1
|
Kwak MS, Han M, Lee YJ, Choi S, Kim J, Park IH, Shin JS. ROS anchor PAMPs-mediated extracellular HMGB1 self-association and its dimerization enhances pro-inflammatory signaling. Redox Biol 2025; 80:103521. [PMID: 39908862 PMCID: PMC11847140 DOI: 10.1016/j.redox.2025.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Many cellular proteins form homo- or hetero-oligomeric complexes through dimerization, and ligand oligomerization is crucial for inducing receptor oligomerization. Intermolecular disulfide bond formation is critical for protein oligomerization that regulates biological functions. HMGB1 is a nuclear protein that acts as a DAMP when secreted. HMGB1 is redox-sensitive, contains three cysteines: Cys23, Cys45, and Cys106, and its function varies depending on the redox state of the extracellular space. However, the homo-dimerization of extracellular HMGB1 and its immunological significance have not been identified. In this study, we investigated the immunological significance of Cys106-mediated HMGB1 homo-dimerization. In the extracellular environment, LPS and LTA induced HMGB1 self-association leading to H2O2 anchoring Cys106-Cys106-mediated HMGB1 intermolecular disulfide bond formation. Despite treatment with H2O2, LPS, or LTA, HMGB1 dimerization was blocked in presence of Cys106 residue mutation, the ROS scavenger NAC, and the thiol-reducing agent DTT. Inflammatory stimulation induced the secretion of monomeric HMGB1 but not dimeric HMGB1. HMGB1 dimerization was promoted by PAMPs and H2O2 in the extracellular environment. Compared to monomeric HMGB1, Cys106-Cys106-linked dimeric HMGB1 significantly enhanced intracellular NF-κB signaling and cytokine production through increased direct binding affinity for TLR2 and TLR4 and effective HMGB1-mediated delivery of PAMPs to their receptors. Therefore, we have demonstrated that dimeric HMGB1 enhances its effect on pro-inflammatory signaling.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yong Joon Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Seoyeon Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jeonghwa Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - In Ho Park
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
2
|
Shirey KA, Joseph J, Coughlan L, Nijhuis H, Varley AW, Blanco JCG, Vogel SN. An adenoviral vector encoding an inflammation-inducible antagonist, HMGB1 Box A, as a novel therapeutic approach to inflammatory diseases. mBio 2025; 16:e0338724. [PMID: 39699172 PMCID: PMC11796352 DOI: 10.1128/mbio.03387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Influenza, as well as other respiratory viruses, can trigger local and systemic inflammation resulting in an overall "cytokine storm" that produces serious outcomes such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). We hypothesized that gene therapy platforms could be useful in these cases if the production of an anti-inflammatory protein reflects the intensity and duration of the inflammatory condition. The recombinant protein would be produced and released only in the presence of the inciting stimulus, avoiding immunosuppression or other unwanted side effects that may occur when treating infectious diseases with anti-inflammatory drugs. To test this hypothesis, we developed AdV.C3-Tat/HIV-Box A, an inflammation-inducible cassette that remains innocuous in the absence of inflammation but releases HMGB1 Box A, an antagonist of high mobility group box 1 (HMGB1), in response to inflammatory stimuli such as lipopolysaccharide (LPS) or influenza virus infection. We report here that this novel inflammation-inducible HMGB1 Box A construct in a non-replicative adenovirus (AdV) vector mitigates lung and systemic inflammation therapeutically in response to influenza infection. We anticipate that this strategy will apply to the treatment of multiple diseases in which HMGB1-mediated signaling is a central driver of inflammation.IMPORTANCEMany inflammatory diseases are mediated by the action of a host-derived protein, HMGB1, on Toll-like receptor 4 (TLR4) to elicit an inflammatory response. We have engineered a non-replicative AdV vector that produces HMGB1 Box A, an antagonist of HMGB1-induced inflammation, under the control of an endogenous complement component C3 (C3) promoter sequence, that is inducible by LPS and influenza in vitro and ex vivo in macrophages (Mϕ) and protects mice and cotton rats therapeutically against infection with mouse-adapted and human non-adapted influenza strains, respectively, in vivo. We anticipate that this novel strategy will apply to the treatment of multiple infectious and non-infectious diseases in which HMGB1-mediated TLR4 signaling is a central driver of inflammation.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - John Joseph
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
4
|
Shen P, Jiang X, Kuang Y, Wang W, Raj R, Wang W, Zhu Y, Zhang X, Yu B, Zhang J. Natural triterpenoid-aided identification of the druggable interface of HMGB1 occupied by TLR4. RSC Chem Biol 2024; 5:751-762. [PMID: 39092445 PMCID: PMC11289874 DOI: 10.1039/d4cb00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
HMGB1 interacts with TLR4 to activate the inflammatory cascade response, contributing to the pathogenesis of endogenous tissue damage and infection. The immense importance of HMGB1-TLR4 interaction in the immune system has made its binding interface an area of significant interest. To map the binding interface of HMGB1 occupied by TLR4, triterpenoids that disrupt the HMGB1-TLR4 interaction and interfere with HMGB1-induced inflammation were developed. Using the unique triterpenoid PT-22 as a probe along with photoaffinity labeling and site-directed mutagenesis, we found that the binding interface of HMGB1 was responsible for the recognition of TLR4 located on the "L" shaped B-box with K114 as a crucial hot-spot residue. Amazingly, this highly conserved interaction surface overlapped with the antigen-recognition epitope of an anti-HMGB1 antibody. Our findings propose a novel strategy for better understanding the druggable interface of HMGB1 that interacts with TLR4 and provide insights for the rational design of HMGB1-TLR4 PPI inhibitors to fine tune immune responses.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Yi Kuang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine Nanjing 210046 P. R. China
| | - Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago Chicago IL USA
| | - Yuyuan Zhu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 P. R. China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
5
|
Chen B, Di B. Endogenous Ligands of TLR4 in Microglia: Potential Targets for Related Neurological Diseases. Curr Drug Targets 2024; 25:953-970. [PMID: 39234911 DOI: 10.2174/0113894501316051240821060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Bo Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| |
Collapse
|
6
|
Ikenohuchi YJ, Silva MDS, Rego CMA, Francisco AF, da Silva Setúbal S, Ferreira E Ferreira AA, Boeno CN, Santana HM, Felipin KP, de Lima AM, de Mattos Fontes MR, Paloschi MV, Soares AM, Zuliani JP. A C-type lectin induces NLRP3 inflammasome activation via TLR4 interaction in human peripheral blood mononuclear cells. Cell Mol Life Sci 2023; 80:188. [PMID: 37349530 PMCID: PMC11073222 DOI: 10.1007/s00018-023-04839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Lectins are a large group of proteins found in many snake venoms. BjcuL is a C-type lectin from Bothrops jararacussu snake venom that does not present cytotoxicity action on human peripheral blood mononuclear cells (PBMCs) at concentrations of 5 and 10 μg/mL. BjcuL demonstrates an immunomodulatory role in PBMCs with the production of pro- and anti-inflammatory cytokines (IL-2, IL-10, IFN-γ, IL-6, TNF-α, and IL-17) in addition to stimulate T cells to produce reactive oxygen species (ROS) that could play a role in the acute inflammatory reaction observed in the victims. Inflammasomes are an essential arm in cells of innate immunity to detect and sense a range of endogenous or exogenous, sterile, or infectious stimuli to elicit cellular responses and effector mechanisms. NLRP3 inflammasome is a significant target for this study, because the lectin is responsible for leukocyte activation stimulating the release of inflammatory mediators, which results in dynamic cellular responses to remove the detrimental process to the body in snakebites. Thus, this study aimed to investigate how isolated BjcuL from B. jararacussu venom affects NLRP3 inflammasome activation on PBMCs. For this, the cells were isolated by density gradient and incubated with BjcuL at different periods and concentrations for the evaluation of the activation of the NLRP3 inflammasome through gene and protein expressions of ASC, CASPASE-1, and NLRP3 by RT-qPCR, Western blot, and immunofluorescence, as well as the participation of Toll-like receptor 4 (TLR4) and ROS in the IL-1β production, a product resultant of the NLRP3 inflammasome activation. Herein, BjcuL interacts with TLR4 as demonstrated by in vitro and in silico studies and induces cytokines release via NF-κB signaling. By genic and protein expression assays, BjcuL activates NLRP3 inflammasome, and the pharmacological modulation with LPS-RS, an antagonist of TLR4; LPS-SM, an agonist of TLR4; MCC950, a specific NLRP3 inhibitor, and rotenone, an inhibitor of mitochondrial ROS, confirmed the participation of TLR4 and ROS in the NLRP3 inflammasome activation and IL-1β liberation. The effects of BjcuL on the regulation and activation of the NLRP3 inflammasome complex via TLR4 activation with ROS participation may be determinant for the development of the inflammatory local effects seen in snakebite victims. In addition, in silico together with in vitro studies provide information that may be useful in the rational design of TLR agonists as well as new adjuvants for immunomodulatory therapy.
Collapse
Affiliation(s)
- Yoda Janaina Ikenohuchi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Cristina Matiele Alves Rego
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Aleff Ferreira Francisco
- Department of Physics and Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Alex Augusto Ferreira E Ferreira
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Kátia Paula Felipin
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Marcos Roberto de Mattos Fontes
- Department of Physics and Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Institute for Advance Studies of the Sea (IEAMAR), São Paulo State University, UNESP, São Vicente, SP, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Andreimar Martins Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil.
- Department of Medicine, Federal University of Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
7
|
Lorvellec M, Chouquet A, Koch J, Bally I, Signor L, Vigne J, Dalonneau F, Thielens NM, Rabilloud T, Dalzon B, Rossi V, Gaboriaud C. HMGB1 cleavage by complement C1s and its potent anti-inflammatory product. Front Immunol 2023; 14:1151731. [PMID: 37180096 PMCID: PMC10169756 DOI: 10.3389/fimmu.2023.1151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Complement C1s association with the pathogenesis of several diseases cannot be simply explained only by considering its main role in activating the classical complement pathway. This suggests that non-canonical functions are to be deciphered for this protease. Here the focus is on C1s cleavage of HMGB1 as an auxiliary target. HMGB1 is a chromatin non-histone nuclear protein, which exerts in fact multiple functions depending on its location and its post-translational modifications. In the extracellular compartment, HMGB1 can amplify immune and inflammatory responses to danger associated molecular patterns, in health and disease. Among possible regulatory mechanisms, proteolytic processing could be highly relevant for HMGB1 functional modulation. The unique properties of HMGB1 cleavage by C1s are analyzed in details. For example, C1s cannot cleave the HMGB1 A-box fragment, which has been described in the literature as an inhibitor/antagonist of HMGB1. By mass spectrometry, C1s cleavage was experimentally identified to occur after lysine on position 65, 128 and 172 in HMGB1. Compared to previously identified C1s cleavage sites, the ones identified here are uncommon, and their analysis suggests that local conformational changes are required before cleavage at certain positions. This is in line with the observation that HMGB1 cleavage by C1s is far slower when compared to human neutrophil elastase. Recombinant expression of cleavage fragments and site-directed mutagenesis were used to confirm these results and to explore how the output of C1s cleavage on HMGB1 is finely modulated by the molecular environment. Furthermore, knowing the antagonist effect of the isolated recombinant A-box subdomain in several pathophysiological contexts, we wondered if C1s cleavage could generate natural antagonist fragments. As a functional readout, IL-6 secretion following moderate LPS activation of RAW264.7 macrophage was investigated, using LPS alone or in complex with HMGB1 or some recombinant fragments. This study revealed that a N-terminal fragment released by C1s cleavage bears stronger antagonist properties as compared to the A-box, which was not expected. We discuss how this fragment could provide a potent brake for the inflammatory process, opening the way to dampen inflammation.
Collapse
Affiliation(s)
- Marie Lorvellec
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Anne Chouquet
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jonas Koch
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Isabelle Bally
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Luca Signor
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jeanne Vigne
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Fabien Dalonneau
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Nicole M. Thielens
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, University Grenoble Alpes, CNRS UMR 5249, CEA, IRIG-LCBM, Grenoble, France
| | - Bastien Dalzon
- Chemistry and Biology of Metals, University Grenoble Alpes, CNRS UMR 5249, CEA, IRIG-LCBM, Grenoble, France
| | - Véronique Rossi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Christine Gaboriaud
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| |
Collapse
|
8
|
Fan R, Wang L, Botchway BOA, Zhang Y, Liu X. Protective role of ethyl pyruvate in spinal cord injury by inhibiting the high mobility group box-1/toll-like receptor4/nuclear factor-kappa B signaling pathway. Front Mol Neurosci 2022; 15:1013033. [PMID: 36187352 PMCID: PMC9524569 DOI: 10.3389/fnmol.2022.1013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a high incident rate of central nervous system disease that usually causes paralysis below the injured level. The occurrence of chronic inflammation with the axonal regeneration difficulties are the underlying barriers for the recovery of SCI patients. Current studies have paid attention to controlling the instigative and developmental process of neuro-inflammation. Ethyl pyruvate, as a derivative of pyruvate, has strong anti-inflammatory and neuroprotective functions. Herein, we reviewed the recent studies of ethyl pyruvate and high mobility group box-1 (HMGB1). We think HMGB1 that is one of the main nuclear protein mediators to cause an inflammatory response. This protein induces astrocytic activation, and promotes glial scar formation. Interestingly, ethyl pyruvate has potent inhibitory effects on HMGB1 protein, as it inhibits chronic inflammatory response by modulating the HMGB1/TLR4/NF-κB signaling pathway. This paper discusses the potential mechanism of ethyl pyruvate in inhibiting chronic inflammation after SCI. Ethyl pyruvate can be a prospective therapeutic agent for SCI.
Collapse
Affiliation(s)
- Ruihua Fan
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | | | - Yong Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu, ; orcid.org/0000-0003-4325-6762
| |
Collapse
|
9
|
Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, Liu YN, Zhang Y, Cheng B, Wu ZW, Cui ZC. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1 - induced inflammation. World J Gastroenterol 2021; 27:7669-7686. [PMID: 34908806 PMCID: PMC8641048 DOI: 10.3748/wjg.v27.i44.7669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common and life-threatening complication of severe acute pancreatitis (SAP). There are currently limited effective treatment options for SAP and associated ALI. Calycosin (Cal), a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties, but its effect on SAP and associated ALI has yet to be determined.
AIM To identify the roles of Cal in SAP-ALI and the underlying mechanism.
METHODS SAP was induced via two intraperitoneal injections of L-arg (4 g/kg) and Cal (25 or 50 mg/kg) were injected 1 h prior to the first L-arg challenge. Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically. An in vitro model of lipopolysaccharide (LPS)-induced ALI was established using A549 cells. Immunofluorescence analysis and western blot were evaluated in cells. Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1.
RESULTS Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI. Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP. Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, IL-1β, HMGB1 and chemokine (CXC motif) ligand 1 in lung tissue. Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B (NF-κB) p65 in lung tissues and an in vitro model of LPS-induced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI. Furthermore, molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1.
CONCLUSION Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chang-Ju Zhu
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wan-Guang Yang
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - De-Jian Li
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yao-Dong Song
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - San-Yang Chen
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qiao-Fang Wang
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yan-Na Liu
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yan Zhang
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bo Cheng
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhong-Wei Wu
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zong-Chao Cui
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
10
|
Ranathunga DTS, Arteaga A, Biguetti CC, Rodrigues DC, Nielsen SO. Molecular-Level Understanding of the Influence of Ions and Water on HMGB1 Adsorption Induced by Surface Hydroxylation of Titanium Implants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10100-10114. [PMID: 34370950 DOI: 10.1021/acs.langmuir.1c01444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its excellent chemical and mechanical properties, titanium has become the material of choice for orthopedic and dental implants to promote rehabilitation via bone anchorage and osseointegration. Titanium osseointegration is partially related to its capability to form a TiO2 surface layer and its ability to interact with key endogenous proteins immediately upon implantation, establishing the first bone-biomaterial interface. Surgical trauma caused by implantation results in the release of high-mobility group box 1 (HMGB1) protein, which is a prototypic DAMP (damage-associated molecular pattern) with multiple roles in inflammation and tissue healing. To develop different surface strategies that improve the clinical outcome of titanium-based implants by controlling their biological activity, a molecular-scale understanding of HMGB1-surface interactions is desired. Here, we use molecular dynamics (MD) computer simulations to provide direct insight into the HMGB1 interactions and the possible molecular arrangements of HMGB1 on fully hydroxylated and nonhydroxylated rutile (110) TiO2 surfaces. The results establish that HMGB1 is most likely to be adsorbed directly onto the surface regardless of surface hydroxylation, which is undesirable because it could affect its biological activity by causing structural changes to the protein. The hydroxylated TiO2 surface shows a greater affinity for HMGB1 than the nonhydroxylated surface. The water layer on the nonhydroxylated TiO2 surface prevents ions and the protein from directly contacting the surface. However, it was observed that if the ionic strength increases, the total number of ions adsorbed on the two surfaces increases and the protein's direct adsorption ability decreases. These findings will help to understand the HMGB1-TiO2 interactions upon implantation as well as the development of different surface strategies by introducing ions or ionic materials to the titanium implant surface to modulate its interactions with HMGB1 to preserve biological function.
Collapse
Affiliation(s)
- Dineli T S Ranathunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Claudia C Biguetti
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Navyashree V, Kant K, Kumar A. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: a molecular docking and dynamics approach. J Biomol Struct Dyn 2021; 39:1404-1416. [PMID: 32072856 DOI: 10.1080/07391102.2020.1731603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Japanese encephalitis virus (JEV) infection affects millions of population worldwide whose incidence is increasing year by year and currently, no specific drugs are available for its treatment. However, vaccines are available for its prevention but not effective against all the clinical isolates. Thus, there is an urgent need for new chemical entities or exploration of existing molecules for its treatment. In the current study, we have undertaken virtual ligand screening (VLS) method to screen out selected phytoconstituents of Genus Arisaema against various targets (NS5, NS3 helicase, and NS2B-NS3 protease) of JEVs which exhibits vital role in replication, infection cycle and host interaction by using molecular docking followed by molecular dynamics (MD) simulations. Screened natural chemical entities displayed good binding affinity as well as optimum stability toward NS5 and NS3 helicase. Further, the drug likeliness evaluated by Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis was found to be in the acceptable range. In conclusion, these natural chemical entities could be considered as promising candidates for the development of anti-JEV drugs. However, further investigation is required to confirm their exact role in JEV infection through in vitro and in vivo experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Navyashree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Kamal Kant
- Department of Pharmaceutical Chemistry, Birla Institute of Technology (B.I.T) Mesra, Ranchi, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| |
Collapse
|
13
|
de Oliveira AA, Faustino J, Webb RC, Nunes KP. Blockade of the TLR4-MD2 complex lowers blood pressure and improves vascular function in a murine model of type 1 diabetes. Sci Rep 2020; 10:12032. [PMID: 32694567 PMCID: PMC7374604 DOI: 10.1038/s41598-020-68919-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
While the pathogenesis of diabetes-induced high blood pressure (BP) is not entirely clear, current evidence suggests that Toll-like receptor 4 (TLR4) is a key player in the mechanisms associated with hypertension. However, it is unknown whether this receptor affects BP under type 1 diabetes. Likewise, there is insufficient knowledge about the role of TLR4 in diabetes-associated vascular dysfunction of large arteries. To narrow these gaps, in this study, we investigated if blockade of the TLR4-MD2 complex impacts BP and vascular function in diabetic rats. We injected streptozotocin in male Sprague Dawley rats and treated them with a neutralizing anti-TLR4 antibody for 14 days. BP was directly measured in conscious animals at the end of the treatment. In another set of experiments, we excised the aorta from control and diabetic animals, and measured TLR4 and MD2—a co-receptor that confers functionality to TLR4—levels by Western blotting. We also performed functional studies and evaluated ROS levels with and without a pharmacological inhibitor for TLR4 as well as for MD2. Additionally, we scrutinized a large human RNA-Seq dataset of aortic tissue to assess the co-expression of TLR4, MD2, and subunits of the vascular NADPH oxidases under diabetes and hypertension. We report that (a) chronic blockade of the TLR4–MD2 complex lowers BP in diabetic animals; that (b) type 1 diabetes modulates the levels of MD2 expression in the aorta, but not TLR4, at least in the conditions evaluated in this study; and, that (c) acute inhibition of TLR4 or MD2 diminishes vascular contractility and reduces oxidative stress in the aorta of these animals. In summary, we show evidence that the TLR4–MD2 complex is involved in the mechanisms linking type 1 diabetes and hypertension.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Josemar Faustino
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA.
| |
Collapse
|
14
|
Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol 2020; 37:101581. [PMID: 32739154 PMCID: PMC7767743 DOI: 10.1016/j.redox.2020.101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. Pollutants and oxidative stress can cause protein nitration and oligomerization. Peroxynitrite amplifies inflammatory potential of disease-related proteins in vitro. Chemical modification of damage-associated molecular patterns (DAMPs). Positive feedback of modified DAMPs via pattern recognition receptor (TLR4). Air pollution may promote inflammatory disorders in the Anthropocene.
Collapse
Affiliation(s)
- Kira Ziegler
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Anna T Kunert
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | | | - Anna Lena Leifke
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, 02215, USA
| | | | - Kurt Lucas
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| |
Collapse
|
15
|
Anggayasti WL, Ogino K, Yamamoto E, Helmerhorst E, Yasuoka K, Mancera RL. The acidic tail of HMGB1 regulates its secondary structure and conformational flexibility: A circular dichroism and molecular dynamics simulation study. Comput Struct Biotechnol J 2020; 18:1160-1172. [PMID: 32514327 PMCID: PMC7261955 DOI: 10.1016/j.csbj.2020.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/02/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that triggers the progression of several pro-inflammatory diseases such as diabetes, Alzheimer's disease and cancer, by inducing signals upon interaction with the receptors such as the receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The acidic C-terminal tail of HMGB1 is an intrinsically disordered region of the protein which is known to determine the interaction of HMGB1 to DNA and histones. This study characterizes its structural properties using a combination of circular dichroism (CD) and molecular dynamics (MD) simulations. The full-length and tail-less forms of HMGB1 were compared to rationalise the role of the acidic tail in maintaining the stability of the entire structure of HMGB1 in atomistic detail. Consistent with experimental data, the acidic tail was predicted to adopt an extended conformation that allows it to make a range of hydrogen-bonding and electrostatic interactions with the box-like domains that stabilize the overall structure of HMGB1. Absence of the acidic tail was predicted to increase structural fluctuations of all amino acids, leading to changes in secondary structure from α-helical to more hydrophilic turns along with increased exposure of multiple amino acids to the surrounding solvent. These structural changes reveal the intrinsic conformational dynamics of HMGB1 that are likely to affect the accessibility of its receptors.
Collapse
Affiliation(s)
- Wresti L. Anggayasti
- Department of Chemical Engineering, Faculty of Engineering, Brawijaya University, Jl. MT Haryono 167, Malang 65145, East Java, Indonesia
| | - Kenta Ogino
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Erik Helmerhorst
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ricardo L. Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
16
|
Tang JZ, Xu WQ, Wei FJ, Jiang YZ, Zheng XX. Role of Nampt overexpression in a rat model of Hashimoto's thyroiditis and its mechanism of action. Exp Ther Med 2020; 19:2895-2900. [PMID: 32256774 PMCID: PMC7086292 DOI: 10.3892/etm.2020.8539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
The present study was designed to investigate the role of nicotinamide phosphoribosyltransferase (Nampt) overexpression in a rat model of Hashimoto's thyroiditis (HT) and its mechanism of action. A rat model of HT was constructed, and the HT rats were injected with an adenoviral expression vector carrying the Nampt gene. The expression of Nampt and Toll-like receptor 4 (TLR4) in thyroid tissues was examined using immunohistochemistry (IHC), RT-qPCR and western blot analyses. Serum anti-thyroglobulin antibodies (TGAb) and anti-thyroid peroxidase antibodies (TPOAb) were measured using chemiluminescence method. Hematoxylin and eosin (H&E) and IHC staining of the rat thyroid tissues showed destroyed thyroid follicles and monocyte infiltration, as well as increased Nampt expression in the thyroid tissues of rats with HT. Furthermore, it was found that Nampt overexpression led to increased severity of inflammatory infiltration in thyroid tissues and increased levels of TPOAb in the serum of HT rats; however, the serum TGAb level was not affected by Nampt overexpression. In addition, Nampt overexpression promoted TLR4 expression in HT rats. In conclusion, it was demonstrated that Nampt was strongly expressed in the capillary region of HT rats thyroid tissues. The Nampt mRNA level was increased but the Nampt protein level was decreased in the thyroid tissues of rats with HT. Nampt overexpression has a promotive effect on HT progression, and this effect was related to TLR4. This study suggests that inhibition of Nampt activity may be valuable in the treatment of HT.
Collapse
Affiliation(s)
- Jia-Zhen Tang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Qiong Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fu-Juan Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang-Zhen Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Xue Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Ain QU, Batool M, Choi S. TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules 2020; 25:molecules25030627. [PMID: 32023919 PMCID: PMC7037830 DOI: 10.3390/molecules25030627] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The integration of computational techniques into drug development has led to a substantial increase in the knowledge of structural, chemical, and biological data. These techniques are useful for handling the big data generated by empirical and clinical studies. Over the last few years, computer-aided drug discovery methods such as virtual screening, pharmacophore modeling, quantitative structure-activity relationship analysis, and molecular docking have been employed by pharmaceutical companies and academic researchers for the development of pharmacologically active drugs. Toll-like receptors (TLRs) play a vital role in various inflammatory, autoimmune, and neurodegenerative disorders such as sepsis, rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, cancer, and systemic lupus erythematosus. TLRs, particularly TLR4, have been identified as potential drug targets for the treatment of these diseases, and several relevant compounds are under preclinical and clinical evaluation. This review covers the reported computational studies and techniques that have provided insights into TLR4-targeting therapeutics. Furthermore, this article provides an overview of the computational methods that can benefit a broad audience in this field and help with the development of novel drugs for TLR-related disorders.
Collapse
Affiliation(s)
| | | | - Sangdun Choi
- Correspondence: ; Tel.: +82-31-219-2600; Fax: +82-31-219-1615
| |
Collapse
|
18
|
de Oliveira AA, Faustino J, de Lima ME, Menezes R, Nunes KP. Unveiling the Interplay between the TLR4/MD2 Complex and HSP70 in the Human Cardiovascular System: A Computational Approach. Int J Mol Sci 2019; 20:E3121. [PMID: 31247943 PMCID: PMC6651210 DOI: 10.3390/ijms20133121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
While precise mechanisms underlying cardiovascular diseases (CVDs) are still not fully understood, previous studies suggest that the innate immune system, through Toll-like receptor 4 (TLR4), plays a crucial part in the pathways leading to these diseases, mainly because of its interplay with endogenous molecules. The Heat-shock protein 70 family (HSP70-70kDa) is of particular interest in cardiovascular tissues as it may have dual effects when interacting with TLR4 pathways. Although the hypothesis of the HSP70 family members acting as TLR4 ligands is becoming widely accepted, to date no co-crystal structure of this complex is available and it is still unknown whether this process requires the co-adaptor MD2. In this study, we aimed at investigating the interplay between the TLR4/MD2 complex and HSP70 family members in the human cardiovascular system through transcriptomic data analysis and at proposing a putative interaction model between these proteins. We report compelling evidence of correlated expression levels between TLR4 and MD2 with HSP70 cognate family members, especially in heart tissue. In our molecular docking simulations, we found that HSP70 in the ATP-bound state presents a better docking score towards the TLR4/MD2 complex compared to the ADP-bound state (-22.60 vs. -10.29 kcal/mol, respectively). Additionally, we show via a proximity ligation assay for HSP70 and TLR4, that cells stimulated with ATP have higher formation of fluorescent spots and that MD2 might be required for the complexation of these proteins. The insights provided by our computational approach are potential scaffolds for future in vivo studies investigating the interplay between the TLR4/MD2 complex and HSP70 family members in the cardiovascular system.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Josemar Faustino
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Maria Elena de Lima
- Grupo Santa Casa de Belo Horizonte, Programa de Pós-graduação em Ciências da Saúde, Biomedicina e Medicina, Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, MG 30150-240, Brazil
| | - Ronaldo Menezes
- Department of Computer Science, University of Exeter, Exeter EX4 4PY, UK
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| |
Collapse
|
19
|
Jia WQ, Liu YY, Feng XY, Xu WR, Cheng XC. Discovery of novel and highly selective PI3Kδ inhibitors based on the p110δ crystal structure. J Biomol Struct Dyn 2019; 38:2499-2508. [PMID: 31232196 DOI: 10.1080/07391102.2019.1635531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiao-Yan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Mou L, Dou W, Meng G, Sun K, Chen X. The structural basis of the autoinhibition mechanism of glycogen synthase kinase 3β (GSK3β): molecular modeling and molecular dynamics simulation studies. J Biomol Struct Dyn 2019; 38:1741-1750. [PMID: 31057052 DOI: 10.1080/07391102.2019.1615988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The autoinhibition phenomenon has been frequently observed in enzymes and represents an important regulatory strategy to fine-tune enzyme activity. Evolution has exploited this mechanism to reduce enzymatic activity. Glycogen synthase kinase 3β (GSK3β) undergoes autoinhibition via the phosphorylation of Ser9 at the N-terminus of the kinase, which, acting as a pseudosubstrate, occupies the catalytic domain of GSK3β and subsequently blocks primed substrates from having access to the catalytic domain. The detailed structural basis of the autoinhibition mechanism of GSK3β by the pseudosubstrate, however, has not yet been fully resolved. Here, a three-dimensional model of the binary GSK3β-pseudosubstrate complex was built via the molecular modeling method. Based on the constructed model, extensive molecular dynamics (MD) simulations and subsequent molecular mechanics generalized Born/surface area (MM_GBSA) calculations were performed on the wild-type GSK3β-pseudosubstrate complex and three mutated systems (R4A, R6A, and S9A). Analyses of MD simulations and binding free energies revealed that the phosphorylation of Ser9 is the prerequisite for the autoinhibition of GSK3β, and both mutations of Arg4 and Arg6 to alanine markedly reduced the binding affinities of the mutated pseudosubstrate to the GSK3β catalytic domain, thereby disrupting the autoinhibition of the kinase. This study highlights the importance of Ser9, Arg6, and Arg4 in modulating the autoinhibition mechanism of GSK3β, contributing to a deeper understanding of GSK3β biology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Gang Meng
- Department of Urology, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Ke Sun
- Department of Urology, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medicinal University, Weifang, Shandong, China
| |
Collapse
|
21
|
The association of toll-like receptor 4 gene polymorphisms with primary open angle glaucoma susceptibility: a meta-analysis. Biosci Rep 2019; 39:BSR20190029. [PMID: 30877182 PMCID: PMC6443948 DOI: 10.1042/bsr20190029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Primary open angle glaucoma (POAG) and normal tension glaucoma (NTG) cause irreversible blindness while current medications cannot completely inhibit disease progression. An understanding of immunopathogenesis is thus a keystone to develop novel drug targets and genetic markers are still required for early diagnosis. Toll-like receptor 4 (TLR4) is an essential player in inflammation in various diseases. However, the TLR4 polymorphisms have not been completely elucidated in both types of glaucoma. The aim of the present study was to identify the association between TLR4 polymorphism and glaucoma (POAG and NTG) via the use of a comprehensive review and meta-analysis. The relevant studies were collected from PubMed, Excerpta Medica Database (EMBASE), and Web of Science to identify eight included articles, assessed for quality by a modified Newcastle-Ottawa Scale (NOS) for gene association study. A meta-analysis was applied to calculate the pooled odds-ratio and 95% confidence intervals (CIs) to evaluate the association between TLR4 polymorphism and glaucoma. The results revealed that TLR4 rs1927911 A/G, rs12377632 C/T, and rs2149356 G/T significantly decrease the risk of POAG and NTG in allele contrast models 0.71-, 0.71-, and 0.67-fold, respectively. Moreover, rs4986790 A/G and rs4986791 C/T showed a stringent association with POAG in allele contrast, heterozygous, recessive, and overdominant models. In conclusion, this meta-analysis represented a significant correlation between TLR4 polymorphisms and both types of glaucoma suggesting that TLR4 might be involved in the pathogenesis of glaucoma and may be applied as a genetic marker for disease screening.
Collapse
|