1
|
Taechowisan T, Chuen-Im T, Phutdhawong WS. Antioxidant and Antibacterial Properties of 1,3-Dihydroxy-,2', 2'-Dimethylpyrano-(5,6)-Xanthone from Streptomyces sp. SU84. Pak J Biol Sci 2024; 27:132-141. [PMID: 38686735 DOI: 10.3923/pjbs.2024.132.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
<b>Background and Objective:</b> The SU84 was isolated from the rhizosphere of <i>Curcuma longa</i> and identified to be <i>Streptomyces</i> sp. via analysis of its 16S rDNA sequence, chemotaxonomy and morphology. This study aimed to isolate major compounds from the extract culture of strain SU84 and evaluate their antibacterial activity. <b>Materials and Methods:</b> The TLC and silica gel column chromatography were used to purify major compounds, elucidate 1,3-dihydroxy-,2',2'-dimethylpyrano-(5,6)-xanthone (compound <b>1</b>) and lupeol (compound <b>2</b>) using mass spectrometry and nuclear magnetic resonance. One new chemical, compound <b>1</b>, was first isolated from microbial sources. Antibacterial, antioxidant and cytotoxic properties of these compounds were carried out. <b>Results:</b> Various bioassays showed that compound <b>1</b> displayed antibacterial property against Gram-positive bacteria, with a minimum inhibitory concentration of 8-32 μg/mL and minimum bactericidal concentration of 32-128 μg/mL. In addition, the purified compounds were tested against normal cell lines using tetrazolium assay. The results did not show cytotoxic property against L929 and Vero cells, with IC<sub>50</sub> values of >512.00 μg/mL. Compounds <b>1</b> and <b>2</b> have also antioxidant properties, with IC<sub>50</sub> values of 16.67±7.48 and 38.86±8.45 μg/mL, respectively. <b>Conclusion:</b> The findings suggested that compounds of <i>Streptomyces</i> sp. SU84 displayed antibacterial and antioxidant properties without cytotoxic activity. Extensive studies of compound <b>1</b> may be useful for the advancement of improved methods for avoidance, control and management of bacterial infections and metabolic-related free radical contribution.
Collapse
|
2
|
An NTK, Van Hien N, Thi Thuy N, Lan Phuong D, Gia Bach H, Tra NT, Quang Tung N, Tham PT, Tai BH, Thu Thuy TT. Garcicowanones C-E, three new hydrated-geranylated xanthones from the roots of Garcinia cowa Roxb. ex Choisy, and their α-glucosidase inhibition activities. Nat Prod Res 2023; 37:3668-3676. [PMID: 35856477 DOI: 10.1080/14786419.2022.2098956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Three new xanthones, garcicowanones C-E (1 - 3), and six known xanthones (4 - 9) were isolated from the roots of Garcinia cowa Roxb. ex Choisy. Their chemical structures were determined using spectroscopic technics, including HR-ESI-MS and 2 D NMR. All isolated compounds were evaluated for in vitro α-glucosidase inhibition. Cowanol (6) and norcowanin (8) had the most potent α-glucosidase inhibitory activity, with respective IC50 values of 33.5 ± 0.8 and 17.2 ± 0.3 µM, compared with the positive control, acarbose (IC50 257.3 ± 4.8 µM).
Collapse
Affiliation(s)
| | | | - Nguyen Thi Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Vietnam
| | - Doan Lan Phuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Vietnam
| | - Ha Gia Bach
- Faculty of Chemistry, VNU University of Science, VNU, Hanoi, Hoan Kiem, Hanoi, Vietnam
| | | | | | - Pham Thi Tham
- Hanoi University of Industry, Bac Tu Liem, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, VAST, Hanoi, Vietnam
| | - Tran Thi Thu Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Vietnam
| |
Collapse
|
3
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Badiali C, Petruccelli V, Brasili E, Pasqua G. Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. PLANTS (BASEL, SWITZERLAND) 2023; 12:694. [PMID: 36840041 PMCID: PMC9967055 DOI: 10.3390/plants12040694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone biosynthetic pathway with a focus on the precursors and the enzymes involved, as well as on the cellular and organ localization of xanthones in plants. Xanthone biosynthesis in plants involves the shikimate and the acetate pathways which originate in plastids and endoplasmic reticulum, respectively. The pathway continues following three alternative routes, two phenylalanine-dependent and one phenylalanine-independent. All three routes lead to the biosynthesis of 2,3',4,6-tetrahydroxybenzophenone, which is the central intermediate. Unlike plants, the xanthone core in fungi and lichens is wholly derived from polyketide. Although organs and tissues synthesizing and accumulating xanthones are known in plants, no information is yet available on their subcellular and cellular localization in fungi and lichens. This review highlights the studies published to date on xanthone biosynthesis and trafficking in plant organisms, from which it emerges that the mechanisms underlying their synthesis need to be further investigated in order to exploit them for application purposes.
Collapse
|
5
|
Shakour ZT, Farag MA. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J Adv Res 2022; 39:257-273. [PMID: 35660073 PMCID: PMC9263761 DOI: 10.1016/j.jare.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite, a large number of bioactive anthraquinones (AQs) isolated from host-living fungi, only plant-derived AQs were introduced in the global consumer markets. Host-living fungi represents renewable and extendible resources of diversified metabolites to be exploited for bioactives production. Unique classes of AQs from fungi include halogenated and steroidal AQs, and absent from planta are of potential to explore for biological activity against urging diseases such as cancer and multidrug-resistant pathogens. The structural diversity of fungal AQs, monomers, dimers, trimers, halogenated, etc… results in a vast range of pharmacological activities. AIM OF REVIEW The current study capitalizes on uncovering the diversity and distribution of host-living fungal systems producing AQs in different terrestrial ecosystems ranging from plant endophytes, lichens, animals and insects. Furthermore, the potential bioactivities of fungal derived AQs i.e., antibacterial, antifungal, antiviral (anti-HIV), anticancer, antioxidant, diuretic and laxative activities are assembled in relation to their structure activity relationship (SAR). Analyzing for structure-activity relationship among fungal AQs may facilitate bioengineering of more potential analogues. Withal, elucidation of AQs biosynthetic pathways in fungi is discussed from different fungal hosts to open up new possibilities for potential biotechnological applications. Such comprehensive review unravels terrestrial host-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries. KEY SCIENTIFIC CONCEPTS OF REVIEW Such comprehensive review unravels terrestrialhost-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Veríssimo ACS, Pinto DCGA, Silva AMS. Marine-Derived Xanthone from 2010 to 2021: Isolation, Bioactivities and Total Synthesis. Mar Drugs 2022; 20:md20060347. [PMID: 35736150 PMCID: PMC9225453 DOI: 10.3390/md20060347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Marine life has proved to be an invaluable source of new compounds with significant bioactivities, such as xanthones. This review summarizes the advances made in the study of marine-derived xanthones from 2010 to 2021, from isolation towards synthesis, highlighting their biological activities. Most of these compounds were isolated from marine-derived fungi, found in marine sediments, and associated with other aquatic organisms (sponge and jellyfish). Once isolated, xanthones have been assessed for different bioactivities, such as antibacterial, antifungal, and cytotoxic properties. In the latter case, promising results have been demonstrated. Considering the significant bioactivities showed by xanthones, efforts have been made to synthesize these compounds, like yicathins B and C and the secalonic acid D, through total synthesis.
Collapse
|
7
|
Remali J, Sahidin I, Aizat WM. Xanthone Biosynthetic Pathway in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:809497. [PMID: 35463410 PMCID: PMC9024401 DOI: 10.3389/fpls.2022.809497] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Xanthones are secondary metabolites rich in structural diversity and possess a broad array of pharmacological properties, such as antitumor, antidiabetic, and anti-microbes. These aromatic compounds are found in higher plants, such as Clusiaceae, Hypericaceae, and Gentianaceae, yet their biosynthetic pathways have not been comprehensively updated especially within the last decade (up to 2021). In this review, plant xanthone biosynthesis is detailed to illuminate their intricacies and differences between species. The pathway initially involves the shikimate pathway, either through L-phenylalanine-dependent or -independent pathway, that later forms an intermediate benzophenone, 2,3',4,6-tetrahydoxybenzophenone. This is followed by a regioselective intramolecular mediated oxidative coupling to form xanthone ring compounds, 1,3,5-trihydroxyxanthone (1,3,5-THX) or 1,3,7-THX, the core precursors for xanthones in most plants. Recent evidence has shed some lights onto the enzymes and reactions involved in this xanthone pathway. In particular, several biosynthetic enzymes have been characterized at both biochemical and molecular levels from various organisms including Hypericum spp., Centaurium erythraea and Garcinia mangostana. Proposed pathways for a plethora of other downstream xanthone derivatives including swertianolin and gambogic acid (derived from 1,3,5-THX) as well as gentisin, hyperixanthone A, α-mangostin, and mangiferin (derived from 1,3,7-THX) have also been thoroughly covered. This review reports one of the most complete xanthone pathways in plants. In the future, the information collected here will be a valuable resource for a more directed molecular works in xanthone-producing plants as well as in synthetic biology application.
Collapse
Affiliation(s)
- Juwairiah Remali
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Idin Sahidin
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, Indonesia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
8
|
Shaaban M. New compounds from Sarcophyton glaucom-derived Penicillium sp. Z NATURFORSCH C 2021; 77:271-277. [PMID: 34905669 DOI: 10.1515/znc-2021-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/20/2021] [Indexed: 11/15/2022]
Abstract
Further investigation of the residual bioactive compounds produced by the soft coral Sarcophyton glaucom-derived Penicillium sp. MMA afforded five new compounds assigned as 9-methoxy-penicyrone A (1), 9-methoxy-penicyrone B (2), 3-hydroxy-2,2,4-trimethyl-pentyl ester (3), 3-hydroxy-1-isopropyl-2,2-dimethyl-propyl ester (4), and 3-isobutyryloxy-2,2,4-trimethyl-pentyl linoleate (5). Additional six known compounds were isolated: penicyrones A-B (6, 7), 4-(2-hydroxy-3-butynoxy)benzoic acid (8), cyclopenol (9), aspermytin A (10), and aurantiomide A (11). Structures of the new compounds (1-5) were identified by 1D (1H & 13C) and 2 D (1H-1H COSY, HMBC and NOESY) NMR and HRESI-MS spectroscopic data. Biologically, the antimicrobial activities of the obtained compounds were studied as well.
Collapse
Affiliation(s)
- Mohamed Shaaban
- Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, El-Behoos St. 33, Dokki, Cairo 12622, Egypt
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, D-37077, Göttingen, Germany
| |
Collapse
|
9
|
Niazian M, Sabbatini P. Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants. PLANTA 2021; 254:111. [PMID: 34718882 DOI: 10.1007/s00425-021-03771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Precursor feeding, elicitation and culture medium parameters are traditional in vitro strategies to enhance bioactive compounds of medicinal, aromatic, and ornamental plants (MAOPs). Machine learning can help researchers find the best combination of these strategies to increase the secondary metabolites content of MAOPs. Many requirements for human life, from food, pharmaceuticals and cosmetics to clothes, fuel and building materials depend on plant-derived natural products. Essential oils, methanolic and ethanolic extracts of in vitro undifferentiated callus and organogenic cultures of medicinal, aromatic, and ornamental plants (MAOPs) contain bioactive compounds that have several applications for various industries, including food and pharmaceutical. In vitro culture systems provide opportunities to manipulate the metabolomic profile of MAOPs. Precursors feeding, elicitation and culture media optimization are the traditional strategies to enhance in vitro accumulation of favorable bioactive compounds. The stimulation of plant defense mechanisms through biotic and abiotic elicitors is a simple way to increase the production of secondary metabolites in different in vitro culture systems. Different elicitors have been applied to stimulate defense machinery and change the metabolomic profile of MAOPs in in vitro cultures. Plant growth regulators (PGRs), stress hormones, chitosan, microbial extracts and physical stresses are the most applied elicitors in this regard. Many other chemical tolerance-enhancer additives, such as melatonin and proline, have been applied along with stress response-inducing elicitors. The use of stress-inducing materials such as PEG and NaCl activates stress tolerance elicitors with the potential of increasing secondary metabolites content of MAOPs. The present study reviewed the state-of-the-art traditional in vitro strategies to manipulate bioactive compounds of MAOPs. The objective is to provide insights to researchers involved in in vitro production of plant-derived natural compounds. The present review provided a wide range of traditional strategies to increase the accumulation of valuable bioactive compounds of MAOPs in different in vitro systems. Traditional strategies are faster, simpler, and cost-effective than other biotechnology-based breeding methods such as genetic transformation, genome editing, metabolic pathways engineering, and synthetic biology. The integrate application of precursors and elicitors along with culture media optimization and the interpretation of their interactions through machine learning algorithms could provide an excellent opportunity for large-scale in vitro production of pharmaceutical bioactive compounds.
Collapse
Affiliation(s)
- Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Jam-e Jam Cross Way, P. O. Box 741, Sanandaj, Iran.
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, Plant and Soil Sciences Building, East Lansing, MI, 48824, USA
| |
Collapse
|
10
|
Khattab AR, Farag MA. Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. Crit Rev Biotechnol 2021; 42:403-430. [PMID: 34266351 DOI: 10.1080/07388551.2021.1940087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endophytic fungi are a kind of fungi that colonizes living plant tissues presenting a myriad of microbial adaptations that have been developed in such a hidden environment. Owing to its large diversity and particular habituation, they present a golden mine for research in the field of drug discovery. Endophytic fungal communities possess unique biocatalytic machinery that furnishes a myriad of complex natural product scaffolds. Xanthone compounds are examples of endophytic secondary metabolic products with pronounced biological activity to include: antioxidant, antimicrobial, anti-inflammatory, antithrombotic, antiulcer, choleretic, diuretic, and monoamine oxidase inhibiting activity.The current review compiles the recent progress made on the microbiological production of xanthones using fungal endophytes obtained from both marine and terrestrial origins, with comparisons being made among both natural resources. The biosynthesis of xanthones in endophytic fungi is outlined along with its decoding enzymes. Biotransformation reactions reported to be carried out using different endophytic microbial models are also outlined for xanthones structural modification purposes and the production of novel molecules.A promising application of novel computational tools is presented as a future direction for the goal of optimizing microbial xanthones production to include establishing metabolic pathway databases and the in silico analysis of microbial interactions. Metagenomics methods and related bioinformatics platforms are highlighted as unexplored tools for the biodiversity analysis of endophytic microbial communities that are difficult to be cultured.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
11
|
Singh P, Preu L, Beuerle T, Kaufholdt D, Hänsch R, Beerhues L, Gaid M. A promiscuous coenzyme A ligase provides benzoyl-coenzyme A for xanthone biosynthesis in Hypericum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1472-1490. [PMID: 33031578 DOI: 10.1111/tpj.15012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-β-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.
Collapse
Affiliation(s)
- Poonam Singh
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - Lutz Preu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - David Kaufholdt
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, Braunschweig, 38106, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, Braunschweig, 38106, Germany
- Center of Molecular Ecophysiology (CMEP) - College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Chongqing, 400715, P.R. China
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
- Centre of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
- Centre of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| |
Collapse
|