mM, respectively). In addition, the sensors have excellent anti-interference ability, high stability, rapid response, and can easily distinguish between different concentrations of PGA with the naked eye. The developed paper probes were suitable for practical sensing applications for portable detection of PGA in urine.
Collapse
Affiliation(s)
- Dongxue Song
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Xiaoxi Ji
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Yong Li
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Xiaofeng Wang
- China College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Yaguang Sun
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China. .,Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education), Shenyang University Chemical Technology, Shenyang, 110142, PR China
| | - Enjun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China. .,Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education), Shenyang University Chemical Technology, Shenyang, 110142, PR China
| |
Collapse
|
12
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Schrenk D, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of an essential oil from Cinnamomum cassia (L.) J. Presl (cassia leaf oil) for use in all animal species (FEFANA asbl). EFSA J 2022; 20:e07600. [PMID: 36274981 PMCID: PMC9583740 DOI: 10.2903/j.efsa.2022.7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from leaves, stalks and twigs of Cinnamomum cassia (L.) J. Presl (cassia leaf oil) when used as a sensory additive (flavouring) in feed and water for drinking for all animal species. Owing to the presence of styrene in cassia leaf oil, the FEEDAP Panel is not in the position to conclude for long-living animals and animals for reproduction. For 'short-living' animals, the FEEDAP Panel concluded that cassia leaf oil is considered as safe up to the maximum proposed use levels in complete feed of 28.5 mg/kg for chickens for fattening and other minor poultry, 38 mg/kg for turkeys for fattening, 51 mg/kg for piglets and other minor Suidae, 61 mg/kg for pigs for fattening, 100 mg/kg for veal calves (milk replacer), 60 mg/kg for cattle for fattening and other ruminants for fattening, 30 mg/kg for horses, 25 mg/kg for rabbits, 125 mg/kg for salmonids and other fin fish. For the other minor species, the additive is considered as safe at 28.5 mg/kg complete feed. For 'short-living' animals, the FEEDAP Panel considered the use in water for drinking as safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. No concerns for consumers were identified following the use of the additive at the use levels considered safe in feed for the target species. When handling the essential oil, exposure of unprotected users to styrene cannot be excluded. Therefore, to reduce the risk, the exposure of the users should be minimised. The use of the additive under the proposed conditions in animal feed was not expected to pose a risk for the environment. Cassia leaf oil was recognised to flavour food. Since its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
Collapse
|
13
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Schrenk D, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of feed additives consisting of essential oils from the bark and the leaves of Cinnamomum verum J. Presl (cinnamon bark oil and cinnamon leaf oil) for use in all animal species (FEFANA asbl). EFSA J 2022; 20:e07601. [PMID: 36304835 PMCID: PMC9593251 DOI: 10.2903/j.efsa.2022.7601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of essential oils from the bark and the leaves of Cinnamomum verum J. Presl (cinnamon bark oil and cinnamon leaf oil), when used as sensory additives (flavourings) in feed and water for drinking for all animal species. Owing to the presence of styrene in the essential oils under assessment, the FEEDAP Panel is not in the position to conclude on the safety for long-living animals and animals for reproduction. For 'short-living' animals, the FEEDAP Panel concluded that cinnamon bark oil and cinnamon leaf oil are considered as safe up to the maximum proposed use levels in complete feed. For 'short-living' animals, the Panel considered the use of cinnamon bark oil in water for drinking as safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. For cinnamon leaf oil, the proposed use level in water for drinking of 3 mg/L is considered as safe for 'short-living' animals. No concerns for consumers were identified following the use of the additives at the use level considered safe in feed for the target species. Based on the presence of safrole ≥0.1%, cinnamon leaf oil and bark oil are classified as carcinogen (category 1B) and handled accordingly. The use of the additives under the proposed conditions in animal feed was not expected to pose a risk for the environment. Since C. verum and its preparations are recognised to flavour food and its function in feed would be essentially the same, no further demonstration of efficacy is considered necessary for cinnamon essential oils.
Collapse
|
14
|
Amoah K, Dong XH, Tan BP, Zhang S, Chi SY, Yang QH, Liu HY, Yan XB, Yang YZ, Zhang H. Ultra-Performance Liquid Chromatography-Mass Spectrometry-Based Untargeted Metabolomics Reveals the Key Potential Biomarkers for Castor Meal-Induced Enteritis in Juvenile Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). Front Nutr 2022; 9:847425. [PMID: 35811940 PMCID: PMC9261911 DOI: 10.3389/fnut.2022.847425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The intensification of aquaculture to help kerb global food security issues has led to the quest for more economical new protein-rich ingredients for the feed-based aquaculture since fishmeal (FM, the ingredient with the finest protein and lipid profile) is losing its acceptability due to high cost and demand. Although very high in protein, castor meal (CM), a by-product after oil-extraction, is disposed-off due to the high presence of toxins. Concurrently, the agro-industrial wastes’ consistent production and disposal are of utmost concern; however, having better nutritional profiles of these wastes can lead to their adoption. This study was conducted to identify potential biomarkers of CM-induced enteritis in juvenile hybrid-grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) alongside their growth and distal intestinal (DI) health evaluation. A total of 360 fish (initial weight = 9.13 ± 0.01g) were randomly assigned into three groups, namely, fish-meal (FM) (control), 4% CM (CM4), and 20% CM (CM20). After the 56-days feeding-trial, the DI tissues of FM, CM4, and CM20 groups were collected for metabolomics analysis. Principal components analysis and partial least-squares discriminant-analysis (PLS-DA, used to differentiate the CM20 and CM4, from the FM group with satisfactory explanation and predictive ability) were used to analyze the UPLC-MS data. The results revealed a significant improvement in the growth, DI immune responses and digestive enzyme activities, and DI histological examinations in the CM4 group than the others. Nonetheless, CM20 replacement caused DI physiological damage and enteritis in grouper as shown by AB-PAS staining and scanning electron microscopy examinations, respectively. The most influential metabolites in DI contents identified as the potential biomarkers in the positive and negative modes using the metabolomics UPLC-MS profiles were 28 which included five organoheterocyclic compounds, seven lipids, and lipid-like molecules, seven organic oxygen compounds, two benzenoids, five organic acids and derivatives, one phenylpropanoids and polyketides, and one from nucleosides, nucleotides, and analogues superclass. The present study identified a broad array of DI tissue metabolites that differed between FM and CM diets, which provides a valuable reference for further managing fish intestinal health issues. A replacement level of 4% is recommended based on the growth and immunity of fish.
Collapse
Affiliation(s)
- Kwaku Amoah
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
| | - Xiao-hui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- *Correspondence: Xiao-hui Dong,
| | - Bei-ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shu-yan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qi-hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hong-yu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Xiao-bo Yan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
| | - Yuan-zhi Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
15
|
Waidyanatha S, Black SR, Witt KL, Fennell TR, Swartz C, Recio L, Watson SL, Patel P, Fernando RA, Rider CV. The common indoor air pollutant α-pinene is metabolized to a genotoxic metabolite α-pinene oxide. Xenobiotica 2022; 52:301-311. [PMID: 35473450 DOI: 10.1080/00498254.2022.2070047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.2. To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.3. α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.4. While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.5. α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10,000 μg/plate while α-pinene oxide was mutagenic at ≥25 μg/plate.6. α-Pinene was metabolized to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Carol Swartz
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | | | - Purvi Patel
- RTI International, Research Triangle Park, NC, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
17
|
Jia P, Gao L, Zheng Y, Zheng X, Wang C, Yang C, Li Y, Zhao Y. Ultrastable Tb-Organic Framework as a Selective Sensor of Phenylglyoxylic Acid in Urine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33546-33556. [PMID: 34235930 DOI: 10.1021/acsami.1c09202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Industrial pollution and harmful chemicals seriously affect environment and human health. Styrene is a common air toxicant with widespread exposure sources, including smoking, automobile exhaust, and plastic pollutants. Phenylglyoxylic acid (PGA) is a typical biomarker for exposed styrene. Therefore, it is crucial to quickly identify and quantitatively detect PGA. Herein, an ultrastable terbium metal-organic framework (Tb-MOF 1) was developed, and the luminescence film (1/PLA) consisting of polylactic acid (PLA) and 1 was fabricated as a sensor for rapid detection of PGA. The sensor possesses the advantages of efficient detection [limit of detection (LOD) is 1.05 × 10-4 mg/mL] and rapid response speed (less than 10 s) for PGA in urine. Furthermore, this sensor exhibits high stability, outstanding anti-interference ability, and excellent recyclability. Based on this film technology, a paper-based probe was then developed for portable and convenient detection. The probe could easily distinguish different concentrations of PGA under the naked eye toward practical sensing applications. Meanwhile, photoinduced electron transfer was demonstrated to be responsible for the luminescence sensing. Hence, this study indicates that Tb-MOF is a promising material to detect PGA for evaluating the effect of styrene on the body.
Collapse
Affiliation(s)
- Peng Jia
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Liang Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Yan Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Xian Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Chang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
18
|
Umicevic N, Kotur-Stevuljevic J, Paleksic V, Djukic-Cosic D, Miljakovic EA, Djordjevic AB, Curcic M, Bulat Z, Antonijevic B. Liver function alterations among workers in the shoe industry due to combined low-level exposure to organic solvents. Drug Chem Toxicol 2021; 45:1907-1914. [PMID: 33715556 DOI: 10.1080/01480545.2021.1894703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate the potential hepatotoxicity, nephrotoxic, and hematotoxic effects of simultaneous occupational low-level exposure of shoe workers to a mixture of organic solvents. The study included 16 male and 55 female workers and non-exposed subjects (n = 60) in the control group. Along with a standard sets of hematological, liver enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyl transpeptidase (GGT), bilirubin total, bilirubin direct, blood glucose, urea, and creatinine were analyzed in all participants. Indoor air quality was monitored using a Gasmet Dx - 4000 multi-component analyzer. Despite the concentration levels of individual chemicals in shoe production units were below the permissible limits, the equivalent exposure (Em) values calculated based on the American Conference of Governmental Industrial Hygienists (ACGIH) and National Institute of Occupational Safety and Health (NIOSH) occupational exposure limits were higher than 1. Statistically significant increase of biochemical parameters (aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), total bilirubin, and direct bilirubin) was obtained in exposed workers of both genders compared with controls (p < 0.001). Calculated liver damage risk scores were significantly higher in both females and males compared with controls (p < 0.001). The multivariate logistic regression analysis showed that direct bilirubin was the most important predictor of organic solvent mixture exposure in the studied group of workers. These results suggest that combined exposure to organic solvents even at low concentrations may lead to hepatotoxicity.
Collapse
Affiliation(s)
- Nina Umicevic
- Department of Toxicology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Jelena Kotur-Stevuljevic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| | - Vesna Paleksic
- Institute of Occupational and Sports Health in Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Danijela Djukic-Cosic
- Department of Toxicology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.,Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| | - Evica Antonijevic Miljakovic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| | - Marijana Curcic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| | - Biljana Antonijevic
- Department of Toxicology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.,Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Beograd, Serbia
| |
Collapse
|
19
|
Tomasova K, Kroupa M, Forsti A, Vodicka P, Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis 2021; 35:261-271. [PMID: 32083302 DOI: 10.1093/mutage/geaa005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) continues to be one of the leading malignancies and causes of tumour-related deaths worldwide. Both impaired DNA repair mechanisms and disrupted telomere length homeostasis represent key culprits in CRC initiation, progression and prognosis. Mechanistically, altered DNA repair results in the accumulation of mutations in the genome and, ultimately, in genomic instability. DNA repair also determines the response to chemotherapeutics in CRC treatment, suggesting its utilisation in the prediction of therapy response and individual approach to patients. Telomere attrition resulting in replicative senescence, simultaneously by-passing cell cycle checkpoints, is a hallmark of malignant transformation of the cell. Telomerase is almost ubiquitous in advanced solid cancers, including CRC, and its expression is fundamental to cell immortalisation. Therefore, there is a persistent effort to develop therapeutics, which are telomerase-specific and gentle to non-malignant tissues. However, in practice, we are still at the level of clinical trials. The current state of knowledge and the route, which the research takes, gives us a positive perspective that the problem of molecular models of telomerase activation and telomere length stabilisation will finally be solved. We summarise the current literature herein, by pointing out the crosstalk between proteins involved in DNA repair and telomere length homeostasis in relation to CRC.
Collapse
Affiliation(s)
- Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic
| | - Asta Forsti
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Praha, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Praha, Czech Republic
| |
Collapse
|
20
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
21
|
Murphy N, Moreno V, Hughes DJ, Vodicka L, Vodicka P, Aglago EK, Gunter MJ, Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med 2019; 69:2-9. [PMID: 31233770 DOI: 10.1016/j.mam.2019.06.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) incidence changes with time and by variations in diet and lifestyle, as evidenced historically by migrant studies and recently by extensive epidemiologic evidence. The worldwide heterogeneity in CRC incidence is strongly suggestive of etiological involvement of environmental exposures, particularly lifestyle and diet. It is established that physical inactivity, obesity and some dietary factors (red/processed meats, alcohol) are positively associated with CRC, while healthy lifestyle habits show inverse associations. Mechanistic evidence shows that lifestyle and dietary components that contribute to energy excess are linked with increased CRC via metabolic dysfunction, inflammation, oxidative stress, bacterial dysbiosis and breakdown of gut barrier integrity while the reverse is apparent for components associated with decreased risk. This chapter will review the available evidence on lifestyle and dietary factors in CRC etiology and their underlying mechanisms in CRC development. This short review will also touch upon available information on potential gene-environment interactions, molecular sub-types of CRC and anatomical sub-sites within the colorectum.
Collapse
Affiliation(s)
- Neil Murphy
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO). Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Ludmila Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Elom K Aglago
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| |
Collapse
|
22
|
DNA damage and repair measured by comet assay in cancer patients. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 843:95-110. [DOI: 10.1016/j.mrgentox.2019.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
23
|
Ašmonaitė G, Larsson K, Undeland I, Sturve J, Carney Almroth B. Size Matters: Ingestion of Relatively Large Microplastics Contaminated with Environmental Pollutants Posed Little Risk for Fish Health and Fillet Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14381-14391. [PMID: 30451497 DOI: 10.1021/acs.est.8b04849] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we investigated biological effects associated with ingestion of polystyrene (PS) microplastic (MPs) in fish. We examined whether ingestion of contaminated PS MPs (100-400 μm) results in chemical stress in rainbow trout (Oncorhynchus mykiss) liver and we explored whether this exposure can affect the oxidative stability of the fillet during ice storage. Juvenile rainbow trout were fed for 4 weeks with four different experimental diets: control (1) and feeds containing virgin PS MPs (2) or PS MPs exposed to sewage (3) or harbor (4) effluent. A suite of ecotoxicological biomarkers for oxidative stress and xenobiotic-related pathways was investigated in the hepatic tissue, and included gene expression analyses and enzymatic measurements. The potential impact of MPs exposure on fillet quality was investigated in a storage trial where lipid hydroperoxides, loss of redness and development of rancid odor were assessed as indications of lipid peroxidation. Although, chemical analysis of PS MPs revealed that particles sorb environmental contaminants (e.g., PAHs, nonylphenol and alcohol ethoxylates and others), the ingestion of relatively high doses of these PS MPs did not induce adverse hepatic stress in fish liver. Apart from small effect on redness loss in fillets of fish exposed to PS MPs, the ingestion of these particles did not affect lipid peroxidation or rancid odor development, thus did not affect fillet's quality.
Collapse
Affiliation(s)
- Giedrė Ašmonaitė
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18A , 413 90 Göteborg , Sweden
| | - Karin Larsson
- Department of Biology and Biological Engineering-Food and Nutrition Science , Chalmers University of Technology , Kemivägen 10 , 412 96 Göteborg , Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science , Chalmers University of Technology , Kemivägen 10 , 412 96 Göteborg , Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18A , 413 90 Göteborg , Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18A , 413 90 Göteborg , Sweden
| |
Collapse
|
24
|
Charehsaz M, Reis R, Helvacioglu S, Sipahi H, Guzelmeric E, Acar ET, Cicek G, Yesilada E, Aydin A. Safety evaluation of styrax liquidus from the viewpoint of genotoxicity and mutagenicity. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:506-512. [PMID: 27737816 DOI: 10.1016/j.jep.2016.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Styrax liquidus is a resinous exudate (balsam) obtained from the wounded trunk of the Liquidambar orientalis Mill. (Hamamelidaceae). Styrax has been used for treatment of various ailments in Turkish folk medicine such as skin problems, peptic ulcers, nocturnal enuresis, parasitic infections, antiseptic or as expectorant. AIM OF STUDY In spite of frequent use of styrax in Turkish folk medicine as well as once as a stabilizer in perfumery industry, negative reports have been noticed by the international authority for restriction its use based on some limited evidences from an in vitro study. The aim of the present study was to evaluate the genotoxic and cytotoxic potential of styrax and its ethanolic extract using in vivo and in vitro assays, as well as an antimutagenic assay and also to determine its phenolic constituents with chromatographic analysis. MATERIALS AND METHODS In vitro mutagenicity and antimutagenicity of styrax and its ethanolic extract were evaluated by Ames test performed on Salmonella TA98 and TA100 strains with and without metabolic activation (10- 30,000µg/plate). The genotoxicity was also studied in vivo by chromosomal aberrations assay on bone marrow of Balb C mice with different its concentrations (500-2000mg/kg body weight). Cytotoxicity has been evaluated by the MTT assay using L929 cell line. Its phenolic constituents were determined by HPLC analysis. RESULTS Genotoxicological investigations of styrax or its ethanolic extract showed that none of the tested concentrations induced a significant increase in the revertant number of TA98 and TA100 strains with or without metabolic activation, indicating no mutagenicity to the tested strains. Also results indicated that up to 2000mg/kg body weight, styrax is not genotoxic in mammalian bone marrow chromosome aberration test in vivo. In cytotoxicity study, the IC50 values of styrax and its ethanolic extract were found to be 50.22±1.80 and 59.69±11.77µg/mL, respectively. Among the studied reference standards the major phenolic acids in styrax balsam was found to be p-coumaric acid (2.95mg/g), while in its ethanolic extract not only p-coumaric acid (11.46mg/g), but also gallic acid (1.60mg/g) were found to the main components. CONCLUSION The findings of the present study provide scientific basis to the safety of styrax from the viewpoint of genotoxicity risk, and in fact, it was found to be beneficial against genotoxicity.
Collapse
Affiliation(s)
- Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Rengin Reis
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Sinem Helvacioglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Etil Guzelmeric
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Ebru Turkoz Acar
- Department of Analytical Chemistry, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Gamze Cicek
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Kayışdağı, Atasehir, 34755 Istanbul, Turkey.
| |
Collapse
|
25
|
Fetoni AR, Rolesi R, Paciello F, Eramo SLM, Grassi C, Troiani D, Paludetti G. Styrene enhances the noise induced oxidative stress in the cochlea and affects differently mechanosensory and supporting cells. Free Radic Biol Med 2016; 101:211-225. [PMID: 27769922 DOI: 10.1016/j.freeradbiomed.2016.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
Experimental and human investigations have raised the level of concern about the potential ototoxicity of organic solvents and their interaction with noise. The main objective of this study was to characterize the effects of the combined noise and styrene exposure on hearing focusing on the mechanism of damage on the sensorineural cells and supporting cells of the organ of Corti and neurons of the ganglion of Corti. The impact of single and combined exposures on hearing was evaluated by auditory functional testing and histological analyses of cochlear specimens. The mechanism of damage was studied by analyzing superoxide anion and lipid peroxidation expression and by computational analyses of immunofluorescence data to evaluate and compare the oxidative stress pattern in outer hair cells versus the supporting epithelial cells of the organ of Corti. The oxidative stress hypothesis was further analyzed by evaluating the protective effect of a Coenzyme Q10 analogue, the water soluble Qter, molecule known to have protective antioxidant properties against noise induced hearing loss and by the analysis of the expression of the endogenous defense enzymes. This study provides evidence of a reciprocal noise-styrene synergism based on a redox imbalance mechanism affecting, although with a different intensity of damage, the outer hair cell (OHC) sensory epithelium. Moreover, these two damaging agents address preferentially different cochlear targets: noise mainly the sensory epithelium, styrene the supporting epithelial cells. Namely, the increase pattern of lipid peroxidation in the organ of Corti matched the cell damage distribution, involving predominantly OHC layer in noise exposed cochleae and both OHC and Deiters' cell layers in the styrene or combined exposed cochleae. The antioxidant treatment reduced the lipid peroxidation increase, potentiated the endogenous antioxidant defense system at OHC level in both exposures but it failed to ameliorate the oxidative imbalance and cell death of Deiters' cells in the styrene and combined exposures. Current antioxidant therapeutic approaches to preventing sensory loss focus on hair cells alone. It remains to be seen whether targeting supporting cells, in addition to hair cells, might be an effective approach to protecting exposed subjects.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/prevention & control
- Labyrinth Supporting Cells/drug effects
- Labyrinth Supporting Cells/metabolism
- Labyrinth Supporting Cells/pathology
- Lipid Peroxidation/drug effects
- Male
- Noise/adverse effects
- Oxidation-Reduction
- Oxidative Stress
- Rats
- Rats, Wistar
- Styrene/toxicity
- Ubiquinone/analogs & derivatives
- Ubiquinone/pharmacology
Collapse
Affiliation(s)
- A R Fetoni
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome, Italy; Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Italy.
| | - R Rolesi
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome, Italy
| | - F Paciello
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome, Italy; Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Italy
| | - S L M Eramo
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - C Grassi
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - D Troiani
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - G Paludetti
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome, Italy
| |
Collapse
|
26
|
Costa S, Ceppi M, Costa C, Silva S, Pereira C, Laffon B, Bonassi S, Teixeira JP. The cytokinesis-block micronucleus (CBMN) assay in human populations exposed to styrene: A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:92-105. [DOI: 10.1016/j.mrrev.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 11/30/2022]
|
27
|
Mráz J, Hanzlíková I, Dušková Š, Dabrowská L, Chrástecká H, Vajtrová R, Linhart I. Biological fate of styrene oxide adducts with globin: Elimination of cleavage products in the rat urine. Toxicol Lett 2016; 261:26-31. [PMID: 27575569 DOI: 10.1016/j.toxlet.2016.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
The in vivo fate of globin adducts with styrene 7,8-oxide (SO), an electrophilic metabolic intermediate of styrene, was studied in male Wistar rats dosed intraperitoneally with racemic SO, 100mg/kg b.w. Regioisomeric hydroxy(phenyl)ethyl (HPE) adducts at Cys, N-terminal Val, Lys and His in globin were determined and their elimination from blood was followed during 60days, corresponding to life span of rat erythrocytes. In the rat urine, Nα-acetylated products of hydrolytic cleavage of the HPE adducts with Cys, Lys and His were determined. On the first day post-exposure, abundant Nα-acetyl-HPE-Cys adducts (mercapturic acids) formed via direct conjugation of SO with hepatic glutathione were excreted rapidly, but then a much slower phase of elimination reflecting formation of Nα-acetyl-HPE-Cys via cleavage of the adducted globin was observed. A two-phase elimination occurred also in urinary Nα-acetyl-HPE adducts with His and Lys. While a decline by 75-85% during the first 7days post-exposure most likely reflected elimination of adducted albumin, the subsequent slow decline until day 60 corresponded to elimination kinetics of the adducted globin. Thus, the study not only provided original data on the fate of SO-globin adducts but also allowed to reveal general toxicokinetics properties of the urinary cleavage products as a novel type of chemical exposure biomarkers.
Collapse
Affiliation(s)
- Jaroslav Mráz
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic.
| | - Iveta Hanzlíková
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Šárka Dušková
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Ludmila Dabrowská
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Hana Chrástecká
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Radka Vajtrová
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Igor Linhart
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 1905, 166 28 Prague, Czech Republic
| |
Collapse
|
28
|
Vodicka P, Musak L, Frank C, Kazimirova A, Vymetalkova V, Barancokova M, Smolkova B, Dzupinkova Z, Jiraskova K, Vodenkova S, Kroupa M, Osina O, Naccarati A, Palitti F, Försti A, Dusinska M, Vodickova L, Hemminki K. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis 2015; 36:1299-306. [DOI: 10.1093/carcin/bgv127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/20/2015] [Indexed: 11/14/2022] Open
|
29
|
Wasalathanthri DP, Li D, Song D, Zheng Z, Choudhary D, Jansson I, Lu X, Schenkman JB, Rusling JF. Elucidating Organ-Specific Metabolic Toxicity Chemistry from Electrochemiluminescent Enzyme/DNA Arrays and Bioreactor Bead-LC-MS/MS. Chem Sci 2015; 6:2457-2468. [PMID: 25798217 PMCID: PMC4364445 DOI: 10.1039/c4sc03401e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/12/2015] [Indexed: 12/15/2022] Open
Abstract
Human toxic responses are very often related to metabolism. Liver metabolism is traditionally studied, but other organs also convert chemicals and drugs to reactive metabolites leading to toxicity. When DNA damage is found, the effects are termed genotoxic. Here we describe a comprehensive new approach to evaluate chemical genotoxicity pathways from metabolites formed in-situ by a broad spectrum of liver, lung, kidney and intestinal enzymes. DNA damage rates are measured with a microfluidic array featuring a 64-nanowell chip to facilitate fabrication of films of DNA, electrochemiluminescent (ECL) detection polymer [Ru(bpy)2(PVP)10]2+ {(PVP = poly(4-vinylpyridine)} and metabolic enzymes. First, multiple enzyme reactions are run on test compounds using the array, then ECL light related to the resulting DNA damage is measured. A companion method next facilitates reaction of target compounds with DNA/enzyme-coated magnetic beads in 96 well plates, after which DNA is hydrolyzed and nucleobase-metabolite adducts are detected by LC-MS/MS. The same organ enzymes are used as in the arrays. Outcomes revealed nucleobase adducts from DNA damage, enzymes responsible for reactive metabolites (e.g. cyt P450s), influence of bioconjugation, relative dynamics of enzymes suites from different organs, and pathways of possible genotoxic chemistry. Correlations between DNA damage rates from the cell-free array and organ-specific cell-based DNA damage were found. Results illustrate the power of the combined DNA/enzyme microarray/LC-MS/MS approach to efficiently explore a broad spectrum of organ-specific metabolic genotoxic pathways for drugs and environmental chemicals.
Collapse
Affiliation(s)
| | - Dandan Li
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , USA .
| | - Donghui Song
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269 , USA
| | - Zhifang Zheng
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , USA .
| | - Dharamainder Choudhary
- Department of Surgery , University of Connecticut Health Center , Farmington , Connecticut 06032 , USA
| | - Ingela Jansson
- Department of Cell Biology , University of Connecticut Health Center , Farmington , Connecticut 06032 , USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269 , USA
| | - John B. Schenkman
- Department of Cell Biology , University of Connecticut Health Center , Farmington , Connecticut 06032 , USA
| | - James F. Rusling
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , USA .
- National University of Ireland at Galway , Ireland
- Department of Cell Biology , University of Connecticut Health Center , Farmington , Connecticut 06032 , USA
| |
Collapse
|
30
|
Carbonari D, Mansi A, Proietto AR, Paci E, Bonanni RC, Gherardi M, Gatto MP, Sisto R, Tranfo G. Influence of genetic polymorphisms of styrene-metabolizing enzymes on the levels of urinary biomarkers of styrene exposure. Toxicol Lett 2015; 233:156-62. [PMID: 25562543 DOI: 10.1016/j.toxlet.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/27/2014] [Accepted: 01/02/2015] [Indexed: 11/27/2022]
Abstract
Styrene exposure is still present in different occupational settings including manufacture of synthetic rubber, resins, polyesters and plastic. The aim of this work was to investigate the effects of polymorphic genes CYP2E1, EPHX1, GSTT1, and GSTM1 on the urinary concentrations of the styrene metabolites mandelic acid (MA), phenylglyoxylic acid (PGA) and on the concentration ratios between (MA+PGA) and urinary styrene (U-Sty) and airborne styrene (A-Sty), in 30 workers from two fiberglass-reinforced plastic manufacturing plants and 26 unexposed controls. Personal air sampling and biological monitoring results revealed that sometimes exposure levels exceeded both the threshold limit value (TLV) and the biological exposure index (BEI) suggested by the American Conference of Governmental Industrial Hygienists. A significantly reduced excretion of styrene metabolites (MA+PGA) in individuals carrying the CYP2E1*5B and CYP2E1*6 heterozygote alleles, with respect to the homozygote wild type, was observed only in the exposed group. A reduction was also detected, in the same group, in subjects carrying the slow allele EPHX1 (codon 113), through the lowering of (MA+PGA)/urinary styrene concentration ratio. In addition, the ratio between MA+PGA and the personal airborne styrene concentration appeared to be modulated by the predicted mEH activity, in the exposed group, as evidenced by univariate linear regression analysis. Our results confirm some previous hypotheses about the role of the polymorphism of genes coding for enzymes involved in the styrene detoxification pathway: this may significantly reduce the levels of excreted metabolites and therefore it must be taken into account in the interpretation of the biological monitoring results for occupational exposure.
Collapse
Affiliation(s)
- Damiano Carbonari
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Antonella Mansi
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Anna Rita Proietto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Enrico Paci
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Rossana Claudia Bonanni
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Monica Gherardi
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Maria Pia Gatto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Renata Sisto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| | - Giovanna Tranfo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
31
|
Fuccelli R, Sepporta MV, Rosignoli P, Morozzi G, Servili M, Fabiani R. Preventive Activity of Olive Oil Phenolic Compounds on Alkene Epoxides Induced Oxidative DNA Damage on Human Peripheral Blood Mononuclear Cells. Nutr Cancer 2014; 66:1322-30. [DOI: 10.1080/01635581.2014.956251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Shen S, Li L, Ding X, Zheng J. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes. Chem Res Toxicol 2014; 27:27-33. [PMID: 24320693 PMCID: PMC4041473 DOI: 10.1021/tx400305w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.
Collapse
Affiliation(s)
- Shuijie Shen
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Jiang Zheng
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington 98101
- Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, Washington 98105
- Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
33
|
Strafella E, Bracci M, Staffolani S, Manzella N, Giantomasi D, Valentino M, Amati M, Tomasetti M, Santarelli L. Occupational styrene exposure induces stress-responsive genes involved in cytoprotective and cytotoxic activities. PLoS One 2013; 8:e75401. [PMID: 24086524 PMCID: PMC3781025 DOI: 10.1371/journal.pone.0075401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022] Open
Abstract
Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure.
Collapse
Affiliation(s)
- Elisabetta Strafella
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
- * E-mail:
| | - Sara Staffolani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nicola Manzella
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Daniele Giantomasi
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Valentino
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
34
|
Kostal J, Voutchkova-Kostal A, Weeks B, Zimmerman JB, Anastas PT. A Free Energy Approach to the Prediction of Olefin and Epoxide Mutagenicity and Carcinogenicity. Chem Res Toxicol 2012; 25:2780-7. [DOI: 10.1021/tx300402b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jakub Kostal
- Center for Green Chemistry and
Green Engineering, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Adelina Voutchkova-Kostal
- Department of Chemistry, The George Washington University, 725 21st Street NW,
Washington, DC 20052, United States
| | - Brian Weeks
- Center for Green Chemistry and
Green Engineering, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Julie B. Zimmerman
- Center for Green Chemistry and
Green Engineering, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Paul T. Anastas
- Center for Green Chemistry and
Green Engineering, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
35
|
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486. Appl Microbiol Biotechnol 2011; 93:565-73. [PMID: 21833566 PMCID: PMC3257435 DOI: 10.1007/s00253-011-3518-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 11/09/2022]
Abstract
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5–90 g m−3. The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μm = 0.1188 h−1, KS = 5.984 mg l−1, and Ki = 156.6 mg l−1. The yield coefficient mean value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ Y_{\text{xs}}^{\text{app}} $$\end{document} for the batch culture was 0.72 gdry cells weight (gsubstrate)−1. The experiments conducted in a chemostat at various dilution rates (D = 0.035–0.1 h−1) made it possible to determine the value of the coefficient for maintenance metabolism md = 0.0165 h−1 and the maximum yield coefficient value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ Y_{\text{xs}}^{\text{M}} = 0.913 $$\end{document}. Chemostat experiments confirmed the high value of yield coefficient \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ Y_{\text{xs}}^{\text{app}} $$\end{document} observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.
Collapse
|
36
|
Abstract
Styrene is widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. Styrene and the primary metabolite styrene-7,8-oxide are genotoxic and carcinogenic. Long-term chemical carcinogenesis bioassays showed that styrene caused lung cancers in several strains of mice and mammary cancers in rats and styrene-7,8-oxide caused tumours of the forestomach in rats and mice and of the liver in mice. Subsequent epidemiologic studies found styrene workers had increased mortality or incidences of lymphohematopoietic cancers (leukaemia or lymphoma or all), with suggestive evidence for pancreatic and esophageal tumours. No adequate human studies are available for styrene-7,8-oxide although this is the primary and active epoxide metabolite of styrene. Both are genotoxic and form DNA adducts in humans.
Collapse
Affiliation(s)
- James Huff
- National Institute of Environmental Health Sciences, Research Triangle Park, 111 T.W.Alexander Drive, NC 27709, USA.
| | | |
Collapse
|
37
|
Hanova M, Stetina R, Vodickova L, Vaclavikova R, Hlavac P, Smerhovsky Z, Naccarati A, Polakova V, Soucek P, Kuricova M, Manini P, Kumar R, Hemminki K, Vodicka P. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicol Appl Pharmacol 2010; 248:194-200. [DOI: 10.1016/j.taap.2010.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/09/2010] [Accepted: 07/29/2010] [Indexed: 11/17/2022]
|
38
|
Shen S, Zhang F, Gao L, Zeng S, Zheng J. Detection of phenolic metabolites of styrene in mouse liver and lung microsomal incubations. Drug Metab Dispos 2010; 38:1934-43. [PMID: 20724499 PMCID: PMC2967389 DOI: 10.1124/dmd.110.033522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/19/2010] [Indexed: 11/22/2022] Open
Abstract
Metabolic activation is considered to be a critical step for styrene-induced pulmonary toxicity. Styrene-7,8-oxide is a primary oxidative metabolite generated by vinyl epoxidation of styrene. In addition, urinary 4-vinylphenol (4-VP), a phenolic metabolite formed by aromatic hydroxylation, has been detected in workers and experimental animals after exposure to styrene. In the present study, new oxidative metabolites of styrene, including 2-vinylphenol (2-VP), 3-vinylphenol (3-VP), vinyl-1,4-hydroquinone, and 2-hydroxystyrene glycol were detected in mouse liver microsomal incubations. The production rates of 2-VP, 3-VP, 4-VP, and styrene glycol were 0.0527 ± 0.0045, 0.0019 ± 0.0006, 0.0053 ± 0.0002, and 4.42 ± 0.33 nmol/(min · mg protein) in mouse liver microsomes, respectively. Both disulfiram (100 μM) and 5-phenyl-1-pentyne (5 μM) significantly inhibited the formation of the VPs and styrene glycol. 2-VP, 3-VP, and 4-VP were metabolized in mouse liver microsomes at rates of 2.50 ± 0.30, 2.63 ± 0.13, and 3.45 ± 0.11 nmol/(min · mg protein), respectively. The three VPs were further metabolized to vinylcatechols and/or vinyl-1,4-hydroquinone and the corresponding glycols. Pulmonary toxicity of 2-VP, 3-VP, and 4-VP was evaluated in CD-1 mice, and 4-VP was found to be more toxic than 2-VP and 3-VP.
Collapse
Affiliation(s)
- Shuijie Shen
- Center for Developmental Therapeutics, Seattle Children’s Research Institute, Seattle, Washington 98101, USA
| | | | | | | | | |
Collapse
|
39
|
Hanova M, Vodickova L, Vaclavikova R, Smerhovsky Z, Stetina R, Hlavac P, Naccarati A, Slyskova J, Polakova V, Soucek P, Kumar R, Hemminki K, Vodicka P. DNA damage, DNA repair rates and mRNA expression levels of cell cycle genes (TP53, p21(CDKN1A), BCL2 and BAX) with respect to occupational exposure to styrene. Carcinogenesis 2010; 32:74-9. [PMID: 20966084 DOI: 10.1093/carcin/bgq213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied the relationship between DNA damage, DNA repair rates and messenger RNA (mRNA) expression levels of cell cycle genes TP53, p21(CDKN1A), BCL2 and BAX in a group of 71 styrene-exposed workers and 51 control individuals. The exposure was assessed by measuring the concentration of styrene at workplace and in blood. Parameters of DNA damage [measured as single-strand breaks (SSBs) and endonuclease III-sensitive sites], γ-irradiation-specific DNA repair rates and mRNA levels of studied genes were analyzed in peripheral blood lymphocytes. The workers were divided into low (<50 mg/m³) and high (>50 mg/m³) styrene exposure groups. We found negative correlations between mRNA expression of TP53, BCL2, BAX and styrene exposure (P < 0.001 for all parameters). In contrast, p21(CDKN1A) mRNA expression significantly increased with increasing styrene exposure (P = 0.001). SSBs and endonuclease III-sensitive sites increased with increasing mRNA levels of TP53 (P < 0.001 for both) and BCL2 (P = 0.038, P = 0.002, respectively), whereas the same parameters decreased with increasing mRNA levels of p21(CDKN1A) (P < 0.001, P = 0.007, respectively). γ-Irradiation-specific DNA repair rates increased with p21(CDKN1A) mRNA levels up to the low exposure level (P = 0.044). Our study suggests a possible relationship between styrene exposure, DNA damage and transcript levels of key cell cycle genes.
Collapse
Affiliation(s)
- Monika Hanova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Teixeira JP, Gaspar J, Coelho P, Costa C, Pinho-Silva S, Costa S, Da Silva S, Laffon B, Pásaro E, Rueff J, Farmer P. Cytogenetic and DNA damage on workers exposed to styrene. Mutagenesis 2010; 25:617-21. [PMID: 20729469 DOI: 10.1093/mutage/geq049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Styrene is a commercially important chemical widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. The highest levels of human exposure to styrene occur during the production of reinforced plastic products. The objective of this work was to evaluate both DNA and cytogenetic damage in styrene-exposed workers, analysing only non-smoker individuals. Environmental levels of styrene and urinary concentrations of mandelic and phenylglyoxylic acids were determined, and genetic damage was studied by means of micronucleus (MN) test, sister chromatid exchanges (SCEs) and comet assay. Fifty-two fibreglass-reinforced plastics workers and 54 controls took part in the study. The mean air concentration of styrene in the breathing zone of workers exceeded the threshold limit value, and 24 workers exceeded the biological exposure index. A strong and significant correlation was found between styrene environmental concentrations and urinary metabolites. Higher SCE rate (P<0.01) was observed in exposed workers than in controls. Besides, significant correlations were obtained for SCE rate with both environmental and internal exposure parameters (r=0.496, P<0.01 and r=0.511, P<0.01, respectively). Results from MN test and comet assay showed slight and non-significant increases related to the exposure. Our data seem to support previous studies reporting genotoxicity associated with occupational exposure to styrene, excluding the confounding influence of smoking, although caution must be taken in the interpretation of these results since the significance of an increase in SCE rate is still unclear.
Collapse
Affiliation(s)
- João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dai J, Zhang F, Zheng J. Detection of protein adduction derived from styrene oxide to cysteine residues by alkaline permethylation. Anal Biochem 2010; 405:73-81. [PMID: 20451490 DOI: 10.1016/j.ab.2010.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/21/2010] [Accepted: 05/02/2010] [Indexed: 11/24/2022]
Abstract
Styrene oxide-cysteine adduction is predominantly involved in protein covalent modification after exposure in vivo to styrene or styrene oxide. In the present study, we developed an alkaline permethylation- and GC/MS-based approach to detect styrene oxide-derived protein adduction. Permethylation of the protein adducts produced two methylthiophenylethanols, namely 2-methylthio-2-phenyl-1-ethanol and 2-methylthio-1-phenyl-1-ethanol. To improve the permethylation efficiency, reaction conditions, including temperature, time, NaOH strength, and molar ratio of CH(3)I/NaOH, were explored. Under optimized conditions, the yields of the analyte formation resulting from permethylation of authentic standard alpha- and beta-mercapturic acids, representing alpha and beta isomers of cysteine adducts, were 35% and 28%, respectively. Permethylation of styrene oxide-modified bovine serum albumin released the two methylthiophenylethanols with an alpha-/beta-adduction ratio of 1.5. A concentration-dependent increase in both alpha- and beta-adduction was observed in mouse liver microsomes incubated with styrene at various concentrations. CD-1 mice were administered intraperitoneally with styrene at doses of 0, 50, and 400mg/kg daily for 5 days. The formation of protein adducts derived from styrene oxide in whole blood in 400mg/kg group was observed with an alpha/beta ratio of 4.8, suggesting that the reaction of styrene oxide with cysteine residues took place more likely at the alpha-carbon than the beta-carbon of styrene oxide.
Collapse
Affiliation(s)
- Jieyu Dai
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Division of Gastroenterology, Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA
| | | | | |
Collapse
|
42
|
Manini P, De Palma G, Andreoli R, Marczynski B, Hanova M, Mozzoni P, Naccarati A, Vodickova L, Hlavac P, Mutti A, Vodicka P. Biomarkers of nucleic acid oxidation, polymorphism in, and expression of, hOGG1 gene in styrene-exposed workers. Toxicol Lett 2009; 190:41-7. [DOI: 10.1016/j.toxlet.2009.06.862] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 11/25/2022]
|
43
|
Ahn JM, Hwang ET, Youn CH, Banu DL, Kim BC, Niazi JH, Gu MB. Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages. Biosens Bioelectron 2009; 25:767-72. [PMID: 19747819 DOI: 10.1016/j.bios.2009.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/29/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022]
Abstract
We report on a novel approach to predict the mode of genotoxic action of chemicals using a series of DNA damage specific bioluminescent bacteria. For this, a group of seven different DNA damage sensing recombinant bioluminescent strains were employed. Each of these strains was tested against model DNA damaging agents, such as mitomycin C (MMC), 1-methyl-1-nitroso-N-methylguanidine (MNNG), nalidixic acid (Nal) and 4-nitroquinoline N-oxide (4-NQO). These biosensors were grouped based on their responses to a specific mode of genotoxic action, such as (a) DNA damage cascade response (biosensor with nrdA-, dinI- and sbmC-lux), (b) SOS response or DNA repair (strains carrying recA-, recN- and sulA-lux), and (c) DNA damage potentially by alkylation (biosensor with alkA-lux). The differential response patterns and its strength of these strains to various model genotoxicants allowed classifying the chemical's potential genotoxic mode. Therefore, it is possible to elucidate and classify the mode of genotoxic impacts of an unknown sample and that together they may be utilized in the pre-screening steps of new drugs, newly synthesized chemicals, food and environmental contaminants.
Collapse
Affiliation(s)
- Joo-Myung Ahn
- Graduate School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Richter SN, Menegazzo I, Nadai M, Moro S, Palumbo M. Reactivity of clerocidin towards adenine: implications for base-modulated DNA damage. Org Biomol Chem 2009; 7:976-85. [PMID: 19225681 DOI: 10.1039/b819049f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clerocidin is a complex natural molecule which induces DNA damage both directly and through irreversible/reversible poisoning of prokaryotic/eukaryotic topoisomerases II. By analysis of clerocidin reactivity towards adenine and thymine bases, we were able to fully characterize and compare the unique direct reactivity of clerocidin towards the four DNA bases, both in solution and in the DNA context. We showed that thymine was not reactive, while adenine gave a single stable covalent adduct, which was unambiguously identified as the 1,6-dialkylated species by means of modified clerocidin derivatives, modified adenine nucleotides, ESI-MS and multinuclear NMR spectroscopy. The mechanism of formation of the clerocidin adenosine adduct was similar to that occurring with cytosine, while being substantially different from that with guanine. An electrophoresis-based assay was able to highlight the unique ability of clerocidin to chemically discriminate among DNA nucleotides within a nucleic acid sequence. Finally, molecular modelling analysis gave useful indications to solve the apparent contradiction between direct and topoisomerase II-mediated covalent clerocidin reactivity with deoxyadenosine.
Collapse
Affiliation(s)
- Sara N Richter
- Department of Histology, Microbiology and Medicinal Biotechnologies, University of Padova, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
45
|
|
46
|
A Sensitive Procedure for the Rapid Determination of Mandelic Acid by Flow Injection Analysis and Chemiluminescence Detection. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.1.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Lim M, Zhou Y, Wood B, Wang LZ, Rudolph V, Lu GQ. Highly thermostable anatase titania-pillared clay for the photocatalytic degradation of airborne styrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:538-543. [PMID: 19238991 DOI: 10.1021/es8024726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Airborne styrene is a suspected human carcinogen, and traditional ways of mitigation include the use of adsorption technologies (activated carbon or zeolites) or thermal destruction. These methods presenttheir own shortcomings, i.e., adsorbents need to be regenerated or replaced regularly, and relatively large energy inputs are required in thermal treatment. Photocatalysis offers a potentially sustainable and clean means of controlling such fugitive emissions of styrene in air. The present study demonstrates a new type of well-characterized, highly thermostable titania-pillared clay photocatalysts for airborne styrene decomposition in a custom-designed fluidized-bed photoreactor. This photocatalytic system is found to be capable of destroying up to 87% of 300 ppmV airborne styrene in the presence of ultraviolet (UV) irradiation. The effects of relative humidity (RH: 0 or 20%) are also studied, together with the arising physical structures (in terms of porosity and surface characteristics) of the catalysts when subjected to relatively high calcination temperatures of 1000-1200 degrees C. Such a temperature range may be encountered, e.g., in flue gas emissions (1). It is found that relative humidity levels of 20% retard the degradation efficiencies of airborne styrene when using highly porous catalysts.
Collapse
Affiliation(s)
- Melvin Lim
- Australian Research Council Centre of Excellence for Functional Nanomaterials, University of Queensland, QLD 4072, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Meszka-Jordan A, Mahlapuu R, Soomets U, Carlson GP. Oxidative stress due to (R)-styrene oxide exposure and the role of antioxidants in non-Swiss albino (NSA) mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:642-650. [PMID: 19308849 DOI: 10.1080/15287390902769436] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Styrene produces lung and liver damage that may be related to oxidative stress. The purpose of this study was to investigate the toxicity of (R)-styrene oxide (R-SO), the more active enantiomeric metabolite of styrene, and the protective properties of the antioxidants glutathione (GSH), N-acetylcysteine (NAC), and 4-methoxy-L-tyrosinyl-gamma-L-glutamyl-L-cysteinyl-glycine (UPF1) against R-SO-induced toxicity in non-Swiss Albino (NSA) mice. UPF1 is a synthetic GSH analog that was shown to have 60 times the ability to scavenge reactive oxygen species (ROS) in comparison to GSH. R-SO toxicity to the lung was measured by elevations in the activity of lactate dehydrogenase (LDH), protein concentration, and number of cells in bronchoalveolar lavage fluid (BALF). Toxicity to the liver was measured by increases in serum sorbitol dehydrogenase (SDH) activity. Antioxidants were not able to decrease the adverse effects of R-SO on lung. However, NAC (200 mg/kg) ip and GSH (600 mg/kg), administered orally prior to R-SO (300 mg/kg) ip, showed significant protection against liver toxicity as measured by SDH activity. Unexpectedly, a synthetic GSH analog, UPF1 (0.8 mg/kg), administered intravenously (iv) prior to R-SO, produced a synergistic effect with regard to liver and lung toxicity. Treatment with UPF1 (0.8 mg/kg) iv every other day for 1 wk for preconditioning prior to R-SO ip did not result in any protection against liver and lung toxicity, but rather enhanced the toxicity when administered prior R-SO. The results of the present study demonstrated protection against R-SO toxicity in liver but not lung by the administration of the antioxidants NAC and GSH.
Collapse
|
49
|
Rihs HP, Triebig G, Werner P, Rabstein S, Heinze E, Pesch B, Bruning T. Association between genetic polymorphisms in styrene-metabolizing enzymes and biomarkers in styrene-exposed workers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:866-873. [PMID: 18569587 DOI: 10.1080/15287390801987998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Single-nucleotide polymorphisms (SNP) in genes of styrene-metabolizing enzymes could modulate biomarker concentrations in blood or urine after exposure to styrene. Ten SNP were analyzed to study their influence on styrene-specific biomarkers in 89 workers of a fiber-reinforced plastic boat building factory. The internal styrene body burden was analyzed in post-shift blood and urine samples. External styrene exposure was measured by passive samplers. Spearman rank correlations between styrene exposure and biomarkers were calculated and distributions of biomarkers were checked for lognormality. Mixed linear models were applied to analyze the influence of genotypes and styrene exposure, on styrene in blood (Monday and Thursday post-shift) and on phenyglyoxylic acid (PGA; adjusted for day of measurement, Monday to Thursday) due to a lognormal distribution, smoking (current, not current), and use of respirators. Stratified analyzes for workers without and with different types of respirators were also performed. The models of both the subgroups revealed a significant influence dependent on the respirator type that workers used for inhalation protection. An influence of the external styrene concentration on the urinary PGA concentration was not observed. After implementation of the SNP into the model significant lower adjusted means of urinary PGA concentrations were found for GSTP1 105IleVal and CYP2E1 -71TT. For styrene levels in blood no significant effect was observed. A significant influence on styrene levels in blood was correlated with external styrene concentration only in workers without use of respirators. The effects of two SNP on urinary PGA decrease indicated a limited modulating SNP effect. The most effective prevention for styrene exposure was obtained with the wearing of respirators.
Collapse
Affiliation(s)
- Hans-Peter Rihs
- BGFA-Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Slyskova J, Dusinska M, Kuricova M, Soucek P, Vodickova L, Susova S, Naccarati A, Tulupova E, Vodicka P. Relationship between the capacity to repair 8-oxoguanine, biomarkers of genotoxicity and individual susceptibility in styrene-exposed workers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 634:101-11. [PMID: 17855160 DOI: 10.1016/j.mrgentox.2007.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/04/2007] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
Genotoxic effects related to exposure to styrene have been a matter of investigation for many years by employing markers of exposure, effect and susceptibility. The role of individual DNA-repair capacity in response to exposure to styrene may explain the controversial results so far obtained, but it is still scarcely explored. In the present study, we measured capacity to repair oxidative DNA damage in cell extracts obtained from 24 lamination workers occupationally exposed to styrene and 15 unexposed controls. The capacity to repair oxidative DNA damage was determined by use of a modified comet assay, as follows: HeLa cells, pre-treated with photosensitizer and irradiated with a halogen lamp in order to induce 7,8-dihydroxy-8-oxoguanine, were incubated with cell extracts from mononuclear leukocytes of each subject. The level of strand breaks reflects the removal of 7,8-dihydroxy-8-oxoguanine from substrate DNA by the enzymatic extract. In styrene-exposed subjects a moderate, non-significant increase in oxidative DNA repair was observed. Stratification for sex and smoking habit showed that unexposed males (P=0.010) and unexposed smokers (P=0.037) exhibited higher DNA-repair rates. The repair capacity did not correlate with parameters of styrene exposure and biomarkers of genotoxic effects (DNA strand breaks, N1-styrene-adenine DNA adducts, chromosomal aberrations and mutant frequencies at the HPRT locus). Significantly higher levels of DNA-repair capacity were observed in carriers of GSTM1-plus, compared to those with a deletion in GSTM1. The DNA-repair capacity was significantly lower in individuals with variant Gln/Gln genotype in XRCC1 Arg399Gln than in those with heterozygous Arg/Gln and wild-type Arg/Arg genotypes. Significantly lower repair capacity was also found in individuals with the wild-type Lys/Lys genotype in XPC Lys939Gln as compared with those homozygous for the Gln/Gln variant genotype.
Collapse
Affiliation(s)
- J Slyskova
- Department of Experimental and Applied Genetics, Research Base of Slovak Medical University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|