1
|
Mohamed-Ezzat RA, Omar MA, Temirak A, Abdelsamie AS, Abdel-Aziz MM, Galal SA, Elgemeie GH, Diwani HIE, Flanagan KJ, Senge MO. Synthesis, biological evaluation, and docking studies of pyrazole-linked benzothiazole hybrids as promising anti-TB agents. J Mol Struct 2024; 1311:138415. [DOI: 10.1016/j.molstruc.2024.138415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Venugopala KN, Chandrashekharappa S, Deb PK, Al-Shar'i NA, Pillay M, Tiwari P, Chopra D, Borah P, Tamhaev R, Mourey L, Lherbet C, Aldhubiab BE, Tratrat C, Attimarad M, Nair AB, Sreeharsha N, Mailavaram RP, Venugopala R, Mohanlall V, Morsy MA. Identification of potent indolizine derivatives against Mycobacterial tuberculosis: In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies. Int J Biol Macromol 2024; 274:133285. [PMID: 38925196 DOI: 10.1016/j.ijbiomac.2024.133285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 μg/mL and 16-64 μg/mL against the M. tuberculosis (ATCC 25177) and MDR-TB strains, respectively. Compound 5h with phenyl and 4-fluorobenzoyl groups attached to the 2- and 3-position of the indolizine core was found to be the most active against both strains with MIC values of 5 μg/mL and 16 μg/mL, respectively. On the other hand, the two sets of compounds showed weak to moderate inhibition of InhA enzyme activity that ranged from 5 to 17 % and 10-52 %, respectively, with compound 5f containing 4-fluoro benzoyl group attached to the 3-position of the indolizine core being the most active (52 % inhibition of InhA). Unfortunately, there was no clear correlation between the InhA inhibitory activity and MIC values of the tested compounds, indicating the probability that they might have different modes of action other than InhA inhibition. Therefore, a computational investigation was conducted by employing molecular docking to identify their putative drug target(s) and, consequently, understand their mechanism of action. A panel of 20 essential mycobacterial enzymes was investigated, of which β-ketoacyl acyl carrier protein synthase I (KasA) and pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzymes were revealed as putative targets for compounds 3a-3e and 5a-5j, respectively. Moreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa.
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, Lucknow, UP 226002, India.
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi 835215, Jharkhand, India.
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, Lucknow, UP 226002, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Pobitra Borah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur, 208016, Uttar Pradesh, India
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Samtanagar, Dhule 424 001, Maharashtra, India
| | - Rashmi Venugopala
- Department of Public Health Medicine, Howard College Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
3
|
Saha P, Sau S, Kalia NP, Sharma DK. Antitubercular activity of 2-mercaptobenzothiazole derivatives targeting Mycobacterium tuberculosis type II NADH dehydrogenase. RSC Med Chem 2024; 15:1664-1674. [PMID: 38784457 PMCID: PMC11110738 DOI: 10.1039/d4md00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) type II NADH dehydrogenase (NDH-2) transports electrons into the mycobacterial respiratory pathway at the cost of reduction of NADH to NAD+ and is an attractive drug target. Herein, we have synthesised a series of 2-mercaptobenzothiazoles (C1-C14) and evaluated their anti-tubercular potential as Mtb NDH-2 inhibitors. The synthesised compounds C1-C14 were evaluated for MIC90 and ATP depletion against Mtb H37Ra, M. bovis, and Mtb H37Rv mc2 6230. Compounds C3, C4, and C11 were found to be the active molecules in the series and were further evaluated for their MIC90 against Mtb-resistant strains and for their bactericidal potential against Mtb H37Rv mc26230. The Peredox-mCherry-expressing Mtb strain was used to examine whether C3, C4, and C11 possess NDH-2 inhibitory potential. Furthermore, cytotoxicity analysis against HepG2 displayed a safety index (SI) of >10 for C3 and C4. To get an insight into the mode of interaction at NDH-2, we have performed computational analysis of our active compounds.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| | - Shashikanta Sau
- Department of Pharmacology and Toxicology, NIPER-Hyderabad Hyderabad 500037 India
| | - Nitin Pal Kalia
- Department of Pharmacology and Toxicology, NIPER-Hyderabad Hyderabad 500037 India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| |
Collapse
|
4
|
Mishra AK, Thajudeen KY, Singh M, Rasool G, Kumar A, Singh H, Sharma K, Mishra A. In-silico based Designing of benzo [d]thiazol-2-amine Derivatives as Analgesic and Anti-inflammatory Agents. Antiinflamm Antiallergy Agents Med Chem 2024; 23:230-260. [PMID: 39162282 DOI: 10.2174/0118715230296273240725065839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Benzo[d]thiazoles represent a significant class of heterocyclic compounds renowned for their diverse pharmacological activities, including analgesic and antiinflammatory properties. This molecular scaffold holds substantial interest among medicinal chemists owing to its structural versatility and therapeutic potential. Incorporating the benzo[d]thiazole moiety into drug molecules has been extensively investigated as a strategy to craft novel therapeutics with heightened efficacy and minimized adverse effects. AIMS The aim of the present research work was to design, synthesize and characterize the new benzo[d]thiazol-2-amine derivatives as potent analgesic and anti-inflammatory agents. MATERIALS AND METHODS The synthesis of the presented benzo[d]thiazol-2-amine derivatives was performed by condensing-(4-chlorobenzylidene) benzo[d]thiazol-2-amine with a number of substituted phenols in the presence of potassium iodide and anhydrous potassium carbonate in dry acetone. IR spectroscopy, 1HNMR spectroscopy, 13CNMR spectroscopy and Mass spectroscopy methods were used to characterize the structural properties of all 13 newly synthesized derivatives. The molecular properties of these newly synthesized derivatives were estimated to study the attributes of drug-like candidates. Benzo[d]thiazol-2-amine derivatives were molecularly docked with selective enzymes COX-1 and COX-2. Analgesic and anti-inflammatory activities of synthesized compounds were evaluated by using albino rats. RESULTS Findings of the research suggested that compounds G3, G4, G6, G8 and G11 possess higher binding affinity than diclofenac sodium, when docking was performed with enzyme COX-1. Compounds G1, G3, G6, G8 and G10 showed lower binding affinity than Indomethacin when docking was performed with enzyme COX-2. In vitro evaluation of the COX-1 and COX-2 enzyme inhibitory activities was performed for synthesized compounds. DISCUSSION Compounds G10 and G11 exhibited significant COX-1 and COX-2 enzyme inhibitory action with an IC50 value of 5.0 and 10 μM, respectively. Using the hot plate method and the carrageenan-induced rat paw edema model, the synthesized compounds were screened for their biological activities, including analgesic and anti-inflammatory activities. Highest analgesic action was exhibited by derivative G11 and the compound G10 showed the highest anti-inflammatory response. Inhibition of COX may be considered as a mechanism of action of these compounds. CONCLUSION It was concluded that synthesized derivatives G10 and G11 exhibited significant analgesic and anti-inflammatory effect; therefore, the said compounds may be subjected to further clinical investigation for establishing these as future compounds for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Arun K Mishra
- Central Facility of Instrumentation, SOS School of Pharmacy, IFTM University, 244001, Moradabad, India
| | - Kamal Y Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mhaveer Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, 244102, India
| | - Gulam Rasool
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Harpreet Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Kalicharan Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| |
Collapse
|
5
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
6
|
Mundhe P, Kidwai S, Saini SM, Singh HR, Singh R, Chandrashekharappa S. Design, Synthesis, Characterization, and Anti-tubercular activity of Novel Ethyl-3-benzoyl-6, 8-difluoroindolizine-1-carboxylate Analogues: Molecular Target Identification and Molecular Docking Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
7
|
Varshney R, Kumar V, Fatima GN, Saraf SK. Small Heterocyclic Molecules as Anticancer Agents: Design, Synthesis, and Evaluation Against MCF-7 Cell Lines. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Haroun M. Review on the Developments of Benzothiazole-containing Antimicrobial Agents. Curr Top Med Chem 2022; 22:2630-2659. [PMID: 36503470 DOI: 10.2174/1568026623666221207161752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The infectious diseases caused by bacterial resistance to antibiotics constitute an increasing threat to human health on a global scale. An increasing number of infections, including tuberculosis, pneumonia, salmonellosis and gonorrhea, are becoming progressively challenging to cure owing to the ineffectiveness of current clinically used antibiotics and presents a serious health threat worldwide in medical community. The major concern of this global health threat is the ability of microorganisms to develop one or several mechanisms of resistance to antibiotics, making them inefficient to therapeutic treatment. The quest for discovering novel scaffold with antimicrobial property is particularly in great need to face future challenges in hospital and healthcare settings. Hence, the development of benzothiazoles is of considerable interest to medicinal chemists. Benzothiazole, being part of an important class of heterocyclic scaffold retains a wide spectrum of various attractive pharmacological activities. Antibiotic resistance represents an increasing burden comprising medical cost, hospital stay and mortality. Several derivatives containing a benzothiazole scaffold, reported in the literature, were found to display remarkable potencies towards diverse Grampositive and Gram-negative bacterial pathogens. The principal focus concerns the antibacterial potential of benzothiazole-based derivatives as antimicrobial agents interacting with targets in bacterial pathogens. In this review, we also disclose the significance of the benzothiazole moiety in the discovery of new antibacterial compounds, the potential of benzothiazole-based derivatives in the case of resistant bacterial strains, optimization of their antibacterial activity, and their future perspectives. The structure-activity relationship study and the mode of action of the title derivatives are highlighted too.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
9
|
A Novel Class of Potent Anti-Tyrosinase Compounds with Antioxidant Activity, 2-(Substituted phenyl)-5-(trifluoromethyl)benzo[ d]thiazoles: In Vitro and In Silico Insights. Antioxidants (Basel) 2022; 11:antiox11071375. [PMID: 35883866 PMCID: PMC9311798 DOI: 10.3390/antiox11071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Sixteen compounds bearing a benzothiazole moiety were synthesized as potential tyrosinase inhibitors and evaluated for mushroom tyrosinase inhibitory activity. The compound 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)benzene-1,3-diol (compound 1b) exhibited the highest tyrosinase activity inhibition, with an IC50 value of 0.2 ± 0.01 μM (a potency 55-fold greater than kojic acid). In silico results using mushroom tyrosinase and human tyrosinase showed that the 2,4-hydroxyl substituents on the phenyl ring of 1b played an important role in the inhibition of both tyrosinases. Kinetic studies on mushroom tyrosinase indicated that 1b is a competitive inhibitor of monophenolase and diphenolase, and this was supported by docking results. In B16F10 murine melanoma cells, 1a and 1b dose-dependently and significantly inhibited melanin production intracellularly, and melanin release into medium more strongly than kojic acid, and these effects were attributed to the inhibition of cellular tyrosinase. Furthermore, the inhibition of melanin production by 1b was found to be partially due to the inhibition of tyrosinase glycosylation and the suppression of melanogenesis-associated genes. Compound 1c, which has a catechol group, exhibited potent antioxidant activities against ROS, DPPH, and ABTS, and 1b also had strong ROS and ABTS radical scavenging activities. These results suggest that 5-(trifluoromethyl)benzothiazole derivatives are promising anti-tyrosinase lead compounds with potent antioxidant effects.
Collapse
|
10
|
Si A, Landgraf AD, Geden S, Sucheck SJ, Rohde KH. Synthesis and Evaluation of Marine Natural Product-Inspired Meroterpenoids with Selective Activity toward Dormant Mycobacterium tuberculosis. ACS OMEGA 2022; 7:23487-23496. [PMID: 35847331 PMCID: PMC9281309 DOI: 10.1021/acsomega.2c01887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tuberculosis is a disease caused primarily by the organism Mycobacterium tuberculosis (Mtb), which claims about 1.5 million lives every year. A challenge that impedes the elimination of this pathogen is the ability of Mtb to remain dormant after primary infection, thus creating a reservoir for the disease in the population that reactivates under more ideal conditions. A better understanding of the physiology of dormant Mtb and therapeutics able to kill these phenotypically tolerant bacilli will be critical for completely eradicating Mtb. Our groups are focusing on characterizing the activity of derivatives of the marine natural product (+)-puupehenone (1). Recently, the Rohde group reported that puupehedione (2) and 15-α-methoxypuupehenol (3) exhibit enhanced activity in an in vitro multi-stress dormancy model of Mtb. To optimize the antimycobacterial activity of these terpenoids, novel 15-α-methoxy- and 15-α-acetoxy-puupehenol esters were prepared from (+)-puupehenone (1) accessed through a (+)-sclareolide-derived β-hydroxyl aldehyde. For added diversity, various congeners related to (1) were also prepared from a common borono-sclareolide donor, which resulted in the synthesis of epi-puupehenol and the natural products (+)-chromazonarol and (+)-yahazunol. In total, we generated a library of 24 compounds, of which 14 were found to be active against Mtb, and the most active compounds retained the enhanced activity against dormant Mtb seen in the parent compound. Several of the 15-α-methoxy- and 15-α-acetoxy-puupehenol esters possessed potent activity against actively dividing and dormant Mtb. Intriguingly, the closely related triisobutyl derivative 16 showed similar activity to 1 in actively dividing Mtb but lost about 178-fold activity against dormant Mtb. However, the monopivaloyl compound 13 showed a modest 3- to 4-fold loss in activity in both actively dividing and dormant Mtb relative to the activity of 1 revealing the importance of the free OH at C19 supporting the potential role of quinone methide formation as critical for activity in dormant Mtb. Elucidating important structure-activity relationships and the mechanism of action of this natural product-inspired chemical series may yield insights into vulnerable drug targets in dormant bacilli and new therapeutics to more effectively target dormant Mtb.
Collapse
Affiliation(s)
- Anshupriya Si
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Alexander D. Landgraf
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Sandra Geden
- Division
of Immunity and Pathogenesis, Burnett School of Biomedical Sciences,
College of Medicine, University of Central
Florida, Orlando, Florida 32827, United
States
| | - Steven J. Sucheck
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Kyle H. Rohde
- Division
of Immunity and Pathogenesis, Burnett School of Biomedical Sciences,
College of Medicine, University of Central
Florida, Orlando, Florida 32827, United
States
| |
Collapse
|
11
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
12
|
Fadda AA, Ghanem RA, Gaffer HE, Waly MM, Tawfik EH. Synthesis, Antimicrobial Evaluation, and Molecular Docking of New Azole, Azine, Thiazole, and Chromene Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2069135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ahmed A. Fadda
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Reham A. Ghanem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University, Gamsaa, Egypt
| | | | - Mohamed M. Waly
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Eman H. Tawfik
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Saudi Arabia
| |
Collapse
|
13
|
New Quinoline-Urea-Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals (Basel) 2022; 15:ph15050576. [PMID: 35631402 PMCID: PMC9146500 DOI: 10.3390/ph15050576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023] Open
Abstract
A series of 25 new benzothiazole−urea−quinoline hybrid compounds were synthesized successfully via a three-step synthetic sequence involving an amidation coupling reaction as a critical step. The structures of the synthesized compounds were confirmed by routine spectroscopic tools (1H and 13C NMR and IR) and by mass spectrometry (HRMS). In vitro evaluation of these hybrid compounds for their antitubercular inhibitory activity against the Mycobacterium tuberculosis H37Rv pMSp12::GPF bioreporter strain was undertaken. Of the 25 tested compounds, 17 exhibited promising anti-TB activities of less than 62.5 µM (MIC90). Specifically, 13 compounds (6b, 6g, 6i−j, 6l, 6o−p, 6r−t, and 6x−y) showed promising activity with MIC90 values in the range of 1−10 µM, while compound 6u, being the most active, exhibited sub-micromolar activity (0.968 µM) in the CAS assay. In addition, minimal cytotoxicity against the HepG2 cell line (cell viability above 75%) in 11 of the 17 compounds, at their respective MIC90 concentrations, was observed, with 6u exhibiting 100% cell viability. The hybridization of the quinoline, urea, and benzothiazole scaffolds demonstrated a synergistic relationship because the activities of resultant hybrids were vastly improved compared to the individual entities. In silico ADME predictions showed that the majority of these compounds have drug-like properties and are less likely to potentially cause cardiotoxicity (QPlogHERG > −5). The results obtained in this study indicate that the majority of the synthesized compounds could serve as valuable starting points for future optimizations as new antimycobacterial agents.
Collapse
|
14
|
The ultrasound-assisted synthesis of some novel fused-ring heterocyclic systems bearing structurally diverse benzazoles via a copper-catalyzed cross-coupling reaction. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02895-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Deb PK, Al-Shar’i NA, Venugopala KN, Pillay M, Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2021; 36:869-884. [PMID: 34060396 PMCID: PMC8172222 DOI: 10.1080/14756366.2021.1900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a-3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a-3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
17
|
Venugopala KN, Deb PK, Pillay M, Chopra D, Chandrashekharappa S, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Kandeel M, Venugopala R, Mohanlall V. 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study. Curr Top Med Chem 2021; 21:295-306. [PMID: 33138763 DOI: 10.2174/1568026620666201102121606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | | | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
18
|
Venugopala KN, Chandrashekharappa S, Deb PK, Tratrat C, Pillay M, Chopra D, Al-Shar'i NA, Hourani W, Dahabiyeh LA, Borah P, Nagdeve RD, Nayak SK, Padmashali B, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Haroun M, Shashikanth S, Mohanlall V, Mailavaram R. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. J Enzyme Inhib Med Chem 2021; 36:1472-1487. [PMID: 34210233 PMCID: PMC8259857 DOI: 10.1080/14756366.2021.1919889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of 1,2,3-trisubstituted indolizines (2a-2f, 3a-3d, and 4a-4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b-2d, 3a-3d, and 4a-4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a-4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | | - Pran Kishore Deb
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nizar A Al-Shar'i
- Faculty of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Rahul D Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Susanta K Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Faculty of Medicine, Department of Pharmacology, Minia University, El-Minia, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sheena Shashikanth
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|
19
|
Venugopala KN, Chandrashekharappa S, Tratrat C, Deb PK, Nagdeve RD, Nayak SK, Morsy MA, Borah P, Mahomoodally FM, Mailavaram RP, Attimarad M, Aldhubiab BE, Sreeharsha N, Nair AB, Alwassil OI, Haroun M, Mohanlall V, Shinu P, Venugopala R, Kandeel M, Nandeshwarappa BP, Ibrahim YF. Crystallography, Molecular Modeling, and COX-2 Inhibition Studies on Indolizine Derivatives. Molecules 2021; 26:molecules26123550. [PMID: 34200764 PMCID: PMC8230391 DOI: 10.3390/molecules26123550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence: (K.N.V.); (S.C.); Tel.: +966-1358-98842 (K.N.V.); +91-94486-39413 (S.C.)
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow UP 226002, India
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560065, India
- Correspondence: (K.N.V.); (S.C.); Tel.: +966-1358-98842 (K.N.V.); +91-94486-39413 (S.C.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Rahul D. Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India; (R.D.N.); (S.K.N.)
| | - Susanta K. Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India; (R.D.N.); (S.K.N.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati 781026, Assam, India;
| | - Fawzi M. Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80835, Mauritius;
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram 534202, India;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (M.A.); (B.E.A.); (N.S.); (A.B.N.); (M.H.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Rashmi Venugopala
- Department of Public Health Medicine, Howard College Campus, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Belakatte P. Nandeshwarappa
- Department of Studies in Chemistry, Shivagangotri, Davangere University, Davangere, Karnataka 577007, India;
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| |
Collapse
|
20
|
Bairagi KM, Younis NS, Emeka PM, Sangtani E, Gonnade RG, Venugopala KN, Alwassil OI, Khalil HE, Nayak SK. Antidiabetic Activity of Dihydropyrimidine Scaffolds and Structural Insight by Single Crystal X-ray Studies. Med Chem 2021; 16:996-1003. [PMID: 31880253 DOI: 10.2174/1573406416666191227123048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/25/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND This research project is designed to identify the anti-diabetic effects of the newly synthesized compounds to conclude the perspective of consuming one or more of these new synthetic compounds for diabetes management. INTRODUCTION A series of dihydropyrimidine (DHPM) derivative bearing electron releasing and electron-withdrawing substituent's on phenyl ring (a-j) were synthesized and screened for antihyperglycemic( anti-diabetic) activity on streptozotocin (STZ) induced diabetic rat model. The newly synthesized compounds were characterized by using FT-IR, melting point, 1H and 13C NMR analysis. The crystal structure and supramolecular features were analyzed through single-crystal X-ray study. Anti-diabetic activity testing of newly prepared DHPM scaffolds was mainly based on their relative substituent on the phenyl ring along with urea and thiourea. Among the synthesized DHPM scaffold, the test compound c having chlorine group on phenyl ring at the ortho position to the hydropyrimidine ring with urea and methyl acetoacetate derivative shows moderate lowering of glucose level. However, the title compounds methyl 4-(4-hydroxy-3-methoxyphenyl)- 6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(g) and ethyl 4-(3-ethoxy-4- hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(h) having methoxy and ethoxy substituents on phenyl ring show significant hypoglycemic activity compared to the remaining compounds from the Scheme 1. METHODS The experimental rat models for the study were divided into 13 groups (n = 10); group 1 animals were treated with 0.5% CMC (0.5mL) (vehicle); group 2 were considered the streptozotocin (STZ)/nicotinamide diabetic control group (DC) and untreated, group 3 diabetic animals were administered with gliclazide 50 mg/kg and act as a reference drug group. The remaining groups of the diabetic animals were administered with the newly synthesized dihydropyrimidine compounds in a single dose of 50 mg/kg orally using the oral gavage, daily for 7 days continuously. The blood glucose level was measured before and 72 hrs after nicotinamide-STZ injection, for confirmation of hyperglycemia and type 2 diabetes development. RESULTS Blood glucose levels were significantly (p<0.05) reduced after treatment with these derivatives. The mean percentage reduction for gliclazide was 50%, while that of synthesized compounds were approximately 36%. CONCLUSION Our result suggests that the synthesized new DHPM derivative containing alkoxy group on the phenyl ring shows a significant lowering of glucose level compared to other derivatives.
Collapse
Affiliation(s)
- Keshab M Bairagi
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia,Department of Pharmacology, Zagazig University, Zagazig 44519, Egypt
| | - Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Ekta Sangtani
- Center for Materials Characterisation, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune 411 008, India
| | - Rajesh G Gonnade
- Center for Materials Characterisation, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune 411 008, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia,Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hany E Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia,Department of Pharmacognosy, Faculty of Pharmacy, Minia University; Minia, 61519, Egypt
| | - Susanta K Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| |
Collapse
|
21
|
Microwave versus conventional synthesis, anticancer, DNA binding and docking studies of some 1,2,3-triazoles carrying benzothiazole. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
22
|
Excellency of pyrimidinyl moieties containing α-aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. Int J Biol Macromol 2020; 165:2010-2021. [DOI: 10.1016/j.ijbiomac.2020.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
|
23
|
Dheda K, Gumbo T, Maartens G, Dooley KE, Murray M, Furin J, Nardell EA, Warren RM. The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. THE LANCET RESPIRATORY MEDICINE 2020; 7:820-826. [PMID: 31486393 DOI: 10.1016/s2213-2600(19)30263-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/23/2023]
Abstract
The Lancet Respiratory Medicine Commission on drug-resistant tuberculosis was published in 2017, which comprehensively reviewed and provided recommendations on various aspects of the disease. Several key new developments regarding drug-resistant tuberculosis are outlined in this Commission Update. The WHO guidelines on treating drug-resistant tuberculosis were updated in 2019 with a reclassification of second line anti-tuberculosis drugs. An injection-free MDR tuberculosis treatment regimen is now recommended. Over the past 3 years, advances in treatment include the recognition of the safety and mortality benefit of bedaquiline, the finding that the 9-11 month injectable-based 'Bangladesh' regimen was non-inferior to longer regimens, and promising interim results of a novel 6 month 3-drug regimen (bedaquiline, pretomanid, and linezolid). Studies of explanted lungs from patients with drug-resistant tuberculosis have shown substantial drug-specific gradients across pulmonary cavities, suggesting that alternative dosing and drug delivery strategies are needed to reduce functional monotherapy at the site of disease. Several controversies are discussed including the optimal route of drug administration, optimal number of drugs constituting a regimen, selection of individual drugs for a regimen, duration of the regimen, and minimal desirable standards of antibiotic stewardship. Newer rapid nucleic acid amplification test platforms, including point-of-care systems that facilitate active case-finding, are discussed. The rapid diagnosis of resistance to other drugs, (notably fluoroquinolones), and detection of resistance by targeted or whole genome sequencing will probably change the diagnostic landscape in the near future.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA; T H Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Edward A Nardell
- T H Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Robin M Warren
- South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/ National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | | |
Collapse
|
24
|
Crystallography, in Silico Studies, and In Vitro Antifungal Studies of 2,4,5 Trisubstituted 1,2,3-Triazole Analogues. Antibiotics (Basel) 2020; 9:antibiotics9060350. [PMID: 32575727 PMCID: PMC7344790 DOI: 10.3390/antibiotics9060350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
A series of 2,4,5 trisubstituted-1,2,3-triazole analogues have been screened for their antifungal activity against five fungal strains, Candida parapsilosis, Candida albicans, Candida tropicalis, Aspergillus niger, and Trichophyton rubrum, via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) microdilution assay. Compounds GKV10, GKV11, and GKV15 emerged as promising antifungal agents against all the fungal strains used in the current study. One of the highly active antifungal compounds, GKV10, was selected for a single-crystal X-ray diffraction analysis to unequivocally establish its molecular structure, conformation, and to understand the presence of different intermolecular interactions in its crystal lattice. A cooperative synergy of the C-H···O, C-H···N, C-H···S, C-H···π, and π···π intermolecular interactions was present in the crystal structure, which contributed towards the overall stabilization of the lattice. A molecular docking study was conducted for all the test compounds against Candida albicans lanosterol-14α-demethylase (pdb = 5 tzl). The binding stability of the highly promising antifungal test compound, GKV15, from the series was then evaluated by molecular dynamics studies.
Collapse
|
25
|
Anti-Tubercular Activity of Substituted 7-Methyl and 7-Formylindolizines and In Silico Study for Prospective Molecular Target Identification. Antibiotics (Basel) 2019; 8:antibiotics8040247. [PMID: 31816928 PMCID: PMC6963442 DOI: 10.3390/antibiotics8040247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Novel series of diversely substituted indolizines were designed, synthesized, and evaluated for their in vitro anti-mycobacterial activity against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB). Many compounds exhibited significant inhibitory activity against MTB H37Rv strains. Indolizines 2d, 2e, and 4 were also found to be active against MTB clinical isolates with multi-resistance to rifampicin and isoniazid. Indolizine 4 was identified as the most promising anti-mycobacterial agent, displaying minimum inhibitory concentration (MIC) values of 4 and 32 μg/mL against H37Rv and MDR strains, respectively. Furthermore, an in silico study was carried out for prospective molecular target identification and revealed favorable interactions with the target enzymes CYP 121, malate synthase, and DNA GyrB ATPase. None of the potent molecules presented toxicity against peripheral blood mononuclear (PBM) cell lines, demonstrating their potentiality to be used for drug-sensitive and drug-resistant tuberculosis therapy.
Collapse
|
26
|
Mishra VR, Ghanavatkar CW, Mali SN, Chaudhari HK, Sekar N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J Biomol Struct Dyn 2019; 38:1772-1785. [DOI: 10.1080/07391102.2019.1621213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Virendra R. Mishra
- Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Hemchandra K. Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|