1
|
Sharma S, Choudhary M, Sharma O, Injeti E, Mittal A. Mechanistic insights into antidiabetic potential of Ficus viren against multi organ specific diabetic targets: molecular docking, MDS, MM-GBSA analysis. Comput Biol Chem 2024; 113:108185. [PMID: 39217892 DOI: 10.1016/j.compbiolchem.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ficus viren has been traditionally used to treat diabetes, and its extract inhibits carbohydrate/lipid metabolism and possesses anti-hyperglycemic potential. However, there is conflicting investigation related to F. viren extract effect on carbohydrate metabolism. Thus, bioactive and mechanism behind its antidiabetic potential is still scanty. This study explored F. viren's anti-diabetic property by identifying potential phytoconstituents and mechanism. A sequential in-silico approach was used i.e., druglikeness, molecular docking, post-docking MM-GBSA, ADMET studies, molecular dynamic simulation (MDS), and post-MDS MM-GBSA. We screened ∼32 phytoconstituents and twelve potential organ-specific diabetic targets (O.S.D.Ts i.e., IR, DPP-4, ppar-γ, ppar-α, ppar-δ, GLP-1R, SIRT-1, AMPK, GSK-3β, RAGE, and AR). Drug likeness study identified 18 druggable candidates among 32 phytoconstituents. K3A, quercetin, scutellarein, sorbifolin, and vogeline J identified as potential ligands from druggable ligands, using IR as the standard target. Subsequently, potential ligands docked with remaining O.S.D.Ts. and data showed that K3A binds strongly with AMPK, ppar-δ, DPP-4, and GSK-3β, while scutellarein binds with AR and ppar-α. Sorbifolin, quercetin, and vogeline J binds with ppar-α, ppar-γ, and RAGE, respectively. Post-docking MM-GBSA data (∆GBind) also depicted potential ligand's strong binding affinities with their corresponding targets. Thereafter, simulation data revealed that only scutellarein and sorbifolin showed dynamic stability with their respective targets, i.e., AR/ppar-α and ppar-α, respectively. Interestingly, post-MDS MM-GBSA revealed that only scutellarein exhibited strong ∆GBind of -55.08 kcal/mol and -75.48 kcal/mol with AR and ppar-α, respectively. Though, collective computational analysis supports antidiabetic potential of F. viren through AR and ppar-α modulation by scutellarein.
Collapse
Affiliation(s)
- Sachin Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Onkar Sharma
- Skeletal Muscle Lab, IIHS, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Elisha Injeti
- Department of Pharmaceutical Sciences, Cedarville University, Cedarville, OH 45314, USA
| | - Ashwani Mittal
- Skeletal Muscle Lab, IIHS, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
2
|
Wang J, Yu H, Li X, Li F, Chen H, Zhang X, Wang Y, Xu R, Gao F, Wang J, Liu P, Shi Y, Qin D, Li Y, Liu S, Ding S, Gao XY, Wang ZH. A TrkB cleavage fragment in hippocampus promotes Depressive-Like behavior in mice. Brain Behav Immun 2024; 119:56-83. [PMID: 38555992 DOI: 10.1016/j.bbi.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1β-C/EBPβ-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.
Collapse
Affiliation(s)
- Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruifeng Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China; Laboratory of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
3
|
Wang Y, Wang J, Chen H, Li X, Xu R, Gao F, Yu H, Li F, Qin D, Wang J, Shi Y, Li Y, Liu S, Zhang X, Ding S, Hu Y, Huang L, Gao XY, Lu Z, Luo J, Wang ZH. A tau fragment links depressive-like behaviors and cognitive declines in Alzheimer's disease mouse models through attenuating mitochondrial function. Front Aging Neurosci 2023; 15:1293164. [PMID: 38131009 PMCID: PMC10734641 DOI: 10.3389/fnagi.2023.1293164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease characterized by extracellular senile plaques including amyloid-β peptides and intracellular neurofibrillary tangles consisting of abnormal Tau. Depression is one of the most common neuropsychiatric symptoms in AD, and clinical evidence demonstrates that depressive symptoms accelerate the cognitive deficit of AD patients. However, the underlying molecular mechanisms of depressive symptoms present in the process of AD remain unclear. METHODS Depressive-like behaviors and cognitive decline in hTau mice were induced by chronic restraint stress (CRS). Computational prediction and molecular experiments supported that an asparagine endopeptidase (AEP)-derived Tau fragment, Tau N368 interacts with peroxisome proliferator-activated receptor delta (PPAR-δ). Further behavioral studies investigated the role of Tau N368-PPAR-δ interaction in depressive-like behaviors and cognitive declines of AD models exposed to CRS. RESULTS We found that mitochondrial dysfunction was positively associated with depressive-like behaviors and cognitive deficits in hTau mice. Chronic stress increased Tau N368 and promoted the interaction of Tau N368 with PPAR-δ, repressing PPAR-δ-mediated transactivation in the hippocampus of mice. Then we predicted and identified the binding sites of PPAR-δ. Finally, inhibition of AEP, clearance of Tau N368 and pharmacological activation of PPAR-δ effectively alleviated CRS-induced depressive-like behaviors and cognitive decline in mice. CONCLUSION These results demonstrate that Tau N368 in the hippocampus impairs mitochondrial function by suppressing PPAR-δ, facilitating the occurrence of depressive-like behaviors and cognitive decline. Therefore, our findings may provide new mechanistic insight in the pathophysiology of depression-like phenotype in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruifeng Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqian Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Laboratory of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Luo
- Center for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Steinke I, Govindarajulu M, Pinky PD, Bloemer J, Yoo S, Ward T, Schaedig T, Young T, Wibowo FS, Suppiramaniam V, Amin RH. Selective PPAR-Delta/PPAR-Gamma Activation Improves Cognition in a Model of Alzheimer's Disease. Cells 2023; 12:1116. [PMID: 37190025 PMCID: PMC10136457 DOI: 10.3390/cells12081116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Background: The continuously increasing association of Alzheimer's disease (AD) with increased mortality rates indicates an unmet medical need and the critical need for establishing novel molecular targets for therapeutic potential. Agonists for peroxisomal proliferator activating receptors (PPAR) are known to regulate energy in the body and have shown positive effects against Alzheimer's disease. There are three members of this class (delta, gamma, and alpha), with PPAR-gamma being the most studied, as these pharmaceutical agonists offer promise for AD because they reduce amyloid beta and tau pathologies, display anti-inflammatory properties, and improve cognition. However, they display poor brain bioavailability and are associated with several adverse side effects on human health, thus limiting their clinical application. Methods: We have developed a novel series of PPAR-delta and PPAR-gamma agonists in silico with AU9 as our lead compound that displays selective amino acid interactions focused upon avoiding the Tyr-473 epitope in the PPAR-gamma AF2 ligand binding domain. Results: This design helps to avoid the unwanted side effects of current PPAR-gamma agonists and improve behavioral deficits and synaptic plasticity while reducing amyloid-beta levels and inflammation in 3xTgAD animals. Conclusions: Our innovative in silico design of PPAR-delta/gamma agonists may offer new perspectives for this class of agonists for AD.
Collapse
Affiliation(s)
- Ian Steinke
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Priyanka Das Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Jenna Bloemer
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Sieun Yoo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Tracey Ward
- Department of Pharmaceutical Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Taylor Schaedig
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Taylor Young
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Fajar Setyo Wibowo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
- College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 31044, USA
| | - Rajesh H. Amin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| |
Collapse
|
5
|
Cisplatin-induced changes in calcitonin gene-related peptide or TNF-α release in rat dorsal root ganglia in vitro model of neurotoxicity are not reverted by rosiglitazone. Neurotoxicology 2022; 93:211-221. [DOI: 10.1016/j.neuro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
6
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Chen L, Hu J, Zhou B, Li Y, Wei K, Wang J, Lv H, Zeng F. Effect of Integrin-Linked Kinase on Osteogenesis of Bone Marrow Mesenchymal Stem Cells in Inflammatory Environment via Regulating Mitogen Activated Protein Kinase/Protein Kinase B Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoarthritis (OA) pathogenesis involves inflammation, age, weight and other factors. Integrin-linked kinase (ILK) regulates cell apoptosis, metastasis, and growth. However, whether ILK affects bone formation of bone marrow mesenchymal stem cells in an inflammatory environment has
not been elucidated. Rat BMSCs were isolated and assigned into control group, inflammation group (lipopolysaccharide was added to cells); and si-ILK group (ILK siRNA was transfected into the inflammation group BMSCs) followed by analysis of cell proliferation by MTT assay, expression of ILK,
Runx2 and OP by real time PCR, ALp activity, TNF-α and IL-6 secretion by ELISA and MAPK/AKT signaling protein expression by western blot. Compared to control, ILK in BMSCs cells in inflammatory environment was significantly upregulated, resulting in inhibition of cell proliferation,
decreased ALP activity, reduced expression of osteogenic genes Runx2 and OP, increased secretion of TNF-α and IL-6, and downregulated p-AKT (P < 0.05); transfection of ILK siRNA down-regulated ILK in inflammatory environment BMSCs, which significantly increased BMSCs
cell proliferation, increased ALP activity and expression of Runx2 and OP, decreased TNF-α and IL-6 secretion and increased p-AKT expression (P < 0.05). ILK expression is increased in BMSCs in an inflammatory environment. Down-regulation of ILK in BMSCs cells in an inflammatory
environment can regulate MAPK/AKT signaling, inhibit inflammatory factors secretion, thereby promoting BMSCs proliferation and osteogenesis differentiation.
Collapse
Affiliation(s)
- Liyuan Chen
- Second Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine (First People’s Hospital of Baiyin City), Baiyin, Gansu, 730900, China
| | - Jieliang Hu
- Second Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine (First People’s Hospital of Baiyin City), Baiyin, Gansu, 730900, China
| | - Baojun Zhou
- Second Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine (First People’s Hospital of Baiyin City), Baiyin, Gansu, 730900, China
| | - Yan Li
- Department of Electrophysiology, People’s Hospital of Xingguo County, Ganzhou, Jiangxi, 342400, China
| | - Kongxing Wei
- Second Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine (First People’s Hospital of Baiyin City), Baiyin, Gansu, 730900, China
| | - Jinglei Wang
- Second Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine (First People’s Hospital of Baiyin City), Baiyin, Gansu, 730900, China
| | - Hongyan Lv
- Second Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine (First People’s Hospital of Baiyin City), Baiyin, Gansu, 730900, China
| | - Fanyun Zeng
- Emergency Traumatic Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
8
|
Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neurosci Res 2020; 170:217-235. [PMID: 33316303 DOI: 10.1016/j.neures.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023]
Abstract
Leptin is a hormone produced by adipocytes that regulates food intake and metabolism. Leptin-related gene-deficient mice, such as db/db and ob/ob mice, are widely used to study diabetes and its related diseases. However, broad effects of leptin appear to cause variability in behavioral test results. We performed a meta-analysis of major behavioral tests in db/db and ob/ob mice. These mice exhibited significant impairments in the Morris water maze, forced swim, novel object recognition, Y-maze, tail suspension, and light-dark box tests, whereas the elevated plus maze and open field tests did not reveal significant changes. We also performed correlation and regression analyses between the animals' performances and the experimental protocols and conditions. The memory-related tests were characterized by the correlations of their results with animal age, while the performances in the elevated plus-maze and forced swim tests were affected by the width of the devices used. In conclusion, db/db and ob/ob mice mainly exhibit memory deficits and depression-like behavior, although experimenters should be aware of animal age and device size in conducting experiments.
Collapse
|