1
|
Chen X, Li C, Qiu X, Chen M, Xu Y, Li S, Li Q, Wang L. CRISPR/Cas9-based iterative multi-copy integration for improved metabolite yields in Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:629-637. [PMID: 40151793 PMCID: PMC11946509 DOI: 10.1016/j.synbio.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
High-copy integration of key genes offers a promising strategy for efficient biosynthesis of valuable natural products in Saccharomyces cerevisiae. However, traditional multi-copy gene integration methods meet challenges including low efficiency and labor-intensive screening processes. In this study, we developed the IMIGE (Iterative Multi-copy Integration by Gene Editing) system, a CRISPR/Cas9-based approach that exploits both δ and rDNA repetitive sequences for simultaneous multi-copy integrations in S. cerevisiae. This system combines the mixture of Cas9-sgRNA expression vectors with a split-marker strategy for efficient donor DNA assembly in vivo and enables rapid, iterative screening through growth-related phenotypes. When applied to the biosynthesis of ergothioneine and cordycepin, the IMIGE system achieved significant yield improvements, with titers of 105.31 ± 1.53 mg/L and 62.01 ± 2.4 mg/L, respectively, within just two screening cycles (5.5-6 days in total). These yields represent increases of 407.39 % and 222.13 %, respectively, compared to the strains with episomal expression. By streamlining the integration process, utilizing growth-based selection, and minimizing screening demands in both equipment and labor, the IMIGE system could provide an efficient and scalable platform for high-throughput strain engineering, facilitating enhanced microbial production of a wide range of bioproducts.
Collapse
Affiliation(s)
- Ximei Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Chenyang Li
- School of Life and Health, Dalian University, Dalian, 116622, China
| | - Xin Qiu
- School of Life and Health, Dalian University, Dalian, 116622, China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yongping Xu
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Shuying Li
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
| | - Qian Li
- School of Life and Health, Dalian University, Dalian, 116622, China
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
| |
Collapse
|
2
|
Kang X, Wang Y, Liang Q, Luo W. Enhancing Ergothioneine Production by Combined Protein and Metabolic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9234-9245. [PMID: 40181711 DOI: 10.1021/acs.jafc.5c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Ergothioneine (ERG), a sulfur-containing histidine derivative recognized for its high stability, is of significant value across multiple sectors, including food, cosmetics, and medicine. In comparison to chemical synthesis, the establishment of microbial cell factories for ERG production represents a more efficient, environmentally friendly, and sustainable strategy. In this study, we achieved de novo synthesis of ERG in Escherichia coli by introducing genes from Trichoderma reesei. Protein engineering was subsequently employed to enable the soluble expression of the key genes Tr1 and Tr2, which resulted in a 198.1% increase in ERG production. Furthermore, strain modifications, including the knockout of competing pathways and optimization of key gene copies, were used to enhance ERG production. Following strategic combinations and medium optimization, strain E25 produced 430.9 mg/L ERG in an Erlenmeyer flask and 2331.58 mg/L via fed-batch fermentation in a 5 L bioreactor. This study not only establishes a solid foundation for the efficient and sustainable scale-up production of ERG and its derivatives but also provides valuable insights and references for its industrial production.
Collapse
Affiliation(s)
- Xiyue Kang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, 1 Shields Ave, Davis, California 95616, United States
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
3
|
Liu Z, Xiao F, Zhang Y, Lu J, Li Y, Shi G. Heterologous and High Production of Ergothioneine in Bacillus licheniformis by Using Genes from Anaerobic Bacteria. Metabolites 2025; 15:45. [PMID: 39852388 PMCID: PMC11767532 DOI: 10.3390/metabo15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
PURPOSE This study aimed to utilize genetically engineered Bacillus licheniformis for the production of ergothioneine (EGT). Given the value of EGT and the application of Bacillus licheniformis in enzyme preparation production, we cloned the key enzymes (EanA and EanB) from Chlorbium limicola. Through gene alignment, new ergothioneine synthase genes (EanAN and EanBN) were identified and then expressed in Bacillus licheniformis to construct strains. Additionally, we investigated the factors influencing the yield of EGT and made a comparison with Escherichia coli. METHODS The relevant genes were cloned and transferred into Bacillus licheniformis. Fermentation experiments were conducted under different conditions for yield analysis, and the stability of this bacterium was also evaluated simultaneously. RESULTS The constructed strains were capable of producing EGT. Specifically, the yield of the EanANBN strain reached (643.8 ± 135) mg/L, and its stability was suitable for continuous production. CONCLUSIONS Genetically engineered Bacillus licheniformis demonstrates potential in the industrial-scale production of EGT. Compared with Escherichia coli, it has advantages, thus opening up new possibilities for the application and market supply of EGT.
Collapse
Affiliation(s)
- Zhe Liu
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Fengxu Xiao
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Yupeng Zhang
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jiawei Lu
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Liang L, Shan-Shan X, Yan-Jun J. Ergothioneine biosynthesis: The present state and future prospect. Synth Syst Biotechnol 2024; 10:314-325. [PMID: 39717282 PMCID: PMC11664081 DOI: 10.1016/j.synbio.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 12/25/2024] Open
Abstract
Ergothioneine (ERG), a rare natural thio-histidine derivative with potent antioxidant properties and diverse biological functions, is widely utilized in food processing, cosmetics, pharmaceuticals, and nutritional supplements. Current bioproduction methods for ERG primarily depend on fermenting edible mushrooms. However, with the advancement in synthetic biology, an increasing number of genetically engineered microbial hosts have been developed for ERG production, including Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum. Given the involvement of multiple precursor substances in ERG synthesis, it is crucial to employ diverse strategies to regulate the metabolic flux of ERG synthesis. This review comprehensively evaluates the physiological effects and safety considerations associated with ERG, along with the recent advancements in catalytic metabolic pathway for ERG production using synthetic biology tools. Finally, the review discusses the challenges in achieving efficient ERG production and the strategies to address these challenges using synthetic biology tools. This review provides a literature analysis and strategies guidance for the further application of novel synthetic biology tools and strategies to improve ERG yield.
Collapse
Affiliation(s)
- Li Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Xu Shan-Shan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Jiang Yan-Jun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
5
|
Liu K, Xiang G, Li L, Liu T, Ke J, Xiong L, Wei D, Wang F. Engineering non-conventional yeast Rhodotorula toruloides for ergothioneine production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:65. [PMID: 38741169 DOI: 10.1186/s13068-024-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a distinctive sulfur-containing histidine derivative, which has been recognized as a high-value antioxidant and cytoprotectant, and has a wide range of applications in food, medical, and cosmetic fields. Currently, microbial fermentation is a promising method to produce EGT as its advantages of green environmental protection, mild fermentation condition, and low production cost. However, due to the low-efficiency biosynthetic process in numerous cell factories, it is still a challenge to realize the industrial biopreparation of EGT. The non-conventional yeast Rhodotorula toruloides is considered as a potential candidate for EGT production, thanks to its safety for animals and natural ability to synthesize EGT. Nevertheless, its synthesis efficiency of EGT deserves further improvement. RESULTS In this study, out of five target wild-type R. toruloides strains, R. toruloides 2.1389 (RT1389) was found to accumulate the highest EGT production, which could reach 79.0 mg/L at the shake flask level on the 7th day. To achieve iterative genome editing in strain RT1389, CRISPR-assisted Cre recombination (CACR) method was established. Based on it, an EGT-overproducing strain RT1389-2 was constructed by integrating an additional copy of EGT biosynthetic core genes RtEGT1 and RtEGT2 into the genome, the EGT titer of which was 1.5-fold increase over RT1389. As the supply of S-adenosylmethionine was identified as a key factor determining EGT production in strain RT1389, subsequently, a series of gene modifications including S-adenosylmethionine rebalancing were integrated into the strain RT1389-2, and the resulting mutants were rapidly screened according to their EGT production titers with a high-throughput screening method based on ergothionase. As a result, an engineered strain named as RT1389-3 was selected with a production titer of 267.4 mg/L EGT after 168 h in a 50 mL modified fermentation medium. CONCLUSIONS This study characterized the EGT production capacity of these engineered strains, and demonstrated that CACR and high-throughput screening method allowed rapid engineering of R. toruloides mutants with improved EGT production. Furthermore, this study provided an engineered RT1389-3 strain with remarkable EGT production performance, which had potential industrial application prospects.
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Gedan Xiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lekai Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liangbin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Xiong K, Guo H, Xue S, Liu M, Dai Y, Lin X, Zhang S. Production optimization of food functional factor ergothioneine in wild-type red yeast Rhodotorula mucilaginosa DL-X01. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4050-4057. [PMID: 38353320 DOI: 10.1002/jsfa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kexin Xiong
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mengyang Liu
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
7
|
Ding YX, Chen JW, Ke J, Hu FY, Wen JC, Dong YG, Wang FQ, Xiong LB. Co-augmentation of a transport gene mfsT1 in Mycolicibacterium neoaurum with genome engineering to enhance ergothioneine production. J Basic Microbiol 2024; 64:e2300705. [PMID: 38253966 DOI: 10.1002/jobm.202300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.
Collapse
Affiliation(s)
- Ya-Xue Ding
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jun-Wei Chen
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Fei-Yang Hu
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jia-Chen Wen
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu-Guo Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liang-Bin Xiong
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Apparoo Y, Wei Phan C, Rani Kuppusamy U, Chan EWC. Potential role of ergothioneine rich mushroom as anti-aging candidate through elimination of neuronal senescent cells. Brain Res 2024; 1824:148693. [PMID: 38036238 DOI: 10.1016/j.brainres.2023.148693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through β-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Xiong K, Guo H, Xue S, Dai Y, Dong L, Ji C, Zhang S. Cost-effective production of ergothioneine using Rhodotorula mucilaginosa DL-X01 from molasses and fish bone meal enzymatic hydrolysate. BIORESOURCE TECHNOLOGY 2024; 393:130101. [PMID: 38013036 DOI: 10.1016/j.biortech.2023.130101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Ergothioneine (EGT) is a high-value natural antioxidant that cannot be synthesized by the human body. This study showed that Rhodotorula mucilaginosa DL-X01 can use untreated molasses and fish bone meal enzymatic hydrolysate as the substrates to synthesize EGT. By optimizing the growth conditions, the EGT yield reached 29.39 mg/L when molasses and fish bone meal (FBM) were added at 60 g/L and 400 g/L respectively. Finally, the EGT yield was increased to 216.25 mg/L by fed-batch fermentation in a 5 L bioreactor. Compared with the fermentation by yeast extract peptone dextrose medium, the feedstock cost of EGT production was reduced by 330.91 % by using molasses and FBM as substrates. These results showed that R. mucilaginosa DL-X01 can produce high-value EGT using two cheap processing by-products, molasses and FBM, which is of great significance for environmental protection and sustainable development.
Collapse
Affiliation(s)
- Kexin Xiong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Siyu Xue
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiwei Dai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Liang Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Wei L, Liu L, Gong W. Structure of mycobacterial ergothioneine-biosynthesis C-S lyase EgtE. J Biol Chem 2024; 300:105539. [PMID: 38072054 PMCID: PMC10805701 DOI: 10.1016/j.jbc.2023.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024] Open
Abstract
L-ergothioneine is widely distributed among various microbes to regulate their physiology and pathogenicity within complex environments. One of the key steps in the ergothioneine-biosynthesis pathway, the C-S bond cleavage reaction, uses the pyridoxal 5'-phosphate dependent C-S lyase to produce the final product L-ergothioneine. Here, we present the crystallographic structure of the ergothioneine-biosynthesis C-S lyase EgtE from Mycobacterium smegmatis (MsEgtE) represents the first published structure of ergothioneine-biosynthesis C-S lyases in bacteria and shows the effects of active site residues on the enzymatic reaction. The MsEgtE and the previously reported ergothioneine-biosynthesis C-S lyase Egt2 from Neurospora crassa (NcEgt2) fold similarly. However, discrepancies arise in terms of substrate recognition, as observed through sequence and structure comparison of MsEgtE and NcEgt2. The structural-based sequence alignment of the ergothioneine-biosynthesis C-S lyase from fungi and bacteria shows clear distinctions among the recognized substrate residues, but Arg348 is critical and an extremely conserved residue for substrate recognition. The α14 helix is exclusively found in the bacteria EgtE, which represent the most significant difference between bacteria EgtE and fungi Egt2, possibly resulting from the convergent evolution of bacteria and fungi.
Collapse
Affiliation(s)
- Lili Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Zhang L, Tang J, Feng M, Chen S. Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:671-679. [PMID: 36571834 DOI: 10.1021/acs.jafc.2c07859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ergothioneine (ERG) is an unusual sulfur-containing amino acid with antioxidant activity that can be synthesized by certain bacteria and fungi. Microbial fermentation is a promising method for ERG production. In this study, the bifunctional enzyme methyltransferase-sulfoxide synthase NcEgt1 from Neurospora crassa was truncated to obtain sulfoxide synthase TNcEgt1, which showed a higher expression level in Escherichia coli BL21(DE3). Then, the genes egtD encoding methyltransferase EgtD and egtE encoding C-S lyase EgtE from Mycobacterium smegmatis were cloned with TncEgt1 into E. coli BL21(DE3) to produce 70 mg/L ERG. To improve ERG production, TNcEgt1 and EgtD were modified, and the resulting mutants were screened with an established high-throughput method which could directly analyze the ERG content in culture broths. After several rounds of mutation and screening, the optimal mutant MD4 was obtained and produced 290 mg/L ERG. Furthermore, a fed-batch culture was conducted in a 5 L bioreactor. After optimizing the fermentation process, the ERG yield reached 5.4 g/L after 94 h of cultivation supplemented with amino acids and glycerol, which is the highest ERG yield reported to date. The results showed that ERG production was significantly improved by modifying the key enzymes, and the engineered strains constructed in this study have potential industrial application prospects.
Collapse
Affiliation(s)
- Luwen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Jiawei Tang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Shaoxin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
12
|
Lee S, Mun S, Lee YR, Lee J, Kang HG. Validation of the Metabolite Ergothioneine as a Forensic Marker in Bloodstains. Molecules 2022; 27:molecules27248885. [PMID: 36558018 PMCID: PMC9786767 DOI: 10.3390/molecules27248885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Ergothioneine, which is a naturally occurring metabolite, generally accumulates in tissues and cells subjected to oxidative stress, owing to its structural stability at physiological pH; therefore, it has been attracting attention in various biomedical fields. Ergothioneine has also been suggested as a potential forensic marker, but its applicability has not yet been quantitatively validated. In this study, quantitative analysis of ergothioneine in bloodstains was conducted to estimate the age of bloodstains and that of bloodstain donors. Blood from youth and elderly participants was used to generate bloodstains. After extracting metabolites from the bloodstains under prevalent age conditions, ergothioneine levels were quantified by mass spectrometry via multiple reaction monitoring. The concentration of ergothioneine in day 0 bloodstains (fresh blood), was significantly higher in the elderly group than in the youth group, but it did not differ by sex. Statistically significant differences were observed between the samples from the two age groups on days 0, 5 and 7, and on days 2 and 3 compared with day 0. The findings suggest that ergothioneine can be used to estimate the age of bloodstains and of the donor; it could be useful as a potential marker in reconstructing crime scenes.
Collapse
Affiliation(s)
- Seungyeon Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Sora Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Republic of Korea
| | - You-Rim Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-31-951-3862 (J.L.); +82-31-740-7315 (H.-G.K.)
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Republic of Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-31-951-3862 (J.L.); +82-31-740-7315 (H.-G.K.)
| |
Collapse
|
13
|
Beliaeva M, Seebeck FP. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. JACS AU 2022; 2:2098-2107. [PMID: 36186560 PMCID: PMC9516567 DOI: 10.1021/jacsau.2c00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 05/29/2023]
Abstract
Ergothioneine is a histidine derivative with a 2-mercaptoimidazole side chain and a trimethylated α-amino group. Although the physiological function of this natural product is not yet understood, the facts that many bacteria, some archaea, and most fungi produce ergothioneine and that plants and animals have specific mechanisms to absorb and distribute ergothioneine in specific tissues suggest a fundamental role in cellular life. The observation that ergothioneine biosynthesis has emerged multiple times in molecular evolution points to the same conclusion. Aerobic bacteria and fungi attach sulfur to the imidazole ring of trimethylhistidine via an O2-dependent reaction that is catalyzed by a mononuclear non-heme iron enzyme. Green sulfur bacteria and archaea use a rhodanese-like sulfur transferase to attach sulfur via oxidative polar substitution. In this report, we describe a third unrelated class of enzymes that catalyze sulfur transfer in ergothioneine production. The metallopterin-dependent ergothioneine synthase from Caldithrix abyssi contains an N-terminal module that is related to the tungsten-dependent acetylene hydratase and a C-terminal domain that is a functional cysteine desulfurase. The two modules cooperate to transfer sulfur from cysteine onto trimethylhistidine. Inactivation of the C-terminal desulfurase blocks ergothioneine production but maintains the ability of the metallopterin to exchange sulfur between ergothioneine and trimethylhistidine. Homologous bifunctional enzymes are encoded exclusively in anaerobic bacterial and archaeal species.
Collapse
Affiliation(s)
- Mariia
A. Beliaeva
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Florian P. Seebeck
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
14
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
15
|
Ergothioneine Production by Submerged Fermentation of a Medicinal Mushroom Panus conchatus. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ergothioneine is a natural and safe antioxidant that plays an important role in anti-aging and the prevention of various diseases. This study aimed to report on a kind of medicinal mushroom of Panus conchatus with great potential for the bioproduction of ergothioneine. The effect of different nutritional and environmental conditions on the growth of Panus conchatus and ergothioneine production were investigated. Molasses and soy peptone were found to promote cell growth of Panus conchatus and enhance ergothioneine accumulation. Adding precursors of histidine, methionine and cysteine could increase ergothioneine production and the highest ergothioneine concentration of 148.79 mg/L was obtained. Finally, the extraction and purification processes were also established to obtain the crude ergothioneine extract for further antioxidant property evaluation. The ergothioneine from Panus conchatus showed high antioxidant activity with good stability in a lower pH environment. This study provided a new strain and process for the bioproduction of ergothioneine.
Collapse
|
16
|
Gao Y, Zhou B, Zhang H, Chen L, Wang X, Chen H, Zhou L. l-Ergothioneine Exhibits Protective Effects against Dextran Sulfate Sodium-Induced Colitis in Mice. ACS OMEGA 2022; 7:21554-21565. [PMID: 35785312 PMCID: PMC9245115 DOI: 10.1021/acsomega.2c01350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Background: Ulcerative colitis (UC) is a chronic disease of the intestinal tract in which excessive activation of inflammatory response is correlated. l-Ergothioneine (EGT) widely existing in mushrooms has various physiological activities. In this study, the protective effects of EGT on dextran sulfate sodium (DSS)-induced colitis mice were investigated. Results: It was observed that EGT administration, especially at the high dose level, prevented the body weight loss, the colon shortening, and the increase in disease activity index and spleen index caused by DSS. Moreover, EGT supplementation attenuated DSS-induced gut barrier damage by enhancing the expression of tight-junction protein and recovering the loss of gut mucus layer. Furthermore, EGT considerably decreased the colonic myeloperoxidase (MPO) activity induced by DSS, but no significant differences were observed in the concentrations of IL-6 and TNF-α in colon tissues. Additionally, EGT downregulated the populations of CD4+ T cells and macrophages, indicating that EGT stabilized the immune response caused by DSS. Conclusion: Together these results suggest that EGT can alleviate DSS-induced colitis and provide important insights concerning the potential anticolitis activity of such food products.
Collapse
Affiliation(s)
- Yanju Gao
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Bo Zhou
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Han Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Chen
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xiaohong Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Hongbing Chen
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German
Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lin Zhou
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
17
|
Fu TT, Shen L. Ergothioneine as a Natural Antioxidant Against Oxidative Stress-Related Diseases. Front Pharmacol 2022; 13:850813. [PMID: 35370675 PMCID: PMC8971627 DOI: 10.3389/fphar.2022.850813] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
L-Ergothioneine (EGT) is a natural antioxidant derived from microorganisms, especially in edible mushrooms. EGT is found to be highly accumulated in tissues that are susceptible to oxidative damage, and it has attracted extensive attention due to its powerful antioxidant activity and the tight relationships of this natural product with various oxidative stress-related diseases. Herein, we 1) introduce the biological source and in vivo distribution of EGT; 2) review the currently available evidence concerning the relationships of EGT with diabetes, ischemia-reperfusion injury-related diseases like cardiovascular diseases and liver diseases, neurodegenerative diseases, and other diseases pathogenically associated with oxidative stress; 3) summarize the potential action mechanisms of EGT against these diseases; 4) discuss the advantages of EGT over other antioxidants; and 5) also propose several future research perspectives for EGT. These may help to promote the future application of this attractive natural antioxidant.
Collapse
Affiliation(s)
- Tong-Tong Fu
- Institute of Biomedical Research, Shandong University of Technology, Zibo, China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Liang Shen,
| |
Collapse
|