1
|
Batool S, Asim L, Qureshi FR, Masood A, Mushtaq M, Saleem RSZ. Molecular Targets of Plant-based Alkaloids and Polyphenolics in Liver and Breast Cancer- An Insight into Anticancer Drug Development. Anticancer Agents Med Chem 2025; 25:295-312. [PMID: 38963106 DOI: 10.2174/0118715206302216240628072554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-κB, Shh, MAPK/ERK, and Wnt/β-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.
Collapse
Affiliation(s)
- Salma Batool
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Laiba Asim
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Fawad Raffaq Qureshi
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Maria Mushtaq
- Department of Technical Laboratory Analytics, Abu Dhabi Vocational Education and Training Institute (ADVETI), Abu Dhabi, UAE
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| |
Collapse
|
2
|
Wagh P, Savaliya S, Joshi B, Vyas B, Kuperkar K, Lalan M, Shah P. Discerning computational, in vitro and in vivo investigations of self-assembling empagliflozin polymeric micelles in type-2 diabetes. Drug Deliv Transl Res 2024; 14:3568-3584. [PMID: 39103594 DOI: 10.1007/s13346-024-01658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption. METHODOLOGY In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed. RESULTS The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model. CONCLUSION EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.
Collapse
Affiliation(s)
- Priti Wagh
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Shivani Savaliya
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Bhrugesh Joshi
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Bhavin Vyas
- Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, 395007, India
| | - Manisha Lalan
- Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, Gujarat, 391760, India
| | - Pranav Shah
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India.
| |
Collapse
|
3
|
Kundu S, Sarkar S, Acharya Chowdhury A. Anti-Leukemic Attributes of Natural Compounds Targeting Autophagy: A Closer Look into the Molecular Mechanisms. Nutr Cancer 2024; 76:236-251. [PMID: 38263604 DOI: 10.1080/01635581.2024.2306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Leukemia is a heterogeneous clonal cancer that affects millions of individuals around the world. Despite substantial breakthroughs in cancer treatment, traditional chemotherapy and radiotherapy remain ineffective, and therapeutic resistance still stands as a big obstacle. As a result, there is an increasing attention being paid currently toward the potency of natural compounds as a complementary or alternative therapy for leukemia. Autophagy, a conserved cellular process where damaged or defective cytosolic components and macromolecules are destroyed and recycled, plays a dual role in promoting or suppressing the continuance of cancer at different junctures of its development. Current studies have reported that autophagy has a cardinal function in the genesis and progression of leukemia, making it a promising target for novel treatments. In this review, we have explored the effectiveness of certain natural compounds, such as curcumin, resveratrol, tanshinone IIA, quercetin, tetrandrine, parthenolide, berberine, pristimerin, and alantolactone, that modulate autophagy and regulate its associated signaling cascades at a molecular level in different types of leukemia. They have been shown to have synergistic effects with conventional chemotherapy, emphasizing their potential as supplementary medicines. However, additional research is required to fully comprehend their mechanisms of action and to maximize their role in clinical perspectives.
Collapse
Affiliation(s)
- Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | |
Collapse
|
4
|
Biswas T, Mittal RK, Sharma V, Kanupriya, Mishra I. Nitrogen-fused Heterocycles: Empowering Anticancer Drug Discovery. Med Chem 2024; 20:369-384. [PMID: 38192143 DOI: 10.2174/0115734064278334231211054053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024]
Abstract
The worldwide impact of cancer is further compounded by the constraints of current anticancer medications, which frequently exhibit a lack of selectivity, raise safety apprehensions, result in significant adverse reactions, and encounter resistance mechanisms. The current situation highlights the pressing need to develop novel and more precise anticancer agents that prioritize safety and target specificity. Remarkably, more than 85% of drugs with physiological activity contain heterocyclic structures or at least one heteroatom. Nitrogen-containing heterocycles hold a significant position among these compounds, emerging as the most prevalent framework within the realm of heterocyclic chemistry. This article explores the medicinal chemistry behind these molecules, highlighting their potential as game-changing possibilities for anticancer medication development. The analysis highlights the inherent structural variety in nitrogen-containing heterocycles, revealing their potential to be customized for creating personalized anticancer medications. It also emphasizes the importance of computational techniques and studies on the relationships between structure and activity, providing a road map for rational medication design and optimization. Nitrogen- containing heterocycles are a promising new area of study in the fight against cancer, and this review summarises the state of the field so far. By utilizing their inherent characteristics and exploiting cooperative scientific investigations, these heterocyclic substances exhibit potential at the forefront of pioneering therapeutic approaches in combating the multifaceted obstacles posed by cancer.
Collapse
Affiliation(s)
- Tanya Biswas
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Ravi Kumar Mittal
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Kanupriya
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
5
|
Gawali R, Bhosale R, Nagesh N, Masand VH, Jadhav S, Zaki MEA, Al-Hussain SA. Design, synthesis, docking studies and biological screening of 2-pyrimidinyl-2, 3-dihydro-1 H-naphtho [1, 2- e][1, 3] oxazines as potent tubulin polymerization inhibitors. J Biomol Struct Dyn 2023; 42:12044-12061. [PMID: 37811783 DOI: 10.1080/07391102.2023.2266766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
A series of novel substituted 2-pyrimidinyl-2,3-dihydro-1H-naphtho[1,2-e][1, 3]oxazine analogs have been designed and synthesized based on structure-activity relationships from 2-naphthol, substituted pyrimidinyl amines and formalin through ring closure by one-pot three component reaction. These derivatives were evaluated for their in vitro cytotoxicity, cell cycle assay and their inhibitory effect on tubulin polymerization. From the MTT assay, it is clear that most of the synthesized compounds displayed potent cytotoxic activities on HeLa (cervical cancer) and B16F10 (melanoma) cancerous cell lines. The compounds 6b and 6k were found to be more effective against HeLa cell lines and exhibited significant cytotoxicity (with IC50 values 1.26 ± 0.12 µM and 1.16 ± 0.27 µM respectively), accumulation of HeLa cells in G2/M phase and exhibiting induced apoptosis. The immunohistochemistry and fluorescence assays showed that these compounds 6b and 6k inhibited the microtubule assembly in human cervical cancer cells (HeLa) at 2 µM concentration. Furthermore, molecular docking studies of these molecules revealed their better-fit potential as anticancer molecules and have a high affinity for colchicine binding site, indicating more inhibitory potential at the cellular level. Our studies suggest that the newly synthesized compounds may become promising leads for the development of new anti-cancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakhi Gawali
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, India
| | - Raghunath Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, P. A. H. Solapur University, Solapur, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEX II, Hyderabad, India
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Shravan Jadhav
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P. Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 2023; 13:211. [PMID: 37251731 PMCID: PMC10209376 DOI: 10.1007/s13205-023-03636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.
Collapse
Affiliation(s)
- Aditya Banyal
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Shubham Tiwari
- IMS Engineering College, Ghaziabad, Uttar Pradesh 201009 India
| | - Aparajita Sharma
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Ishita Chanana
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 South Korea
| | - Saurabh Kulshrestha
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Pradeep Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
7
|
Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Biomolecules 2023; 13:biom13020285. [PMID: 36830654 PMCID: PMC9952983 DOI: 10.3390/biom13020285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.
Collapse
|
8
|
Gopi P, Singh S, Islam MM, Yadav A, Gupta N, Pandya P. Thermodynamic and structural profiles of multi-target binding of vinblastine in solution. J Mol Recognit 2022; 35:e2989. [PMID: 36054496 DOI: 10.1002/jmr.2989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023]
Abstract
Structural information about drug-receptor interactions is paramount in drug discovery and subsequent optimization processes. Drugs can bind to multiple potential targets as they contain common chemical entities in their structures. Understanding the details of such interactions offer possibilities for repurposing and developing potent inhibitors of disease pathways. Vinblastine (VLB) is a potent anticancer molecule showing multiple receptor interactions with different affinities and degrees of structural perturbations. We have investigated the multi-target binding profile of VLB with DNA and human serum albumin (HSA) in a dynamic physiological environment using spectroscopic, molecular dynamics simulations, and quantum mechanical calculations to evaluate the structural features, mode, ligand and receptor flexibility, and energetics of complexation. These results confirm that VLB prefers to bind in the major groove of DNA with some inclination toward Thymidine residue and the TR-5 binding site in HSA with its catharanthine half making important contacts with both the receptors. Spectroscopic investigation at multiple temperatures has also proved that VLB binding is entropy driven indicating the major groove and TR-5 binding site of interaction. Finally, the overall binding is facilitated by van der Waals contacts and a few conventional H-bonds. VLB portrays reasonable conformational diversity on binding with multiple receptors.
Collapse
Affiliation(s)
- Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Uttar Pradesh, Noida, India
| | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University, Uttar Pradesh, Noida, India
| | | | - Akankasha Yadav
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Neelima Gupta
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Uttar Pradesh, Noida, India
| |
Collapse
|
9
|
Palma JM, Corpas FJ, Freschi L. Editorial: Fruit ripening: From present knowledge to future development, Volume II. FRONTIERS IN PLANT SCIENCE 2022; 13:1078841. [PMID: 36531343 PMCID: PMC9753976 DOI: 10.3389/fpls.2022.1078841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Affiliation(s)
- José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
11
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
12
|
Soto-Ospina A, Araque Marín P, Bedoya GDJ, Villegas Lanau A. Structural Predictive Model of Presenilin-2 Protein and Analysis of Structural Effects of Familial Alzheimer's Disease Mutations. Biochem Res Int 2021; 2021:9542038. [PMID: 34881055 PMCID: PMC8648483 DOI: 10.1155/2021/9542038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease manifests itself in brain tissue by neuronal death, due to aggregation of β-amyloid, produced by senile plaques, and hyperphosphorylation of the tau protein, which produces neurofibrillary tangles. One of the genetic markers of the disease is the gene that translates the presenilin-2 protein, which has mutations that favor the appearance of the disease and has no reported crystallographic structure. In view of this, protein modeling is performed using prediction and structural refinement tools followed by an energetic and stereochemical characterization for its validation. For the simulation, four reported mutations are chosen, which are Met239Ile, Met239Val, Ser130Leu, and Thr122Arg, all associated with various functional responses. From a theoretical analysis, a preliminary bioinformatic study is made to find the phosphorylation patterns in the protein and the hydropathic index according to the polarity and chemical environment. Molecular visualization was carried out with the Chimera 1.14 software, and the theoretical calculation with the hybrid quantum mechanics/molecular mechanics system from the semi-empirical method, with Spartan18 software and an AustinModel1 basis. These relationships allow for studying the system from a structural approach with the determination of small distance changes, potential surfaces, electrostatic maps, and angle changes, which favor the comparison between wild-type and mutant systems. With the results obtained, it is expected to complement experimental data reported in the literature from models that would allow us to understand the effects of the selected mutations.
Collapse
Affiliation(s)
- Alejandro Soto-Ospina
- University of Antioquia, Faculty of Medicine, Group Molecular Genetics, Medellín, Colombia
- University of Antioquia, Faculty of Medicine, Group Neuroscience of Antioquia, Medellín, Colombia
| | - Pedronel Araque Marín
- EIA University, School of Life Sciences, Research and Innovation in Chemistry Formulations Group, Envigado, Colombia
| | | | - Andrés Villegas Lanau
- University of Antioquia, Faculty of Medicine, Group Molecular Genetics, Medellín, Colombia
- University of Antioquia, Faculty of Medicine, Group Neuroscience of Antioquia, Medellín, Colombia
| |
Collapse
|
13
|
Soto-Ospina A, Araque Marín P, Bedoya G, Sepulveda-Falla D, Villegas Lanau A. Protein Predictive Modeling and Simulation of Mutations of Presenilin-1 Familial Alzheimer's Disease on the Orthosteric Site. Front Mol Biosci 2021; 8:649990. [PMID: 34150846 PMCID: PMC8206637 DOI: 10.3389/fmolb.2021.649990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease pathology is characterized by β-amyloid plaques and neurofibrillary tangles. Amyloid precursor protein is processed by β and γ secretase, resulting in the production of β-amyloid peptides with a length ranging from 38 to 43 amino acids. Presenilin 1 (PS1) is the catalytic unit of γ-secretase, and more than 200 PS1 pathogenic mutations have been identified as causative for Alzheimer's disease. A complete monocrystal structure of PS1 has not been determined so far due to the presence of two flexible domains. We have developed a complete structural model of PS1 using a computational approach with structure prediction software. Missing fragments Met1-Glut72 and Ser290-Glu375 were modeled and validated by their energetic and stereochemical characteristics. Then, with the complete structure of PS1, we defined that these fragments do not have a direct effect in the structure of the pore. Next, we used our hypothetical model for the analysis of the functional effects of PS1 mutations Ala246GLu, Leu248Pro, Leu248Arg, Leu250Val, Tyr256Ser, Ala260Val, and Val261Phe, localized in the catalytic pore. For this, we used a quantum mechanics/molecular mechanics (QM/MM) hybrid method, evaluating modifications in the topology, potential surface density, and electrostatic potential map of mutated PS1 proteins. We found that each mutation exerts changes resulting in structural modifications of the active site and in the shape of the pore. We suggest this as a valid approach for functional studies of PS1 in view of the possible impact in substrate processing and for the design of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alejandro Soto-Ospina
- Faculty of Medicine, Group Molecular Genetics, University of Antioquia, Medellín, Colombia
- Faculty of Medicine, Group Neuroscience of Antioquia, University of Antioquia, Medellín, Colombia
| | - Pedronel Araque Marín
- School of Life Sciences, Research and Innovation in Chemistry Formulations Group, EIA University, Envigado, Colombia
| | - Gabriel Bedoya
- Faculty of Medicine, Group Molecular Genetics, University of Antioquia, Medellín, Colombia
| | - Diego Sepulveda-Falla
- Faculty of Medicine, Group Neuroscience of Antioquia, University of Antioquia, Medellín, Colombia
- Molecular Neuropathology of Alzheimer’s Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrés Villegas Lanau
- Faculty of Medicine, Group Molecular Genetics, University of Antioquia, Medellín, Colombia
- Faculty of Medicine, Group Neuroscience of Antioquia, University of Antioquia, Medellín, Colombia
| |
Collapse
|
14
|
Zeng M, Ren Y, Zhang B, Wang S, Liu M, Jia J, Guo P, Zhang Q, Zheng X, Feng W. In vitro Non-Small Cell Lung Cancer Inhibitory Effect by New Diphenylethane Isolated From Stems and Leaves of Dioscorea oppositifolia L. via ERβ-STAT3 Pathway. Front Pharmacol 2021; 12:622681. [PMID: 33708130 PMCID: PMC7941213 DOI: 10.3389/fphar.2021.622681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most leading cause of cancer mortality throughout the world, of which about 85% cases comprise the non-small cell lung cancer (NSCLC). Estrogen and estrogen receptors are known to be involved in the pathogenesis and development of lung cancer. Dioscorea oppositifolia L. is a traditional Chinese medicine and a nutritious food, and can be an excellent candidate as an anti-cancer agent owing to its estrogen-like effects. However, the stems and leaves of D. oppositifolia L. are piled up in the field as a waste, causing environmental pollution and waste of resources. In the present study, a new diphenylethane (D1) was isolated from the stems and leaves of D. oppositifolia L. It was observed that D1 reduced the cell viability, migration, energy metabolism, and induced apoptosis in the A549 cells. Mechanistic studies showed that D1 reduced the STAT3 nuclear localization and downregulated the expression of the STAT3 target genes like Mcl-1, Bcl-xL and MMP-2 that are involved in the cell survival and mobility. Moreover, our results indicated that D1 exhibited estrogenic activities mediated by ERβ, and antagonising ERβ decreased the cytotoxic effect of D1 in A549 cells. In addition, inhibition of the nuclear translocation of STAT3 did not interfere with the binding of D1 and ERβ. However, after antagonizing ERβ, the nuclear translocation of STAT3 increased, thereby demonstrating that STAT3 was the downstream signaling molecule of ERβ. In conclusion, the D1 mediated anti-NSCLC in vitro effects or at least in part can be attributed to the ERβ-STAT3 signaling. Our findings suggest the role of D1 in treating NSCLC on a molecular level, and can help to improve the comprehensive utilization rate of D. oppositifolia L.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yingjie Ren
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
15
|
Khaki-Khatibi F, Zeinali M, Ramezani B, Sabzichi M, Mohammadian J, Hamishehkar H. Harnessing WYE-132 as an inhibitor of the mTOR signaling enriches the cytotoxicity effect of vinblastine in B16F10 melanoma cancer cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc Natl Acad Sci U S A 2020; 117:26245-26253. [PMID: 33020312 DOI: 10.1073/pnas.2010264117] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABCB1 detoxifies cells by exporting diverse xenobiotic compounds, thereby limiting drug disposition and contributing to multidrug resistance in cancer cells. Multiple small-molecule inhibitors and inhibitory antibodies have been developed for therapeutic applications, but the structural basis of their activity is insufficiently understood. We determined cryo-EM structures of nanodisc-reconstituted, human ABCB1 in complex with the Fab fragment of the inhibitory, monoclonal antibody MRK16 and bound to a substrate (the antitumor drug vincristine) or to the potent inhibitors elacridar, tariquidar, or zosuquidar. We found that inhibitors bound in pairs, with one molecule lodged in the central drug-binding pocket and a second extending into a phenylalanine-rich cavity that we termed the "access tunnel." This finding explains how inhibitors can act as substrates at low concentration, but interfere with the early steps of the peristaltic extrusion mechanism at higher concentration. Our structural data will also help the development of more potent and selective ABCB1 inhibitors.
Collapse
|
17
|
Karatoprak GŞ, Küpeli Akkol E, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020; 25:E2560. [PMID: 32486408 PMCID: PMC7321081 DOI: 10.3390/molecules25112560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Combretastatins are a class of closely related stilbenes (combretastatins A), dihydrostilbenes (combretastatins B), phenanthrenes (combretastatins C) and macrocyclic lactones (combretastatins D) found in the bark of Combretum caffrum (Eckl. & Zeyh.) Kuntze, commonly known as the South African bush willow. Some of the compounds in this series have been shown to be among the most potent antitubulin agents known. Due to their structural simplicity many analogs have also been synthesized. Combretastatin A4 phosphate is the most frequently tested compounds in preclinical and clinical trials. It is a water-soluble prodrug that the body can rapidly metabolize to combretastatin A4, which exhibits anti-tumor properties. In addition, in vitro and in vivo studies on combretastatins have determined that these compounds also have antioxidant, anti-inflammatory and antimicrobial effects. Nano-based formulations of natural or synthetic active agents such as combretastatin A4 phosphate exhibit several clear advantages, including improved low water solubility, prolonged circulation, drug targeting properties, enhanced efficiency, as well as fewer side effects. In this review, a synopsis of the recent literature exploring the combretastatins, their potential effects and nanoformulations as lead compounds in clinical applications is provided.
Collapse
Affiliation(s)
- Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey;
| | - Hilal Bardakcı
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey;
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Kumbhar BV, Bhandare VV. Exploring the interaction of Peloruside-A with drug resistant αβII and αβIII tubulin isotypes in human ovarian carcinoma using a molecular modeling approach. J Biomol Struct Dyn 2020; 39:1990-2002. [DOI: 10.1080/07391102.2020.1745689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | |
Collapse
|
19
|
Zhang Z, Lu C, Wang P, Li A, Zhang H, Xu S. Structural Basis and Mechanism for Vindoline Dimers Interacting with α,β-Tubulin. ACS OMEGA 2019; 4:11938-11948. [PMID: 31460305 PMCID: PMC6682054 DOI: 10.1021/acsomega.9b00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Vinblastine and its derivatives used in clinics as antitumor drugs often cause drug resistance and some serious side effects; thus, it is necessary to study new vinblastine analogues with strong anticancer cytotoxicity and low toxicity. We designed a dimer molecule using two vindoline-bonded dimer vindoline (DVB) and studied its interaction with α,β-tubulin through the double-sided adhesive mechanism to explore its anticancer cytotoxicity. In our work, DVB was docked into the interface between α-tubulin and β-tubulin to construct a complex protein structure, and then it was simulated for 100 ns using the molecular dynamics technology to become a stable and refined complex protein structure. Based on such a refined structure, the quantum chemistry at the level of the MP2/6-31G(d,p) method was used to calculate the binding energies for DVB interacting with respective residues. By the obtained binding energies, the active site residues for interaction with DVB were found. Up to 20 active sites of residues within α,β-tubulin interacting with DVB are labeled in β-Asp179, β-Glu207, β-Tyr210, β-Asp211, β-Phe214, β-Pro222, β-Tyr224, and β-Leu227 and α-Asn249, α-Arg308, α-Lys326, α-Asn329, α-Ala333, α-Thr334, α-Lys336, α-Lys338, α-Arg339, α-Ser340, α-Thr349, and α-Phe351. The total binding energy between DVB and α,β-tubulin is about -251.0 kJ·mol-1. The sampling average force potential (PMF) method was further used to study the dissociation free energy (ΔG) along the separation trajectory of α,β-tubulin under the presence of DVB based on the refined structure of DVB with α,β-tubulin. Because of the presence of DVB within the interface between α- and β-tubulin, ΔG is 252.3 kJ·mol-1. In contrast to the absence of DVB, the separation of pure β-tubulin needs a free energy of 196.9 kJ·mol-1. The data show that the presence of DVB adds more 55.4 kJ·mol-1 of ΔG to hinder the normal separation of α,β-tubulin. Compared to vinblastine existing, the free energy required for the separation of α,β-tubulin is 220.5 kJ·mol-1. Vinblastine and DVB can both be considered through the same double-sided adhesive mechanism to give anticancer cytotoxicity. Because of the presence of DVB, a larger free energy is needed for the separation of α,β-tubulin, which suggests that DVB should have stronger anticancer cytotoxicity than vinblastine and shows that DVB has a broad application prospect.
Collapse
Affiliation(s)
- Zhengqiong Zhang
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Chengqi Lu
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Pei Wang
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Aijing Li
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Hongbo Zhang
- College
of Mathematics, Yunnan Normal University, Kunming 650500, China
| | - Sichuan Xu
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| |
Collapse
|
20
|
Kumbhar BV, Bhandare VV, Panda D, Kunwar A. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. J Biomol Struct Dyn 2019; 38:426-438. [DOI: 10.1080/07391102.2019.1577174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Vishwambhar Vishnu Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|