1
|
Niu CX, Li JW, Li XL, Zhang LL, Lang Y, Song ZB, Yu CL, Yang XG, Zhao HF, Sun JL, Zheng LH, Wang X, Sun Y, Han XH, Wang GN, Bao YL. PRSS50-mediated inhibition of MKP3/ERK signaling is crucial for meiotic progression and sperm quality. Zool Res 2024; 45:1037-1047. [PMID: 39147718 PMCID: PMC11491780 DOI: 10.24272/j.issn.2095-8137.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 08/17/2024] Open
Abstract
Serine protease 50 (PRSS50/TSP50) is highly expressed in spermatocytes. Our study investigated its role in testicular development and spermatogenesis. Initially, PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes. To further explore this, we generated PRSS50 knockout ( Prss50 -/- ) mice ( Mus musculus), which exhibited abnormal spermatid nuclear compression and reduced male fertility. Furthermore, dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50 -/- mice, accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells. Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and elevated levels of MAP kinase phosphatase 3 (MKP3), a specific ERK antagonist, potentially accounting for testicular dysplasia in adolescent Prss50 -/- mice. Taken together, these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis, with the MKP3/ERK signaling pathway playing a significant role in this process.
Collapse
Affiliation(s)
- Chun-Xue Niu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia-Wei Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Li Li
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Lin-Lin Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yan Lang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Zhen-Bo Song
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| | - Chun-Lei Yu
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Guang Yang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hai-Feng Zhao
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Jia-Ling Sun
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Li-Hua Zheng
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xue Wang
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Hong Han
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Guan-Nan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| |
Collapse
|
2
|
Wang Z, Ma J, Wang T, Qin C, Hu X, Mosa A, Ling W. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review. CHEMOSPHERE 2023; 328:138578. [PMID: 37023900 DOI: 10.1016/j.chemosphere.2023.138578] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
3
|
Zhang J, Zhu X, Xu W, Hu J, Shen Q, Zhu D, Xu X, Wei Z, Zhou P, Cao Y. Exposure to acrylamide inhibits testosterone production in mice testes and Leydig cells by activating ERK1/2 phosphorylation. Food Chem Toxicol 2023; 172:113576. [PMID: 36565847 DOI: 10.1016/j.fct.2022.113576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Acrylamide (ACR) is formed during the cooking of starchy foods at high temperatures. Accumulating evidence has shown that ACR has toxic effects, but the mechanism of its potential reproductive toxicity remains unclear. In this study, we observed that ACR caused weight loss in mice. There was no significant difference in the weight of testis and epididymis between the low/medium-dose ACR group and the control group. And the number of epididymal sperms, testicular Leydig cells, serum testosterone level, testicular steroidogenic genes and enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were decreased in the medium/high-dose ACR group. Additional cell experiments showed that the apoptosis rate and the level of reactive oxygen species (ROS) were increased, and testosterone levels and CYP17A1 protein expression were reduced in Leydig cells with treated ACR. Furthermore, the phosphorylation levels of extracellular signal-regulated kinases (ERK1/2) increased significantly; however, there was no significant difference in the levels of serine-threonine protein kinase (AKT) phosphorylation in the testis of mice and Leydig cells treated with ACR. These results suggest that ACR exposure leads to the damage of testicular structure and function and a decline in testosterone synthesis in Leydig cells and mouse testis, which may be related to the activated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenjuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Mechanism of Action of an Environmentally Relevant Organochlorine Mixture in Repressing Steroid Hormone Biosynthesis in Leydig Cells. Int J Mol Sci 2022; 23:ijms23073997. [PMID: 35409357 PMCID: PMC8999779 DOI: 10.3390/ijms23073997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Within Leydig cells, steroidogenesis is induced by the pituitary luteinizing hormone (LH). The binding of LH to its receptor increases cAMP production, which then activates the expression of genes involved in testosterone biosynthesis. One of these genes codes for the steroidogenic acute regulatory (STAR) protein. STAR is part of a complex that shuttles cholesterol, the precursor of all steroid hormones, through the mitochondrial membrane where steroidogenesis is initiated. Organochlorine chemicals (OCs) are environmental persistent organic pollutants that are found at high concentrations in Arctic areas. OCs are known to affect male reproductive health by decreasing semen quality in different species, including humans. We previously showed that an environmentally relevant mixture of OCs found in Northern Quebec disrupts steroidogenesis by decreasing STAR protein levels without affecting the transcription of the gene. We hypothesized that OCs might affect STAR protein stability. To test this, MA-10 Leydig cell lines were incubated for 6 h with vehicle or the OCs mixture in the presence or absence of 8Br-cAMP with or without MG132, an inhibitor of protein degradation. We found that MG132 prevented the OC-mediated decrease in STAR protein levels following 8Br-cAMP stimulation. However, progesterone production was still decreased by the OC mixture, even in the presence of MG132. This suggested that proteins involved in steroid hormone production in addition to STAR are also affected by the OC mixture. To identify these proteins, a whole cell approach was used and total proteins from MA-10 Leydig cells exposed to the OC mixture with or without stimulation with 8Br-cAMP were analyzed by 2D SDS-PAGE and LC-MS/MS. Bioinformatics analyses revealed that several proteins involved in numerous biological processes are affected by the OC mixture, including proteins involved in mitochondrial transport, lipid metabolism, and steroidogenesis.
Collapse
|
5
|
Li W, Pan Z, Xu J, Liu Q, Zou Q, Lin H, Wu L, Huang H. Microplastics in a pelagic dolphinfish (Coryphaena hippurus) from the Eastern Pacific Ocean and the implications for fish health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151126. [PMID: 34688764 DOI: 10.1016/j.scitotenv.2021.151126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Microplastic pollution in fish is a growing concern worldwide due to its implication for human health. Microplastic contaminations and impacts were investigated in 15 wild-caught commercially important dolphinfish (Coryphaena hippurus L.) from the Eastern Pacific Ocean waters. 1741 suspected particles were extracted from gills, esophagus, stomachs, intestinal tracts, and muscle of C. hippurus. Only 139 of them were identified as microplastics by microscopic inspections and micro-Raman spectroscopic analysis. 10, 34, 51, 35, and 9 out of these 139 microplastic particles were extracted from the gill, esophagus, stomach, intestinal tract, and muscle respectively. Overall, microplastics were detected in 15 out of 15 fish (100%), with ~9.3 pieces per individual on average. The prevalence and high incidence of occurrence of microplastics in the C. hippurus suggest that this pelagic species are at high risk of exposure to microplastic pollutions. The chemical composition of microplastics was made of polyester (PES, 46.8%), polyethylene terephthalate (PET, 38.1%), polypropylene (PP, 7.9%), polystyrene (PS, 5.0%), polyethylene-polypropylene copolymer (PE-PP, 1.4%), and polyethylene (PE, 0.7%). 36.7% and 13.7% of microplastics in the fish were 1-2.5 mm and 2.5-5 mm, respectively. Microplastics of 0.1-0.5 mm and 0.5-1 mm roughly shared equally the remaining 50%. Molecular docking results implied that interaction of the four dominant microplastic polymers (PES, PET, PP, and PS) with cytochrome P450 17A1 would lead to impairment of the reproductive function of C. hippurus. The findings provide insights on the harms from microplastic exposure, along with quantitative information of occurrence, abundance, and distribution of microplastics in the fish tissues, which will ultimately improve understanding of bioavailability and hazards of microplastics to the organisms and beyond to human via food chain transfer.
Collapse
Affiliation(s)
- Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Jing Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Qianlong Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Qingping Zou
- The Lyell Centre for Earth and Marine Science and Technology, Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh, UK
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Lijun Wu
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
6
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
7
|
Wu B, Zhao Q, Li Z, Min Z, Shi M, Nie X, He Q, Gui R. Environmental level bisphenol A accelerates alterations of the reno-cardiac axis by the MAPK cascades in male diabetic rats: An analysis based on transcriptomic profiling and bioinformatics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117671. [PMID: 34435562 DOI: 10.1016/j.envpol.2021.117671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
In humans and animal models, the kidneys and cardiovascular systems are negatively affected by BPA from the environment. It is considered that BPA have some potential estrogen-like and non-hormone-like properties. In this study, RNA-sequencing and its-related bioinformatics was used as the basic strategy to clarify the characteristic mechanisms of kidney-heart axis remodeling and dysfunction in diabetic male rats under BPA exposure. We found that continuous BPA exposure in diabetic rats aggravated renal impairment, and caused hemodynamic disorders and dysfunctions. There were 655 and 125 differentially expressed genes in the kidney and heart, respectively. For the kidneys, functional annotation and enrichment, and gene set enrichment analyses identified bile acid secretion related to lipid synthesis and transport, and MAPK cascade pathways. For the heart, these bioinformatics analyses clearly pointed to MAPKs pathways. A total of 12 genes and another total of 6 genes were identified from the kidney tissue and heart tissue, respectively. Western blotting showed that exposure to BPA activated MAPK cascades in both organs. In this study, the exacerbated remodeling of diabetic kidney-heart axis under BPA exposure and diabetes might occur through hemodynamics, metabolism disorders, and the immune-inflammatory response, as well as continuous estrogen-like stimulation, with focus on the MAPK cascades.
Collapse
Affiliation(s)
- Bin Wu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Physiology, Pathophysiology, Pharmacology and Toxicology (Laboratory of Physiological Science), Hubei University of Arts and Science, Xiangyang, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoneng Li
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Zhiteng Min
- Department of Occupational Health, Wuhan Center for Diseases Control and Prevention, Wuhan, China; Key Laboratory of Occupational Hazard Identification and Control of Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Mengdie Shi
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Awny MM, Al-Mokaddem AK, Ali BM. Mangiferin mitigates di-(2-ethylhexyl) phthalate-induced testicular injury in rats by modulating oxidative stress-mediated signals, inflammatory cascades, apoptotic pathways, and steroidogenesis. Arch Biochem Biophys 2021; 711:108982. [PMID: 34400143 DOI: 10.1016/j.abb.2021.108982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that causes reproductive defects in male animal models. This study was conducted to explore the plausible modulatory effects of mangiferin (MF) against DEHP-induced testicular injury in rats. Thirty-two adult male albino rats were allocated into four groups. Two groups were given DEHP (2 g/kg/day, p.o) for 14 days. One of these groups was treated with MF (20 mg/kg/day, i.p) for 7 days before and 14 days after DEHP administration. A vehicle-treated control was included, and another group of rats was given MF only. Results revealed that MF treatment suppressed oxidative testicular injury by amplifying the mRNA expression of nuclear factor-erythroid 2 related factor-2 (Nrf2) and increasing hemoxygenase-1 (HO-1), glutathione, and total antioxidant capacity (TAC) levels. This treatment also enhanced superoxide dismutase activity, but it decreased malondialdehyde and nitric oxide levels. MF had an anti-inflammatory characteristic, as demonstrated by the downregulation of the mRNA of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The content of tumor necrosis factor-alpha also decreased. MF modulated the apoptotic pathway by suppressing the mRNA of cytochrome c (Cyt c), Fas ligand content, Bax IHC expression, caspase-3 activity and cleaved caspase-3 IHC expression. It also upregulated the expression levels of heat-shock protein 70 (HSP70) and B-cell lymphoma 2. Moreover, MF upregulated the mRNA expression levels of HSP70 and c-kit and enriched the content of steroidogenic acute regulatory (StAR) protein, which were reflected in serum testosterone levels. This result indicated that MF played crucial roles in steroidogenesis and spermatogenesis. Besides, the activities of testicular marker enzymes, namely, acid and alkaline phosphatases, and lactate dehydrogenase, significantly increased. Histopathological observations provided evidence supporting the biochemical and molecular measurements. In conclusion, MF provided protective mechanisms against the DEHP-mediated deterioration of testicular functions partially through its antioxidant, anti-inflammatory, and anti-apoptotic properties. It also involved the restoration of steroidogenesis and spermatogenesis through the modulation of Nrf2/HO-1, NF-κB/Cyt c/HSP70, and c-Kit signaling cascades.
Collapse
Affiliation(s)
- Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| |
Collapse
|
9
|
Resveratrol ameliorates malathion-induced estrus cycle disorder through attenuating the ovarian tissue oxidative stress, autophagy and apoptosis. Reprod Toxicol 2021; 104:8-15. [PMID: 34182086 DOI: 10.1016/j.reprotox.2021.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022]
Abstract
Malathion is a high-efficiency organic phosphorus broad-spectrum insecticide which is commonly used in agricultural production, sanitation and epidemic prevention. Although the toxic effects of malathion on animal reproduction have been partially evaluated, its function, regulatory mechanism and antidote in estrus cycle and reproductive damage remain generally unclear. Here, the results showed that malathion disrupted the normal estrus cycle in mice, reduced the secretion of ovarian hormones, increased the amount of reactive oxygen species (ROS), and promoted autophagy and apoptosis in the ovary. Interestingly, we found that an antioxidant resveratrol could inhibit the disorders of estrus cycle and steroid hormone synthesis, reduced the abnormality of ROS accumulation, autophagy and apoptosis in malathion-exposed ovarian tissue. Furthermore, compared with those of the control group, malathion induced autophagy and apoptosis in the granular cells, whereas resveratrol attenuated these effects of malathion. Therefore, disadvantages of malathion exposure on estrus cycle disorder could partly reverse by resveratrol supplement. Overall, resveratrol may be a potential drug to prevent malathion-induced ovarian damages and estrus cycle disorder. Our findings provide new insights into ovarian response to malathion and resveratrol exposure.
Collapse
|
10
|
Blecharz-Klin K, Sznejder-Pachołek A, Wawer A, Pyrzanowska J, Piechal A, Joniec-Maciejak I, Mirowska-Guzel D, Widy-Tyszkiewicz E. Early exposure to paracetamol reduces level of testicular testosterone and changes gonadal expression of genes relevant for steroidogenesis in rats offspring. Drug Chem Toxicol 2021; 45:1862-1869. [PMID: 33657953 DOI: 10.1080/01480545.2021.1892941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we investigated the effects of early paracetamol treatment on the testicular level of testosterone and expression of genes important for steroid biosynthesis and reproduction in male rats offspring. Rats were continuously exposed to paracetamol at doses of 5 or 15 mg/kg b.w. during pregnancy and the first two months of the postpartum development. Testosterone level was determined by ELISA. Profile of gene expression for the testicular steroidogenic factors were evaluated using the Real-Time PCR. Our results showed that paracetamol reduces testicular testosterone level and causes compensatory transactivation of genes important for steroidogenesis and reproductive capacity. We have observed significant over-expression of several genes involved in cholesterol transport and steroid biosynthesis e.g., genes for steroidogenic acute regulatory protein, hydroxysteroid dehydrogenases, luteinizing hormone subunit beta, gonadotropin and androgen receptors. Up-regulation of these genes with parallel testosterone reduction in the testicles could be the possible mechanism that maintains and prevents the loss of the steroidogenic function.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Anna Sznejder-Pachołek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| |
Collapse
|
11
|
Holota H, Thirouard L, Monrose M, Garcia M, De Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. FXRα modulates leydig cell endocrine function in mouse. Mol Cell Endocrinol 2020; 518:110995. [PMID: 32827571 DOI: 10.1016/j.mce.2020.110995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 01/14/2023]
Abstract
The hypothalamic-pituitary axis exert a major control over endocrine and exocrine testicular functions. The hypothalamic-pituitary axis corresponds to a cascade with the Gonadotropin Releasing Hormone secreted by the hypothalamus, which stimulates the synthesis and the release of Luteinizing Hormone (LH) and Follicle Stimulating Hormone by the gonadotropic cells of the anterior pituitary. The LH signaling pathway controls the steroidogenic activity of the Leydig cells via the activation of the luteinizing hormone/choriogonadotropin receptor. In order to avoid a runaway system, sex steroids exert a negative feedback within hypothalamus and pituitary. Testicular steroidogenesis is locally controlled within Leydig cells. The present work reviews some local regulations of steroidogenesis within the Leydig cells focusing mainly on the roles of the Farnesoid-X-Receptor-alpha and its interactions with several orphan members of the nuclear receptor superfamily. Further studies are required to reinforce our knowledge of the regulation of testicular endocrine function, which is necessary to ensure a better understanding of fertility disorders and then proposed an adequate treatment of the diseases.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Li J, Gao L, Zhu BB, Lin ZJ, Chen J, Lu X, Wang H, Zhang C, Chen YH, Xu DX. Long-term 1-nitropyrene exposure induces endoplasmic reticulum stress and inhibits steroidogenesis in mice testes. CHEMOSPHERE 2020; 251:126336. [PMID: 32145574 DOI: 10.1016/j.chemosphere.2020.126336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
1-Nitropyrene (1-NP) is a representative nitro-polycyclic aromatic hydrocarbon from diesel exhaust. Recently, we found that maternal 1-NP exposure caused fetal growth retardation and disturbed cognitive development in adolescent female offspring. To investigate long-term 1-NP exposure on spermatogenesis and steroidogenesis, male mice were exposed to 1-NP (1.0 mg/kg/day) by gavage for 70 days. There was no significant difference on relative testicular weight, number of testicular apoptotic cells and epididymal sperm count between 1-NP-exposed mice and controls. Although long-term 1-NP exposure did not influence number of Leydig cells, steroidogenic genes and enzymes, including STAR, P450scc, P45017α and 17β-HD, were downregulated in 1-NP-expoed mouse testes. Correspondingly, serum and testicular testosterone (T) levels were reduced in 1-NP-exposed mice. Additional experiment showed that testicular GRP78 mRNA and protein were upregulated by 1-NP. Testicular phospho-IRE1α and sliced xbp-1 mRNA, a downstream molecule of IRE1α, were elevated in 1-NP-exposed mice. Testicular phospho-PERK and phospho-eIF2α, a downstream molecule of PERK pathway, were increased in 1-NP-exposed mice. Testicular NOX4, a subunit of NAPDH oxidase, and HO-1, MDA, two oxidative stress markers, were increased in 1-NP-exposed mice. Testicular GSH and GSH/GSSG were decreased in 1-NP-exposed mice. These results suggest that long-term 1-NP exposure induces reactive oxygen species-evoked ER stress and disrupts steroidogenesis in mouse testes.
Collapse
Affiliation(s)
- Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Bin-Bin Zhu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Simond AE, Houde M, Lesage V, Michaud R, Zbinden D, Verreault J. Associations between organohalogen exposure and thyroid- and steroid-related gene responses in St. Lawrence Estuary belugas and minke whales. MARINE POLLUTION BULLETIN 2019; 145:174-184. [PMID: 31590774 DOI: 10.1016/j.marpolbul.2019.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Elevated concentrations of persistent organic pollutants (POPs) and emerging halogenated flame retardants (HFRs) have been reported in tissues of the endangered St. Lawrence Estuary (Canada) beluga population as well as in minke whales visiting that same feeding area. This study examined the linkages between blubber concentrations of POPs and emerging HFRs, and transcription in skin of genes involved in the regulation of thyroid and steroid axes in belugas and minke whales from the St. Lawrence Estuary. In belugas, concentrations of PCBs, OCs and hexabromobenzene (HBB) were positively correlated with the transcription of thyroid- and/or steroid-related genes, while Dec-604 CB concentrations were negatively associated with the transcription of glucocorticoid and thyroid genes. In minke whales, PBDE concentrations changed positively with Esrβ transcript levels and HBB concentrations negatively with Nr3c1 transcripts. Present results suggest that several biological functions including reproduction and energetic metabolism may represent potential targets for organohalogens in these whales.
Collapse
Affiliation(s)
- Antoine E Simond
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Véronique Lesage
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, P.O. Box 1000, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Robert Michaud
- Groupe de Recherche et d'Éducation sur les Mammifères Marins (GREMM), 870 avenue Salaberry, Bureau R24, Québec, QC G1R 2T9, Canada
| | - Dany Zbinden
- Mériscope, 833 rue du Quai, Portneuf-sur-Mer, QC G0T 1P0, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
14
|
1950MHz Radio Frequency Electromagnetic Radiation Inhibits Testosterone Secretion of Mouse Leydig Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:ijerph15010017. [PMID: 29295490 PMCID: PMC5800117 DOI: 10.3390/ijerph15010017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022]
Abstract
More studies that are focused on the bioeffects of radio-frequency (RF) electromagnetic radiation that is generated from the communication devices, but there were few reports with confirmed results about the bioeffects of RF radiation on reproductive cells. To explore the effects of 1950 MHz RF electromagnetic radiation (EMR) on mouse Leydig (TM3) cells. TM3 cells were irradiated or sham-irradiated continuously for 24 h by the specific absorption rate (SAR) 3 W/kg radiation. At 0, 1, 2, 3, 4, and 5 days after irradiation, cell proliferation was detected by cell counting kit-8 (CCK-8) method, cell cycle distribution, percentage of apoptosis, and cellular reactive oxygen species (ROS) were examined by flow cytometry, Testosterone level was measured using enzyme-linked immunosorbent assay (ELISA) assay, messenger ribonucleic acid (mRNA) expression level of steroidogenic acute regulatory protein (StAR) and P450scc in TM3 cells was detected by real-time polymerase chain reaction (PCR). After being irradiated for 24 h, cell proliferation obviously decreased and cell cycle distribution, secretion capacity of Testosterone, and P450scc mRNA level were reduced. While cell apoptosis, ROS, and StAR mRNA level did not change significantly. The current results indicated that 24 h of exposure at 1950 MHz 3 W/kg radiation could cause some adverse effects on TM3 cells proliferation and Testosterone secretion, further studies about the biological effects in the reproductive system that are induced by RF radiation are also needed.
Collapse
|
15
|
Vitamin D deficiency impairs testicular development and spermatogenesis in mice. Reprod Toxicol 2017; 73:241-249. [DOI: 10.1016/j.reprotox.2017.06.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 11/23/2022]
|
16
|
Corrêa LB, Cardozo LFDF, Ribeiro ICDA, Boaventura GT, Chagas MA. Influence of prolonged flaxseed ( Linum usitatissimum ) consumption over epididymis and testicle histoarchitecture of Wistar rats. PESQUISA VETERINÁRIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000600020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT: Flaxseed is considered a functional food with several health benefits. However, because of its high phytoestrogen content, flaxseed influences hormone metabolism and affects the gonadal biomorphology. In this study, computerized histomorphometry was used to evaluate seminiferous and epididymal tubules, considering the different regions of the epididymis (head, body and tail) of rats subjected to a prolonged diet of flaxseed. Young adult male Wistar rats (n=20) were divided into 2 groups during their lactation period: Control Group (CG), fed casein-based meals and Flaxseed Group (FG), fed a 25% flaxseed meal. After 250 days of continuous ingestion, the animals were euthanized and a blood sample was collected. The testicles and epididymis were removed and fixed in buffered formalin solution. The samples were subjected to routine histological paraffin techniques and stained with hematoxilin and eosin. Immunostaining was performed using an antivimentin antibody for Sertoli cell identification. For morphometry, images of the slides were scanned and analyzed using Image J to determine the epithelial height, tubular and luminal diameter and tubular and luminal area. In the hormonal evaluation, FG had a higher serum concentration of estrogen (P=0.001), but no change was observed in the concentration of testosterone. The morphometric assay of seminiferous tubules and epididymal regions revealed no significant differences between the analyzed groups. Similarly, Sertoli cell quantification showed no significant differences in the FG (P=0.98). These results revealed that the continuous and prolonged intake of 25% flaxseed meals from gestation to 250 days of age, even with a significant increase in serum levels of estradiol, does not exert adverse effects on the testicular and epididymal structure or on the cells participating in the spermatogenesis of rats.
Collapse
|
17
|
Gibson LA, Koch I, Reimer KJ, Cullen WR, Langlois VS. Life cycle exposure of the frog Silurana tropicalis to arsenate: Steroid- and thyroid hormone-related genes are differently altered throughout development. Gen Comp Endocrinol 2016; 234:133-41. [PMID: 26393310 DOI: 10.1016/j.ygcen.2015.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Arsenic contaminates water surface and groundwater worldwide. Several studies have suggested that arsenic acts as an endocrine disruptor in mammalian and non-mammalian species, although its chronic effect during development remains largely unknown. To address this question, life cycle exposures to 0, 0.3 and 0.8ppm of arsenate (pentavalent arsenic; As(V)) were performed in the Western clawed frog (Silurana tropicalis) from the gastrulae stage (developmental stage Nieuwkoop-Faber; NF12) until metamorphosis (NF66). Tissue samples were collected at the beginning of feeding (NF46; whole body), sexual development (NF56; liver), and at metamorphosis completion (NF66; liver and gonadal mesonephros complex). Real-time RT-PCR analysis quantified decreases in mRNA levels of genes related to estrogen- (estrogen receptor alpha and aromatase), androgen- (androgen receptor and steroid 5-alpha-reductase type 2), and cholesterol metabolism- (steroidogenic acute regulatory protein) at stage NF46. Similarly, arsenate decreased steroid 5-alpha-reductase type 2 expression in stage NF56 livers, but transcript increases were observed for both estrogen receptor alpha and steroidogenic acute regulatory protein at this stage. Given the changes observed in the expression of genes essential for proper sexual development, gonadal histological analysis was carried out in stage NF66 animals. Arsenate treatments did not alter sex ratio or produce testicular oocytes. On the other hand, arsenate interfered with thyroid hormone-related transcripts at NF66. Specifically, thyroid hormone receptor beta and deiodinase type 2 mRNA levels were significantly reduced after arsenate treatment in the gonadal mesonephros complex. This reduction in thyroid hormone-related gene expression, however, was not accompanied by any morphological changes measured. In summary, environmentally relevant concentrations of As(V) altered steroidogenesis-, sex steroid signaling- and thyroid hormone-related gene expression, although transcriptional changes varied among tissues and developmental stages.
Collapse
Affiliation(s)
- Laura A Gibson
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada
| | - Iris Koch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada
| | - Kenneth J Reimer
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada
| | | | - Valerie S Langlois
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada.
| |
Collapse
|
18
|
Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 2016; 68:85-104. [PMID: 27421580 DOI: 10.1016/j.reprotox.2016.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, United States.
| | - Ana Cheong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Veevers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alisa A Suen
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States; Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Neville N C Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
19
|
Vitku J, Heracek J, Sosvorova L, Hampl R, Chlupacova T, Hill M, Sobotka V, Bicikova M, Starka L. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. ENVIRONMENT INTERNATIONAL 2016; 89-90:166-173. [PMID: 26863184 DOI: 10.1016/j.envint.2016.01.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/06/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND In the testis, steroid hormones play an important role in spermatogenesis, the production of semen, and the maintenance of secondary sex characteristics and libido. They may also play a role as a target for substances called endocrine disruptors (EDs). As yet, however, no complex study has been conducted evaluating the relationships between EDs and the steroid spectrum in the plasma and seminal plasma. OBJECTIVES To shed more light into mechanisms of EDs and the effects of bisphenol A (BPA) and polychlorinated biphenyls (PCBs) on human spermatogenesis and steroidogenesis. METHODS We determined BPA and 11 steroids in the plasma and seminal plasma of 191 men with different degrees of fertility, using a newly developed liquid-chromatography mass spectrometry method. Concurrently, plasma levels of 6 congeners of PCBs, gonadotropins, selenium, zinc and homocysteine were measured. Partial correlations adjusted for age, BMI and abstinence time were performed to evaluate relationships between these analytes. RESULTS Seminal BPA, but not plasma BPA, was negatively associated with sperm concentration (r=-0.198; p=0.009), sperm count (r=-0.178; p=0.018) and morphology (r=-0.160; p=0.044). Divergent and sometimes opposing associations of steroids and BPA were found in both body fluids. The sum of PCB congeners was negatively associated with testosterone, free testosterone, the free androgen index and dihydrotestosterone in plasma. CONCLUSION BPA may negatively contribute to the final state of sperm quality. Moreover, our data indicate that BPA influences human gonadal and adrenal steroidogenesis at various steps. Environmental levels of PCBs negatively correlated with androgen levels, but surprisingly without negative effects on sperm quality.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic.
| | - Jiri Heracek
- Department of Urology, First Faculty of Medicine, Charles University in Prague, Czech Republic; Department of Urology, Military University Hospital Prague, Czech Republic
| | - Lucie Sosvorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | - Richard Hampl
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | - Tereza Chlupacova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | - Vladimir Sobotka
- Department of Urology, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Marie Bicikova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | - Luboslav Starka
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
20
|
Hampl R, Kubátová J, Stárka L. Steroids and endocrine disruptors--History, recent state of art and open questions. J Steroid Biochem Mol Biol 2016; 155:217-23. [PMID: 24816231 DOI: 10.1016/j.jsbmb.2014.04.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/14/2014] [Accepted: 04/20/2014] [Indexed: 12/17/2022]
Abstract
This introductory chapter provides an overview of the levels and sites at which endocrine disruptors (EDs) affect steroid actions. In contrast to the special issue of Journal of Steroid Biochemistry and Molecular Biology published three years ago and devoted to EDs as such, this paper focuses on steroids. We tried to point to more recent findings and opened questions. EDs interfere with steroid biosynthesis and metabolism either as inhibitors of relevant enzymes, or at the level of their expression. Particular attention was paid to enzymes metabolizing steroid hormones to biologically active products in target cells, such as aromatase, 5α-reductase and 3β-, 11β- and 17β-hydroxysteroid dehydrogenases. An important target for EDs is also steroid acute regulatory protein (StAR), responsible for steroid precursor trafficking to mitochondria. EDs influence receptor-mediated steroid actions at both genomic and non-genomic levels. The remarkable differences in response to various steroid-receptor ligands led to a more detailed investigation of events following steroid/disruptor binding to the receptors and to the mapping of the signaling cascades and nuclear factors involved. A virtual screening of a large array of EDs with steroid receptors, known as in silico methods (≡computer simulation), is another promising approach for studying quantitative structure activity relationships and docking. New data may be expected on the effect of EDs on steroid hormone binding to selective plasma transport proteins, namely transcortin and sex hormone-binding globulin. Little information is available so far on the effects of EDs on the major hypothalamo-pituitary-adrenal/gonadal axes, of which the kisspeptin/GPR54 system is of particular importance. Kisspeptins act as stimulators for hormone-induced gonadotropin secretion and their expression is regulated by sex steroids via a feed-back mechanism. Kisspeptin is now believed to be one of the key factors triggering puberty in mammals, and various EDs affect its expression and function. Finally, advances in analytics of EDs, especially those persisting in the environment, in various body fluids (plasma, urine, seminal fluid, and follicular fluid) are mentioned. Surprisingly, relatively scarce information is available on the simultaneous determination of EDs and steroids in the same biological material. This article is part of a Special Issue entitled 'Endocrine disruptors & steroids'.
Collapse
Affiliation(s)
- Richard Hampl
- Institute of Endocrinology, Národní 8, 116 94 Praha 1, Czech Republic.
| | - Jana Kubátová
- Institute of Endocrinology, Národní 8, 116 94 Praha 1, Czech Republic
| | - Luboslav Stárka
- Institute of Endocrinology, Národní 8, 116 94 Praha 1, Czech Republic
| |
Collapse
|
21
|
|
22
|
Neogi SB, Negandhi PH, Ganguli A, Chopra S, Sandhu N, Gupta RK, Zodpey S, Singh A, Singh A, Gupta R. Consumption of indigenous medicines by pregnant women in North India for selecting sex of the foetus: what can it lead to? BMC Pregnancy Childbirth 2015; 15:208. [PMID: 26341639 PMCID: PMC4560877 DOI: 10.1186/s12884-015-0647-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 09/02/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sex ratio is an important indicator of development. Despite all the measures undertaken for improvement, it remains an issue of concern in India, with Haryana having a very low sex ratio in the country. Studies have been conducted indicating that consumption of indigenous drugs used for sex selection (SSD) could be strongly associated with adverse effects on the foetal development, including congenital malformations. Some samples of SSDs were collected from parts of North India and analysed in a standard laboratory for its components. METHODS Thirty SSDs used by the local community were procured from various sources in north India through a rigorous process of collection. These were subjected to laboratory tests to investigate the presence of phytoestrogen and testosterone. Following sample extraction, thin layer chromatography and high performance liquid chromatography were carried out for analysing phytoestrogen content. RESULTS SSDs were available in various forms such as powder, tablets, mostly from faith healers. Around 87% of the samples collected from sources like doctors, quacks and faith healers were to be taken by the pregnant women after conception; 63% drugs were strongly positive for phytoestrogens (genistein, daidzein, formononetin) and 20% drugs were positive for testosterone. The average dose of the components as calculated after analyses was as follows: daidzein--14.1 mg/g sample, genistein--8.6 mg/g sample, formononetin--5 mg/g sample. CONCLUSION These SSDs could be potentially detrimental to the growth and development of the foetus. This is likely to have implications on the health of the community. In view of the results obtained in our study, we strongly attest the importance in curbing this harmful practice by banning the supply of the drugs as well as by advocating behavioural changes in the community.
Collapse
Affiliation(s)
- Sutapa Bandyopadhyay Neogi
- Indian Institute of Public Health-Delhi (IIPH-D), Public Health Foundation of India (PHFI), New Delhi, India.
| | - Preeti H Negandhi
- Indian Institute of Public Health-Delhi (IIPH-D), Public Health Foundation of India (PHFI), New Delhi, India.
| | | | - Sapna Chopra
- Indian Institute of Public Health-Delhi (IIPH-D), Public Health Foundation of India (PHFI), New Delhi, India.
| | | | | | - Sanjay Zodpey
- Indian Institute of Public Health-Delhi (IIPH-D), Public Health Foundation of India (PHFI), New Delhi, India.
| | - Amarjeet Singh
- Department of Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Arun Singh
- Rashtriya Bal Suraksha Karyakram, Government of India, New Delhi, India.
| | - Rakesh Gupta
- National Health Mission, Panchkula, Haryana, India.
| |
Collapse
|
23
|
Qamar I, Ahmad MF, Narayanasamy A. A time-course study of long term over-expression of ARR19 in mice. Sci Rep 2015; 5:13014. [PMID: 26260329 PMCID: PMC4531322 DOI: 10.1038/srep13014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/13/2015] [Indexed: 11/22/2022] Open
Abstract
A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate.
Collapse
Affiliation(s)
- Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida-201308, India
| | - Mohammad Faiz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Arul Narayanasamy
- Department of Life Science, Research Center for Cell Homeostasis, Ewha Womens University, Seoul 120-750, Republic of Korea
| |
Collapse
|
24
|
Mendoza-Villarroel RE, Robert NM, Martin LJ, Brousseau C, Tremblay JJ. The nuclear receptor NR2F2 activates star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells. Biol Reprod 2014; 91:26. [PMID: 24899578 DOI: 10.1095/biolreprod.113.115790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Testosterone production is dependent on cholesterol transport within the mitochondrial matrix, an essential step mediated by a protein complex containing the steroidogenic acute regulatory (STAR) protein. In steroidogenic Leydig cells, Star expression is hormonally regulated and involves several transcription factors. NR2F2 (COUP-TFII) is an orphan nuclear receptor that plays critical roles in cell differentiation and lineage determination. Conditional NR2F2 knockout prior to puberty leads to male infertility due to insufficient testosterone production, suggesting that NR2F2 could positively regulate steroidogenesis and Star expression. In this study we found that NR2F2 is expressed in the nucleus of some peritubular myoid cells and in interstitial cells, mainly in steroidogenically active adult Leydig cells. In MA-10 and MLTC-1 Leydig cells, small interfering RNA (siRNA)-mediated NR2F2 knockdown reduces basal steroid production without affecting hormone responsiveness. Consistent with this, we found that STAR mRNA and protein levels were reduced in NR2F2-depleted MA-10 and MLTC-1 cells. Transient transfections of Leydig cells revealed that a -986 bp mouse Star promoter construct was activated 3-fold by NR2F2. Using 5' progressive deletion constructs, we mapped the NR2F2-responsive element between -131 and -95 bp. This proximal promoter region contains a previously uncharacterized direct repeat 1 (DR1)-like element to which NR2F2 is recruited and directly binds. Mutations in the DR1-like element that prevent NR2F2 binding severely blunted NR2F2-mediated Star promoter activation. These data identify an essential role for the nuclear receptor NR2F2 as a direct activator of Star gene expression in Leydig cells, and thus in the control of steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Luc J Martin
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- Centre de recherche en biologie de la reproduction, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
25
|
Enangue Njembele AN, Bailey JL, Tremblay JJ. In vitro exposure of Leydig cells to an environmentally relevant mixture of organochlorines represses early steps of steroidogenesis. Biol Reprod 2014; 90:118. [PMID: 24740604 DOI: 10.1095/biolreprod.113.116368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Leydig cell steroidogenesis is mainly regulated by LH via increased cAMP production leading to STAR protein activation. STAR is essential for cholesterol shuttling inside mitochondria where steroidogenesis is initiated. Accumulating evidence suggest that persistent organochlorine compounds disrupt testicular function, but the mechanism of action remains poorly characterized. Here we report that in vitro exposure of MA-10 and MLTC-1 Leydig cells to an environmentally relevant mixture of 15 organochlorines impairs steroidogenesis. While having no effect on cell viability and basal steroid production, the organochlorine mixture caused a 50% decrease in cAMP-induced progesterone production. The mixture also reduced cAMP-induced 30 kDa STAR protein by 50% while having no effect on basal STAR protein. Basal or cAMP-induced Star mRNA levels and promoter activity were unaffected by the mixture, indicating that the organochlorine mixture acted at the translational/posttranslational level. Further supporting this is the fact that in COS-7 cells overexpressing STAR, the organochlorine mixture caused a decrease in the 30 kDa form of STAR and an accumulation of the 37 kDa forms. In addition to STAR, we found that the organochlorine mixture also decreases the levels of CYP11A1 and ADXR, two proteins essential for the conversion of cholesterol into pregnenolone. In conclusion, our data show that organochlorine exposure disrupts Leydig cell function by targeting different components of the steroidogenic pathway.
Collapse
Affiliation(s)
| | - Janice L Bailey
- Centre for Research in Biology of Reproduction, Department of Animal Sciences, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec, Québec, Canada Centre for Research in Biology of Reproduction, Department of Obstetrics, Gynecology, and Reproduction, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
26
|
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120431. [PMID: 23297354 DOI: 10.1098/rstb.2012.0431] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
27
|
An LS, Yuan XH, Hu Y, Shi ZY, Liu XQ, Qin L, Wu GQ, Han W, Wang YQ, Ma X. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model. Steroids 2012; 77:1477-82. [PMID: 22963862 DOI: 10.1016/j.steroids.2012.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/31/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Granulosa cells proliferate, differentiate, and undergo apoptosis throughout follicular development. Previous studies have demonstrated that stimulation of progesterone production is accompanied by caspase-3 activation. Moreover, we previously reported that arsenic enhanced caspase-3 activity coupled with progesterone production. Inhibition of caspase-3 activity can significantly inhibit progesterone production induced by arsenic or follicle-stimulating hormone (FSH). Here, we report that serum starvation induces caspase-3 activation coupled with augmentation of progesterone production. Serum starvation also increased the levels of cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein, both of which may contribute to progesterone synthesis in preovulatory granulosa cells. Inhibition of caspase-3 activity resulted in a decrease in progesterone production. Deactivation of caspase-3 activity by caspase-3 specific inhibitor also resulted in decreases in P450scc and StAR expression, which may partly contribute to the observed decrease in progesterone production. Our study demonstrates for the first time that progesterone production in preovulatory granulosa cells is required for caspase-3 activation in a serum starvation model. Inhibition of caspase-3 activity can result in decreased expression of the steroidogenic proteins P450scc and StAR. Our work provides further details on the relationship between caspase-3 activation and steroidogenesis and indicates that caspase-3 plays a critical role in progesterone production by granulosa cells.
Collapse
Affiliation(s)
- Li-Sha An
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lasserre JP, Fack F, Serchi T, Revets D, Planchon S, Renaut J, Hoffmann L, Gutleb AC, Muller CP, Bohn T. Atrazine and PCB 153 and their effects on the proteome of subcellular fractions of human MCF-7 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:833-41. [DOI: 10.1016/j.bbapap.2012.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/02/2012] [Accepted: 03/30/2012] [Indexed: 01/03/2023]
|
29
|
Piché CD, Sauvageau D, Vanlian M, Erythropel HC, Robaire B, Leask RL. Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 79:108-115. [PMID: 22236953 DOI: 10.1016/j.ecoenv.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Phthalate plasticizers are used in the plastics industry to aid in processing and impart flexibility to plastics. Due to the broad use of plastics, and the tendency of plasticizers to leach out of polymers, plasticizers have become ubiquitous in the environment. Concerns about the testicular toxicity of phthalate plasticizers, in particular di-(2-ethylhexyl) phthalate (DEHP), have arisen due to their ability to cause male reproductive tract abnormalities in animal models. It has been assumed that the DEHP metabolite, mono-(2-ethylhexyl) phthalate (MEHP), is the active compound, however, metabolites such as 2-ethylhexanol, 2-ethylhexanal and 2-ethylhexanoic acid, have not been thoroughly investigated. The aim of this study was to evaluate the anti-androgenic potential of these metabolites in vitro with a mouse Leydig tumor cell line, MA-10 cells. DEHP, MEHP and 2-ethylhexanal were found to decrease cell viability, as well as steroidogenic potential. The latter was assessed using an enzyme-linked immunosorbent assay (ELISA) to quantify steroid production and quantitative real-time polymerase chain reaction (qRT-PCR) to assess gene expression analysis of key steroidogenic enzymes. 2-Ethylhexanal proved to be the most potent steroidogenic disruptor, offering intriguing implications in the search for the mechanism of phthalate testicular toxicity. Overall, the study suggests the involvement of multiple active metabolites in the testicular toxicity of DEHP.
Collapse
Affiliation(s)
- Carlie D Piché
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2
| | - Dominic Sauvageau
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2; Department of Chemical and Materials Engineering, University of Alberta, 9107 116 Sreet, Edmonton, AB, Canada T6G 2V4
| | - Marie Vanlian
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2
| | - Hanno C Erythropel
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1Y6
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2.
| |
Collapse
|
30
|
Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of developmental phytoestrogen exposure. Reproduction 2012; 143:247-60. [PMID: 22223686 PMCID: PMC3443604 DOI: 10.1530/rep-11-0369] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytoestrogens, estrogenic compounds derived from plants, are ubiquitous in human and animal diets. These chemicals are generally much less potent than estradiol but act via similar mechanisms. The most common source of phytoestrogen exposure to humans is soybean-derived foods that are rich in the isoflavones genistein and daidzein. These isoflavones are also found at relatively high levels in soy-based infant formulas. Phytoestrogens have been promoted as healthy alternatives to synthetic estrogens and are found in many dietary supplements. The aim of this review is to examine the evidence that phytoestrogen exposure, particularly in the developmentally sensitive periods of life, has consequences for future reproductive health.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Heather B. Patisaul
- Department of Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
31
|
Wang W, Craig ZR, Basavarajappa MS, Gupta RK, Flaws JA. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicol Appl Pharmacol 2011; 258:288-95. [PMID: 22155089 DOI: 10.1016/j.taap.2011.11.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/24/2011] [Accepted: 11/10/2011] [Indexed: 01/12/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31-35days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1-100μg/ml)±N-acetyl cysteine (NAC, an antioxidant at 0.25-1mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25-1mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, USA.
| | | | | | | | | |
Collapse
|
32
|
Mruk DD, Cheng CY. Environmental contaminants: Is male reproductive health at risk? SPERMATOGENESIS 2011; 1:283-290. [PMID: 22332111 PMCID: PMC3271639 DOI: 10.4161/spmg.1.4.18328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 02/06/2023]
Abstract
Contaminants such as cadmium, bisphenol A and lead pollute our environment and affect male reproductive function. There is evidence that toxicant exposure adversely affects fertility. Cadmium and bisphenol A exert their effects in the testis by perturbing blood-testis barrier function, which in turn affects germ cell adhesion in the seminiferous epithelium because of a disruption of the functional axis between these sites. In essence, cadmium mediates its adverse effects at the blood-testis barrier by disrupting cell adhesion protein complexes, illustrating that toxicants can dismantle cell junctions in the testis. Herein, we will discuss how environmental toxicants may affect reproductive function. We will also examine how these adverse effects on fertility may be mediated in part by adipose tissue and bone. Lastly, we will briefly discuss how toxicant-induced damage may be effectively managed so that fertility can be maintained. It is hoped that this information will offer a new paradigm for future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|
33
|
Ferguson KK, Loch-Caruso R, Meeker JD. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999-2006. ENVIRONMENTAL RESEARCH 2011; 111:718-26. [PMID: 21349512 PMCID: PMC3110976 DOI: 10.1016/j.envres.2011.02.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 05/18/2023]
Abstract
Phthalate esters are a class of compounds utilized extensively in widely-distributed consumer goods, and have been associated with various adverse health outcomes in previous epidemiologic research. Some of these health outcomes may be the result of phthalate-induced increases in oxidative stress or inflammation, which have been demonstrated in animal studies. The aim of this study was to explore the relationship between urinary phthalate metabolite concentrations and serum markers of inflammation and oxidative stress (C-reactive protein (CRP) and gamma glutamyltransferase (GGT), respectively). Subjects were participants in the National Health and Nutrition Examination Survey (NHANES) between the years 1999 and 2006. In multivariable linear regression models, we observed significant positive associations between CRP and mono-benzyl phthalate (MBzP) and mono-isobutyl phthalate (MiBP). There were CRP elevations of 6.0% (95% confidence interval (CI) 1.7-10.8%) and 8.3% (95% CI 2.9-14.0%) in relation to interquartile range (IQR) increases in urinary MBzP and MiBP, respectively. GGT was positively associated with mono(2-ethylhexyl) phthalate (MEHP) and an MEHP% variable calculated from the proportion of MEHP in comparison to other di(2-ethylhexyl) phthalate (DEHP) metabolites. IQR increases in MEHP and MEHP% were associated with 2.5% (95% CI 0.2-4.8%) and 3.7% (95% CI 1.7-5.7%) increases in GGT, respectively. CRP and GGT were also inversely related to several phthalate metabolites, primarily oxidized metabolites. In conclusion, several phthalate monoester metabolites that are detected in a high proportion of urine samples from the US general population are associated with increased serum markers of inflammation and oxidative stress. On the other hand, several oxidized phthalate metabolites were inversely associated with these markers. These relationships deserve further exploration in both experimental and observational studies.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | |
Collapse
|
34
|
Saraiva KLA, Silva AKSE, Wanderley MI, De Araújo AA, De Souza JRB, Peixoto CA. Chronic treatment with sildenafil stimulates Leydig cell and testosterone secretion. Int J Exp Pathol 2009; 90:454-62. [PMID: 19659904 DOI: 10.1111/j.1365-2613.2009.00660.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The phosphodiesterase type 5 (PDE5) inhibitor, Sildenafil, is a novel, oral treatment approach for pulmonary hypertension. As Leydig cells present PDE5, this study was conducted to investigate the effects of the chronic treatment with Sildenafil (25 mg/kg) on male Swiss Webster mice steroidogenesis. After a 4-week long experimental design, Leydig cells were analysed by morphological and immunocytochemical procedures. Serum testosterone was assayed by radioimmunoassay. Leydig cells presented noteworthy ultrastructural alterations, such as a vesicular smooth endoplasmic reticulum, large vacuoles scattered through the cytoplasm, enlarged mitochondria with discontinue cristaes and whorle membranes with vesicles at the periphery, which are typical characteristics of an activated steroid-secreting cell. Important immunocytochemical labelling for steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage enzyme and testosterone were detected in isolated Leydig cells. In addition, Sildenafil-treated mice showed significant increased levels of total testosterone. The results obtained in the present study are consistent with the hypothesis that the accumulation of cyclic guanosine monophosphate by PDE5 inhibition could be involved in the androgen biosynthesis stimulation. Important clinical implications of hormonal disorders should be taken into account for patients with pulmonary hypertension.
Collapse
|
35
|
Nakamura I, Kusakabe M, Young G. Differential suppressive effects of low physiological doses of estradiol-17beta in vivo on levels of mRNAs encoding steroidogenic acute regulatory protein and three steroidogenic enzymes in previtellogenic ovarian follicles of rainbow trout. Gen Comp Endocrinol 2009; 163:318-23. [PMID: 19422827 DOI: 10.1016/j.ygcen.2009.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/22/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022]
Abstract
Numerous recent reports have demonstrated effects of estrogenic chemicals on reproductive physiology of fish. However, there is little information available on the regulation of ovarian steroidogenesis by physiological levels of endogenous steroids in teleosts. Therefore, we analyzed the levels of mRNAs encoding steroidogenic proteins in ovaries of E2-treated rainbow trout Oncorhynchus mykiss). Previtellogenic (perinucleolar oocyte stage) trout received either blank or E2 implants (0.1 microg, 1 microg or 10 microg/g BW) for 7 days in order to achieve low, medium and high physiological levels of E2 in plasma. Plasma E2 levels were measured using radioimmunoassay. Levels of mRNAs encoding steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage enzyme (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and P450 aromatase A (P450aromA) in the ovary were analyzed by real-time quantitative PCR. E2 levels in control animals were approximately 0.5 ng/ml. Levels in treated fish were approximately 1 ng/ml (0.1 microg implant), 2.6 ng/ml (1 microg implant) and 90 ng/ml (10 microg implant), within or just above the physiological range of immature and maturing female rainbow trout. StAR mRNA levels were significantly reduced by all E2 treatments. P450scc mRNA levels were not affected, but 3beta-HSD and P450arom mRNA levels were significantly decreased by the 1 and 10 microg E2/BW implants. These results indicate that E2, either directly or indirectly, downregulates expression of StAR and major steroidogenic enzyme genes in rainbow trout ovary. Furthermore, expression of the trout StAR gene seems particularly sensitive to E2.
Collapse
Affiliation(s)
- Ikumi Nakamura
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
36
|
Yu X, Hong S, Moreira EG, Faustman EM. Improving in vitro Sertoli cell/gonocyte co-culture model for assessing male reproductive toxicity: Lessons learned from comparisons of cytotoxicity versus genomic responses to phthalates. Toxicol Appl Pharmacol 2009; 239:325-36. [PMID: 19560483 DOI: 10.1016/j.taap.2009.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/25/2022]
Abstract
Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE) on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.
Collapse
Affiliation(s)
- Xiaozhong Yu
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite #100, Seattle, WA 98105-6099, USA
| | | | | | | |
Collapse
|
37
|
Studies on the protective role of lycopene against polychlorinated biphenyls (Aroclor 1254)-induced changes in StAR protein and cytochrome P450 scc enzyme expression on Leydig cells of adult rats. Reprod Toxicol 2009; 27:41-5. [DOI: 10.1016/j.reprotox.2008.11.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 10/29/2008] [Accepted: 11/15/2008] [Indexed: 11/23/2022]
|