1
|
Cashman JR. Practical Aspects of Flavin-Containing Monooxygenase-Mediated Metabolism. Chem Res Toxicol 2024; 37:1776-1793. [PMID: 39485380 DOI: 10.1021/acs.chemrestox.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute. 6351 Nancy Ridge Road, Suite B, San Diego, California 92121, United States
| |
Collapse
|
2
|
de Jong LM, Harpal C, Berg DJVD, Hoekstra M, Peter NJ, Rissmann R, Swen JJ, Manson ML. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Drug Metab Dispos 2024; 52:1429-1437. [PMID: 39349298 DOI: 10.1124/dmd.124.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Compromised hepatic drug metabolism in response to proinflammatory cytokine release is primarily attributed to downregulation of cytochrome P450 (CYP) enzymes. However, whether inflammation also affects other phase I and phase II drug metabolizing enzymes (DMEs), such as the flavin monooxygenases (FMOs), carboxylesterases (CESs), and UDP glucuronosyltransferases (UGTs), remains unclear. This study aimed to decipher the impact of physiologically relevant concentrations of proinflammatory cytokines on expression and activity of phase I and phase II enzymes, to establish a hierarchy of their sensitivity as compared with the CYPs. Hereto, HepaRG cells were exposed to interleukin-6 and interleukin-1β to measure alterations in DME gene expression (24 h) and activity (72 h). Sensitivity of DMEs toward proinflammatory cytokines was evaluated by determining IC50 (potency) and Imax (maximal inhibition) values from the concentration-response curves. Proinflammatory cytokine treatment led to nearly complete downregulation of CYP3A4 (∼98%) but was generally less efficacious at reducing gene expression of the non-CYP DME families. Importantly, FMO, CES, and UGT family members were less sensitive toward interleukin-6 induced inhibition in terms of potency, with IC50 values that were 4.3- to 7.4-fold higher than CYP3A4. Similarly, 18- to 31-fold more interleukin-1β was required to achieve 50% of the maximal downregulation of FMO3, FMO4, CES1, UGT2B4, and UGT2B7 expression. The differential sensitivity persisted at enzyme activity level, highlighting that alterations in DME gene expression during inflammation are predictive for subsequent alterations in enzyme activity. In conclusion, this study has shown that FMOs, CESs, and UGTs enzymes are less impacted by IL-6 and IL-1β treatment as compared with CYP enzymes. SIGNIFICANCE STATEMENT: While the impact of proinflammatory cytokines on CYP expression is well established, their effects on non-CYP phase I and phase II drug metabolism remains underexplored, particularly regarding alterations in drug metabolizing enzyme (DME) activity. This study provides a quantitative understanding of the sensitivity differences to inflammation between DME family members, suggesting that non-CYP DMEs may become more important for the metabolism of drugs during inflammatory conditions due to their lower sensitivity as compared with the CYPs.
Collapse
Affiliation(s)
- Laura M de Jong
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Chandan Harpal
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Dirk-Jan van den Berg
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Nienke J Peter
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Robert Rissmann
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Jesse J Swen
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| |
Collapse
|
3
|
Iglesias-Carres L, Chadwick-Corbin SA, Sweet MG, Neilson AP. Dietary phenolics and their microbial metabolites are poor inhibitors of trimethylamine oxidation to trimethylamine N-oxide by hepatic flavin monooxygenase 3. J Nutr Biochem 2023; 120:109428. [PMID: 37549832 DOI: 10.1016/j.jnutbio.2023.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
High circulating levels of trimethylamine N-oxide (TMAO) have been associated with cardiovascular disease risk. TMAO is formed through a microbiome-host pathway utilizing primarily dietary choline as a substrate. Specific gut microbiota transform choline into trimethylamine (TMA), and, when absorbed, host hepatic flavin-containing monooxygenase 3 (FMO3) oxidizes TMA into TMAO. Chlorogenic acid and its metabolites reduce microbial TMA production in vitro. However, little is known regarding the potential for chlorogenic acid and its bioavailable metabolites to inhibit the last step: hepatic conversion of TMA to TMAO. We developed a screening methodology to study FMO3-catalyzed production of TMAO from TMA. HepG2 cells were unable to oxidize TMA into TMAO due to their lack of FMO3 expression. Although Hepa-1 cells did express FMO3 when pretreated with TMA and NADPH, they lacked enzymatic activity to produce TMAO. Rat hepatic microsomes contained active FMO3. Optimal reaction conditions were: 50 µM TMA, 0.2 mM NADPH, and 33 µL microsomes/mL reaction. Methimazole (a known FMO3 competitive substrate) at 200 µM effectively reduced FMO3-catalyzed conversion of TMA to TMAO. However, bioavailable chlorogenic acid metabolites did not generally inhibit FMO3 at physiological (1 µM) nor supra-physiological (50 µM) doses. Thus, the effects of chlorogenic acid in regulating TMAO levels in vivo are unlikely to occur through direct FMO3 enzyme inhibition. Potential effects on FMO3 expression remain unknown. Intestinal inhibition of TMA production and/or absorption are thus likely their primary mechanisms of action.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Sydney A Chadwick-Corbin
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Michael G Sweet
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA; Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
4
|
Zhu Y, Tang Q, Cao W, Zhou N, Jin X, Song Z, Zu L, Xu S. Identification of a novel oxidative stress-related prognostic model in lung adenocarcinoma. Front Pharmacol 2022; 13:1030062. [PMID: 36467027 PMCID: PMC9715759 DOI: 10.3389/fphar.2022.1030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 03/23/2024] Open
Abstract
Background: Oxidative stress (OxS) participates in a variety of biological processes, and is considered to be related to the occurrence and progression of many tumors; however, the potential diagnostic value of OxS in lung cancer remains unclear. Methods: The clinicopathological and transcriptome data for lung adenocarcinoma (LUAD) were collected from TCGA and GEO database. LASSO regression was used to construct a prognostic risk model. The prognostic significance of the OxS-related genes was explored using a Kaplan-Meier plotter database. The prediction performance of the risk model was shown in both the TCGA and GSE68465 cohorts. The qRT-PCR was performed to explore the expression of genes. CCK-8, Edu and transwell assays were conducted to analyze the role of CAT on cell proliferation migration and invasion in lung cancer. Immune infiltration was evaluated by CIBERSORT and mutational landscape was displayed in the TCGA database. Moreover, the relationship between risk score with drug sensitivity was investigated by pRRophetic. Results: We identified a prognosis related risk model based on a four OxS gene signature in LUAD, including CYP2D6, FM O 3, CAT, and GAPDH. The survival analysis and ROC curve indicated good predictive power of the model in both the TCGA and GEO cohorts. LUAD patients in the high-risk group had a shorter OS compared to the low-risk group. QRT-PCR result showed that the expression of four genes was consistent with previous analysis in cell lines. Moreover, overexpression of CAT could decrease the proliferation, invasion and migration of lung cancer cells. The Cox regression analysis showed that the risk score could be used as an independent prognostic factor for OS. LUAD patients in the high-risk score group exhibited a higher tumor mutation burden and risk score were closely related to tumor associated immune cell infiltration, as well as the expression of immune checkpoint molecules. Both the high- and low-risk groups have significant differences in sensitivity to some common chemotherapy drugs, such as Paclitaxel, Docetaxel, and Vinblastine, which may contribute to clinical treatment decisions. Conclusion: We established a robust OxS-related prognostic model, which may contribute to individualized immunotherapeutic strategies in LUAD.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanying Tang
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Weibo Cao
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Jin
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Mena P, Tassotti M, Martini D, Rosi A, Brighenti F, Del Rio D. The Pocket-4-Life project, bioavailability and beneficial properties of the bioactive compounds of espresso coffee and cocoa-based confectionery containing coffee: study protocol for a randomized cross-over trial. Trials 2017; 18:527. [PMID: 29121975 PMCID: PMC5680745 DOI: 10.1186/s13063-017-2271-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Coffee is an important source of bioactive compounds, including caffeine, phenolic compounds (mainly chlorogenic acids), trigonelline, and diterpenes. Several studies have highlighted the preventive effects of coffee consumption on major cardiometabolic diseases, but the impact of coffee dosage on markers of cardiometabolic risk is not well understood. Moreover, the pool of coffee-derived circulating metabolites and the contribution of each metabolite to disease prevention still need to be evaluated in real-life settings. The aim of this study will be to define the bioavailability and beneficial properties of coffee bioactive compounds on the basis of different levels of consumption, by using an innovative experimental design. The contribution of cocoa-based products containing coffee to the pool of circulating metabolites and their putative bioactivity will also be investigated. Methods A three-arm, crossover, randomized trial will be conducted. Twenty-one volunteers will be randomly assigned to consume three treatments in a random order for 1 month: 1 cup of espresso coffee/day, 3 cups of espresso coffee/day, and 1 cup of espresso coffee plus 2 cocoa-based products containing coffee twice per day. The last day of each treatment, blood and urine samples will be collected at specific time points, up to 24 hours following the consumption of the first product. At the end of each treatment the same protocol will be repeated, switching the allocation group. Besides the bioavailability of the coffee/cocoa bioactive compounds, the effect of the coffee/cocoa consumption on several cardiometabolic risk factors (anthropometric measures, blood pressure, inflammatory markers, trimethylamine N-oxide, nitric oxide, blood lipids, fasting indices of glucose/insulin metabolism, DNA damage, eicosanoids, and nutri-metabolomics) will be investigated. Discussion Results will provide information on the bioavailability of the main groups of phytochemicals in coffee and on their modulation by the level of consumption. Findings will also show the circulating metabolites and their bioactivity when coffee consumption is substituted with the intake of cocoa-based products containing coffee. Finally, the effect of different levels of 1-month coffee consumption on cardiometabolic risk factors will be elucidated, likely providing additional insights on the role of coffee in the protection against chronic diseases. Trial registration ClinicalTrials.gov, NCT03166540. Registered on May 21, 2017. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2271-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy.
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Daniela Martini
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Alice Rosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Furio Brighenti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| |
Collapse
|
6
|
Xu M, Bhatt DK, Yeung CK, Claw KG, Chaudhry AS, Gaedigk A, Pearce RE, Broeckel U, Gaedigk R, Nickerson DA, Schuetz E, Rettie AE, Leeder JS, Thummel KE, Prasad B. Genetic and Nongenetic Factors Associated with Protein Abundance of Flavin-Containing Monooxygenase 3 in Human Liver. J Pharmacol Exp Ther 2017; 363:265-274. [PMID: 28819071 PMCID: PMC5697103 DOI: 10.1124/jpet.117.243113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023] Open
Abstract
Hepatic flavin-containing mono-oxygenase 3 (FMO3) metabolizes a broad array of nucleophilic heteroatom (e.g., N or S)-containing xenobiotics (e.g., amphetamine, sulindac, benzydamine, ranitidine, tamoxifen, nicotine, and ethionamide), as well as endogenous compounds (e.g., catecholamine and trimethylamine). To predict the effect of genetic and nongenetic factors on the hepatic metabolism of FMO3 substrates, we quantified FMO3 protein abundance in human liver microsomes (HLMs; n = 445) by liquid chromatography-tandem mass chromatography proteomics. Genotyping/gene resequencing, mRNA expression, and functional activity (with benzydamine as probe substrate) of FMO3 were also evaluated. FMO3 abundance increased 2.2-fold (13.0 ± 11.4 pmol/mg protein vs. 28.0 ± 11.8 pmol/mg protein) from neonates to adults. After 6 years of age, no significant difference in FMO3 abundance was found between children and adults. Female donors exhibited modestly higher mRNA fragments per kilobase per million reads values (139.9 ± 76.9 vs. 105.1 ± 73.1; P < 0.001) and protein FMO3 abundance (26.7 ± 12.0 pmol/mg protein vs. 24.1 ± 12.1 pmol/mg protein; P < 0.05) compared with males. Six single nucleotide polymorphisms (SNPs), including rs2064074, rs28363536, rs2266782 (E158K), rs909530 (N285N), rs2266780 (E308G), and rs909531, were associated with significantly decreased protein abundance. FMO3 abundance in individuals homozygous and heterozygous for haplotype 3 (H3), representing variant alleles for all these SNPs (except rs2066534), were 50.8% (P < 0.001) and 79.5% (P < 0.01), respectively, of those with the reference homozygous haplotype (H1, representing wild-type). In summary, FMO3 protein abundance is significantly associated with age, gender, and genotype. These data are important in predicting FMO3-mediated heteroatom-oxidation of xenobiotics and endogenous biomolecules in the human liver.
Collapse
Affiliation(s)
- Meijuan Xu
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Deepak Kumar Bhatt
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Catherine K Yeung
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Katrina G Claw
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Amarjit S Chaudhry
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Andrea Gaedigk
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Robin E Pearce
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Ulrich Broeckel
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Roger Gaedigk
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Deborah A Nickerson
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Erin Schuetz
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Allan E Rettie
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - J Steven Leeder
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Kenneth E Thummel
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Bhagwat Prasad
- Departments of Pharmaceutics (M.X., D.K.B., K.G.C., K.E.T., B.P.), Medicinal Chemistry (C.K.Y., A.E.R.), and Genome Sciences (D.N.), University of Washington, Seattle, Washington; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (M.X.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.S.); Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| |
Collapse
|
7
|
Rudraiah S, Gu X, Hines RN, Manautou JE. Oxidative stress-responsive transcription factor NRF2 is not indispensable for the human hepatic Flavin-containing monooxygenase-3 (FMO3) gene expression in HepG2 cells. Toxicol In Vitro 2016; 31:54-59. [PMID: 26616280 PMCID: PMC4695222 DOI: 10.1016/j.tiv.2015.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/01/2015] [Accepted: 11/21/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The flavin-containing monooxygenases (FMOs) are important for the oxidation of a variety of endogenous compounds and xenobiotics. The hepatic expression of FMO3 is highly variable and until recently, it was thought to be uninducible. In this study, human FMO3 gene regulation by the oxidative stress transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2) was examined. Constitutive FMO3 gene expression is repressed in HepG2 cells, thus this cell can be a good model for FMO3 gene regulation studies. Over-expression of NRF2 in HepG2 cells increased NRF2 target gene expression, heme oxygenase-1 (HMOX1) and NAD(P)H quinone oxidoreductase-1 (NQO1), but did not alter FMO3 gene expression. Co-transfection studies with NRF2 or its cytosolic regulatory protein, Kelch-like ECH-associated protein 1 (KEAP1), expression vectors, along with FMO3 promoter luciferase reporter constructs of various lengths (5kb or 6kb), did not change FMO3 reporter gene activity significantly. Furthermore, treatment with tert-butyl hydroperoxide (tBHP) and tert-butyl hydroquinone (tBHQ) did not alter FMO3 reporter construct activity. In summary, in vitro results suggest that the transcriptional regulation of FMO3 might not involve the NRF2-KEAP1 regulatory pathway.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| | - Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| | - Ronald N Hines
- US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
8
|
|
9
|
Rudraiah S, Moscovitz JE, Donepudi AC, Campion SN, Slitt AL, Aleksunes LM, Manautou JE. Differential Fmo3 gene expression in various liver injury models involving hepatic oxidative stress in mice. Toxicology 2014; 325:85-95. [PMID: 25193093 PMCID: PMC4428328 DOI: 10.1016/j.tox.2014.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/12/2022]
Abstract
Flavin-containing monooxygenase-3 (FMO3) catalyzes metabolic reactions similar to cytochrome P450 monooxygenase, however, most metabolites of FMO3 are considered non-toxic. Recent findings in our laboratory demonstrated Fmo3 gene induction following toxic acetaminophen (APAP) treatment in mice. The goal of this study was to evaluate Fmo3 gene expression in other diverse mouse models of hepatic oxidative stress and injury. Fmo3 gene regulation by Nrf2 was also investigated using Nrf2 knockout (Nrf2 KO) mice. In our studies, male C57BL/6J mice were treated with toxic doses of hepatotoxicants or underwent bile duct ligation (BDL, 10 days). Hepatotoxicants included APAP (400 mg/kg, 24-72 h), alpha-naphthyl isothiocyanate (ANIT; 50 mg/kg, 2-48 h), carbon tetrachloride (CCl4; 10 or 30 μL/kg, 24 and 48 h) and allyl alcohol (AlOH; 30 or 60 mg/kg, 6 and 24 h). Because oxidative stress activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2), additional studies investigated Fmo3 gene regulation by Nrf2 using Nrf2 knockout (Nrf2 KO) mice. At appropriate time-points, blood and liver samples were collected for assessment of plasma alanine aminotransferase (ALT) activity, plasma and hepatic bile acid levels, as well as liver Fmo3 mRNA and protein expression. Fmo3 mRNA expression increased significantly by 43-fold at 12 h after ANIT treatment, and this increase translates to a 4-fold change in protein levels. BDL also increased Fmo3 mRNA expression by 1899-fold, but with no change in protein levels. Treatment of mice with CCl4 decreased liver Fmo3 gene expression, while no change in expression was detected with AlOH treatment. Nrf2 KO mice are more susceptible to APAP (400mg/kg, 72 h) treatment compared to their wild-type (WT) counterparts, which is evidenced by greater plasma ALT activity. The Fmo3 mRNA and protein expression increased in Nrf2 KO mice after APAP treatment. Collectively, not all hepatotoxicants that produce oxidative stress alter Fmo3 gene expression. Along with APAP, toxic ANIT treatment in mice markedly increased Fmo3 gene expression. While BDL increased the Fmo3 mRNA expression, the protein level did not change. The discrepancy with Fmo3 induction in cholestatic models, ANIT and BDL, is not entirely clear. Results from Nrf2 KO mice with APAP suggest that the transcriptional regulation of Fmo3 during liver injury may not involve Nrf2.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.
| | - Ajay C Donepudi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Sarah N Campion
- Drug Safety Research and Development, Pfizer Inc., Groton, USA.
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
10
|
Celius T, Pansoy A, Matthews J, Okey AB, Henderson MC, Krueger SK, Williams DE. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicol Appl Pharmacol 2010; 247:60-9. [PMID: 20570689 DOI: 10.1016/j.taap.2010.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/28/2010] [Accepted: 05/25/2010] [Indexed: 12/15/2022]
Abstract
Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA >30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes "superinduction" of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (>300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.
Collapse
Affiliation(s)
- Trine Celius
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Guo L, Mei N, Liao W, Chan PC, Fu PP. Ginkgo biloba extract induces gene expression changes in xenobiotics metabolism and the Myc-centered network. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:75-90. [PMID: 20141330 DOI: 10.1089/omi.2009.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of herbal dietary supplements in the United States is rapidly growing, and it is crucial that the quality and safety of these preparations be ensured. To date, it is still a challenge to determine the mechanisms of toxicity induced by mixtures containing many chemical components, such as herbal dietary supplements. We previously proposed that analyses of the gene expression profiles using microarrays in the livers of rodents treated with herbal dietary supplements is a potentially practical approach for understanding the mechanism of toxicity. In this study, we utilized microarrays to analyze gene expression changes in the livers of male B6C3F1 mice administered Ginkgo biloba leaf extract (GBE) by gavage for 2 years, and to determine pathways and mechanisms associated with GBE treatments. Analysis of 31,802 genes revealed that there were 129, 289, and 2,011 genes significantly changed in the 200, 600, and 2,000 mg/kg treatment groups, respectively, when compared with control animals. Drug metabolizing genes were significantly altered in response to GBE treatments. Pathway and network analyses were applied to investigate the gene relationships, functional clustering, and mechanisms involved in GBE exposure. These analyses indicate alteration in the expression of genes coding for drug metabolizing enzymes, the NRF2-mediated oxidative stress response pathway, and the Myc gene-centered network named "cell cycle, cellular movement, and cancer" were found. These results indicate that Ginkgo biloba-related drug metabolizing enzymes may cause herb-drug interactions and contribute to hepatotoxicity. In addition, the outcomes of pathway and network analysis may be used to elucidate the toxic mechanisms of Ginkgo biloba.
Collapse
Affiliation(s)
- Lei Guo
- Division of Systems Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079, USA
| | | | | | | | | |
Collapse
|
12
|
Mitchell SC, Smith RL. A physiological role for flavin-containing monooxygenase (FMO3) in humans? Xenobiotica 2010; 40:301-5. [DOI: 10.3109/00498251003702753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Guo L, Mei N, Xia Q, Chen T, Chan PC, Fu PP. Gene expression profiling as an initial approach for mechanistic studies of toxicity and tumorigenicity of herbal plants and herbal dietary supplements. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2010; 28:60-87. [PMID: 20390968 PMCID: PMC5736312 DOI: 10.1080/10590500903585416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dietary supplements are consumed by more than 300 million people worldwide, and herbal dietary supplements represent the most rapidly growing portion of this industry. Even though adverse health effects of many herbal dietary supplements have been reported, safety assurances are not being addressed adequately. Toxicological data on the identification of genotoxic and tumorigenic ingredients in many raw herbs are also lacking. Currently, more than 30 herbal dietary supplements and active ingredients have been selected by the National Toxicology Program (NTP) for toxicity and tumorigenicity studies. Due to the complexity of the chemical components present in plant extracts, there are no established methodologies for determining the mechanisms of toxicity (particularly tumorigenicity) induced by herbs, such as Gingko biloba leaf extract (GBE) and other herbal plant extracts. Consequently, the understanding of toxicity of herbal dietary supplements remains limited. We have proposed that application of DNA microarrays could be a highly practical initial approach for revealing biological pathways and networks associated with toxicity induced by herbal dietary supplements and the generation of hypotheses to address likely mechanisms. The changes in expression of subsets of genes of interest, such as the modulation of drug metabolizing genes, can be analyzed after treatment with an herbal dietary supplement. Although levels of gene expression do not represent fully the levels of protein activities, we propose that subsequent biochemical and genomic experiments based on these initial observations will enable elucidation of the mechanisms leading to toxicity, including tumorigenicity. This review summarizes the current practices of microarray analysis of gene expressions in animals treated with herbal dietary supplements and discusses perspectives for the proposed strategy.
Collapse
Affiliation(s)
- Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, FDA, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang J, Chaluvadi MR, Reddy R, Motika MS, Richardson TA, Cashman JR, Morgan ET. Hepatic flavin-containing monooxygenase gene regulation in different mouse inflammation models. Drug Metab Dispos 2009; 37:462-8. [PMID: 19088265 PMCID: PMC2680514 DOI: 10.1124/dmd.108.025338] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
The objective of the study was to investigate the regulation of hepatic flavin-containing monooxygenases (Fmo) Fmo1, Fmo3, Fmo4, and Fmo5 in three different mouse models of inflammation, including treatment with Citrobacter rodentium, lipopolysaccharide (LPS), and dextran sulfate sodium (DSS). Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the steady-state mRNA levels for the various Fmo isoforms in these mouse models of inflammation during different treatment time courses. Fmo3 mRNA was most significantly down-regulated in C. rodentium-treated female mice. Fmo1, Fmo3, and Fmo5 mRNAs were also found to be down-regulated in LPS models of inflammation. The significant down-regulation of hepatic FMO3 protein during C. rodentium treatment was confirmed with Western blot analysis of liver microsomes from treated animals. Toll-like receptor (TLR) 4 is known to be responsible for LPS signaling in association with several proteins. To investigate whether TLR4 was responsible for regulation of Fmo genes in both LPS and C. rodentium animal models, Fmo mRNA levels in female wild-type (C3H/HeOuJ) and TLR4 mutant (C3H/HeJ) mice were compared in both inflammatory models by real-time RT-PCR. The results showed that Fmo3 down-regulation during C. rodentium infection is independent of TLR4. Whereas TLR4 is likely to play only a partial role in Fmo1 gene regulation in LPS-treated animals, our results show that the down-regulation of Fmo3 and Fmo5 in this model is TLR4-dependent. Unlike cytochrome P450 regulation measured in the same mouse strains, Fmo3 expression was largely refractory to down-regulation in the DSS model of inflammatory colitis.
Collapse
Affiliation(s)
- Jun Zhang
- Human BioMolecular Research Institute, San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Nagashima S, Shimizu M, Yano H, Murayama N, Kumai T, Kobayashi S, Guengerich FP, Yamazaki H. Inter-individual Variation in Flavin-containing Monooxygenase 3 in Livers from Japanese: Correlation with Hepatic Transcription Factors. Drug Metab Pharmacokinet 2009; 24:218-25. [DOI: 10.2133/dmpk.24.218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory Polymorphisms and their Contribution to Interindividual Differences in the Expression of Enzymes Influencing Drug and Toxicant Disposition. Drug Metab Rev 2008; 40:263-301. [DOI: 10.1080/03602530801952682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Rodríguez-Fuentes G, Aparicio-Fabre R, Li Q, Schlenk D. Osmotic regulation of a novel flavin-containing monooxygenase in primary cultured cells from rainbow trout (Oncorhynchus mykiss). Drug Metab Dispos 2008; 36:1212-7. [PMID: 18372402 PMCID: PMC3652619 DOI: 10.1124/dmd.107.019968] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A cDNA encoding a hepatic isoform of flavin-containing monooxygenase (hFMO) (EF063736) containing an open reading frame of 1792 base pairs (bp) and encoding 554 amino acids was cloned and sequenced from liver mRNA of rainbow trout (Oncorhynchus mykiss). The genomic sequence of hFMO was also characterized and was 4.379 kilobases, possessing 10 exons and 9 introns (EU519462). Structural analysis of the promoter region showed several cis-acting elements including putative glucocorticoid and osmoregulatory response elements, which have been reported to be functionally related to induction of flavin-containing monooxygenase (FMO) proteins in vertebrates. The amino acid sequence showed 74% identity to a putative FMO gene from fugu (Takifugu rubripes; Q6ZZY9), 52 to 55% to zebrafish (Brachydanio rerio; Q5RGM6, Q5RGM3, Q6TLD2, Q7T1D7) FMO5, and 54 and 50% to human FMO1 (Q01740), FMO3 (P49326), and FMO5 (P49326). Southern blot analysis using a 180-bp fragment of the hFMO cDNA indicated at least seven potential genes. Treatment of primary trout hepatocytes with cortisol and sodium chloride for 24 h enhanced hFMO expression. Expression of hFMO was not detected in untreated or solute-treated primary cultures of gill epithelial cells, suggesting tissue-specific expression of hFMO. Induction of hFMO is consistent with the occurrence of cis-osmoregulatory and glucocorticoid response elements identified in the 5'-upstream sequence, indicating regulation of hFMO in response to hypersaline conditions and the osmoregulatory hormone cortisol.
Collapse
|
18
|
Differential regulation of human hepatic flavin containing monooxygenase 3 (FMO3) by CCAAT/enhancer-binding protein beta (C/EBPbeta) liver inhibitory and liver activating proteins. Biochem Pharmacol 2008; 76:268-78. [PMID: 18555208 DOI: 10.1016/j.bcp.2008.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
Abstract
Flavin-containing monooxygenase 3 (FMO3) is important for oxidative xenobiotic metabolism, but regulation of the FMO3 gene remains poorly understood. FMO3 is not expressed in HepG2 cells, a commonly employed model for hepatic gene regulation studies. Transcription factor transient expression and treatment with histone deacetylase or DNA methylase inhibitors identified decreased hepatic nuclear factor (HNF) 4alpha levels and DNA hypermethylation as mechanisms suppressing HepG2 FMO3 expression. The absence of major deficiencies in transcriptional machinery suggested that within limits, the HepG2 model is suitable for the study of FMO3 regulation. DNA-protein binding studies with HepG2 cell and hepatic tissue nuclear protein extracts and reporter construct transient expression experiments were performed to characterize FMO3 sequences from position -494 to -439 (domain I), previously demonstrated to significantly impact promoter function. Although both HNF3beta and CCAAT enhancer-binding protein (C/EBP) were observed to specifically interact with this element using HepG2 cell nuclear proteins, only C/EBP DNA-protein interactions were observed using adult liver nuclear proteins. No specific DNA/protein interactions were observed using fetal liver nuclear proteins. Mutation of a putative HNF3beta element had no effect on FMO3 promoter activity, while mutagenesis of a distinct, but overlapping C/EBP element resulted in a 55% reduction in activity. Furthermore, promoter activity was regulated as a function of defined C/EBPbeta liver activating protein:liver inhibitory protein ratios through this same element. Chromatin immunoprecipitation demonstrated C/EBPbeta binding to the FMO3 domain I element in intact cells and adult liver tissue. These results are consistent with C/EBPbeta being important for regulating hepatic FMO3 expression.
Collapse
|
19
|
Shimizu M, Murayama N, Nagashima S, Fujieda M, Yamazaki H. Complex Mechanism Underlying Transcriptional Control of the Haplotyped Flavin-containing Monooxygenase 3 (FMO3) Gene in Japanese: Different Regulation between Mutations in 5′-Upstream Distal Region and Common Element in Proximal Region. Drug Metab Pharmacokinet 2008; 23:54-8. [DOI: 10.2133/dmpk.23.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|