1
|
de Araujo MC, Souza DDC, Dos Santos Rosa A, Dos Santos Ferreira VN, Mazzarino L, Veleirinho B, Miranda MD, Maraschin M. Green antiseptic for hand hygiene with high activity against SARS-CoV-2: Iota-carrageenan, quercetin, and Melaleuca alternifolia essential oil based nanoemulsion. Int J Biol Macromol 2025; 305:140920. [PMID: 39947550 DOI: 10.1016/j.ijbiomac.2025.140920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The World Health Organization (WHO) has determined a series of guidelines to contain the advance and spread of COVID-19 and other influenza viruses. Among them, frequent hand hygiene has been widely recommended, resulting in an increased consumption of alcohol-based antiseptic products or synthetic molecules. However, when used in excess, these products might cause adverse consequences for human health, such as dermatitis, and for the environment, i.e., the selection of resistant bacterial genotypes. One of the alternatives to overcome this problem is the replacement of common antiseptics by formulations based on natural bioactive compounds with antimicrobial/antiviral activity. In addition, by nanostructuring formulations, it is possible to increase the bioavailability, stability, solubility, and absorption of bioactives in biological systems. In this sense, this study aimed to develop an antiseptic nanoemulsion based on natural bioactive compounds with virucidal activity against SARS-CoV-2. For that, oil-in-water (O/W) nanoemulsions were prepared, being the oil phase composed by Melaleuca alternifolia essential oil, quercetin, PEG400, and surfactants, while the aqueous phase presented carrageenan and purified water. Physicochemical characterization and stability studies were developed to evaluate the viability of the formulations over time. In addition, bactericidal activities against Staphylococcus aureus and antiviral activity against SARS-CoV-2 were determined by in vitro assays. As a result, the average size of the nanoparticles was recorded at 150 nm, with a Polydispersity Index (PdI) of 0.2 and a zeta potential around -10.0 mV. The stability of nanoformulations indicated the occurrence of quercetin-dependent creaming and sedimentation. In addition, the products presented a minimum shelf-life of 3 months. Regarding the bactericidal activity, a minimum inhibition concentration of 1.25 % for S. aureus was found. The cytotoxicity and antiviral assays revealed that the nano-based products showed 100 % of viral replication inhibition and proved to be safe for epithelial cells. In conclusion, two antiseptic nanoformulations with high anti-SARS-CoV-2 activity and great industrial and pharmacological potential were developed.
Collapse
Affiliation(s)
- Milena Conci de Araujo
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel Dias Coutinho Souza
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil; Postgraduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Alice Dos Santos Rosa
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil; Postgraduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Letícia Mazzarino
- NanoScoping Solutions in Nanotechnology, Alpha Tech. Park, Florianópolis, Brazil
| | - Beatriz Veleirinho
- NanoScoping Solutions in Nanotechnology, Alpha Tech. Park, Florianópolis, Brazil
| | - Milene Dias Miranda
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil; Postgraduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Kar P, Oriola AO, Oyedeji AO. Toward Understanding the Anticancer Activity of the Phytocompounds from Eugenia uniflora Using Molecular Docking, in silico Toxicity and Dynamics Studies. Adv Appl Bioinform Chem 2024; 17:71-82. [PMID: 39318425 PMCID: PMC11421442 DOI: 10.2147/aabc.s473928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Background The Surinam cherry, Eugenia uniflora belongs to the family Myrtaceae, an edible fruit-bearing medicinal plant with various biological properties. Several anticancer studies have been conducted on its essential oils while the non-essential oil compounds including phenolics, flavonoids, and carotenoids have not been fully investigated. Purpose Therefore, the study evaluated the in silico anticancer potentials of phenolic, flavonoid, and carotenoid compounds of E. uniflora against the MDM2 and Bcl-xL proteins, which are known to promote cancer cell growth and malignancy. The physicochemical parameters, validation, cytotoxicity, and mutagenicity of the polyphenols were determined using the SwissADME, pkCSM, ProTox-II, and vNN-ADMET online servers respectively. Lastly, the promising phytocompounds were validated using molecular dynamics (MD) simulation. Results An extensive literature search resulted in the compilation of forty-four (44) polyphenols from E. uniflora. Top-rank among the screened polyphenols is galloylastragalin, which exhibited a binding energy score of -8.7 and -8.5 kcal/mol with the hydrophobic interactions (Ala93, Val141) and (Leu54, Val93, Ile99), as well as hydrogen bond interactions (Tyr195) and (Gln72) of the proteins Bcl-xL and MDM2 respectively. A complete in silico toxicity assessment revealed that the compounds, galloylastragalin, followed by myricetin, resveratrol, p-Coumaroylquinic acid, and cyanidin-3-O-glucoside, were potentially non-mutagenic, non-carcinogenic, non-cytotoxic, and non-hepatotoxic. During the 120 ns MD simulations, the RMSF analysis of galloylastragalin- MDM2 (complex 1) and galloylastragalin- Bcl-xL (complex 2) showed the fewest fluctuations, indicating the conformational stability of the respective complexes. Conclusion This study has shown that polyphenol compounds of E. uniflora led by galloylastragalin, are potent inhibitors of the MDM2 and Bcl-xL cancer proteins. Thus, they may be considered as candidate polyphenols for further anticancer studies.
Collapse
Affiliation(s)
- Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, 5117, South Africa
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| | - Ayodeji O Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| | - Adebola O Oyedeji
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, 5117, South Africa
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| |
Collapse
|
3
|
Konkel R, Milewska A, Do NDT, Barreto Duran E, Szczepanski A, Plewka J, Wieczerzak E, Iliakopoulou S, Kaloudis T, Jochmans D, Neyts J, Pyrc K, Mazur-Marzec H. Anti-SARS-CoV-2 activity of cyanopeptolins produced by Nostoc edaphicum CCNP1411. Antiviral Res 2023; 219:105731. [PMID: 37838220 DOI: 10.1016/j.antiviral.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Despite the advances in contemporary medicine and availability of numerous innovative therapies, effective treatment and prevention of SARS-CoV-2 infections pose a challenge. In the search for new anti-SARS-CoV-2 drug candidates, natural products are frequently explored. Here, fifteen cyanopeptolins (CPs) were isolated from the Baltic cyanobacterium Nostoc edaphicum and tested against SARS-CoV-2. Of these depsipeptides, the Arg-containing structural variants showed the strongest inhibition of the Delta SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells. The functional assays indicated a direct interaction of the Arg-containing CP978 with the virions. CP978 also induced a significant decline in virus replication in the primary human airway epithelial cells (HAE). Of the four tested SARS-CoV-2 variants, Wuhan, Alpha, Omicron and Delta, only Wuhan was not affected by CP978. Finally, the analyses with application of confocal microscopy and with the SARS-CoV-2 pseudoviruses showed that CP978-mediated inhibition of viral infection results from the direct binding of the cyanopeptolin with the coronaviral S protein. Considering the potency of viral inhibition and the mode of action of CP978, the significance of the peptide as antiviral drug candidate should be further explored.
Collapse
Affiliation(s)
- Robert Konkel
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Gdynia, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Nguyen Dan Thuc Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Emilia Barreto Duran
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Szczepanski
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Sofia Iliakopoulou
- Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR Demokritos, Agia Paraskevi, Greece; Laboratory of Organic Micropollutants, Water Quality Control Department, EYDAP SA, Menidi, Athens, Greece
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Gdynia, Poland.
| |
Collapse
|
4
|
Sahu N, Mishra S, Kesheri M, Kanchan S, Sinha RP. Identification of Cyanobacteria-Based Natural Inhibitors Against SARS-CoV-2 Druggable Target ACE2 Using Molecular Docking Study, ADME and Toxicity Analysis. Indian J Clin Biochem 2023; 38:361-373. [PMID: 35812791 PMCID: PMC9255548 DOI: 10.1007/s12291-022-01056-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
In 2019-2020, the novel "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)" had emerged as the biggest challenge for humanity, causing "coronavirus disease 19 (COVID-19)". Scientists around the world have been putting continuous efforts to unfold potential inhibitors of SARS-CoV-2. We have performed computational studies that help us to identify cyanobacterial photoprotective compounds as potential inhibitors against SARS-CoV-2 druggable target human angiotensin-converting enzyme (ACE2), which plays a vital role in the attachment and entry of the virus into the cell. Blocking the receptor-binding domain of ACE2 can prevent the access of the virus into the compartment. A molecular docking study was performed between photoprotective compounds mycosporine-like amino acids, scytonemins and ACE2 protein using AutoDock tools. Among sixteen molecularly docked metabolites, seven compounds were selected with binding energy < 6.8 kcal/mol. Afterwards, drug-likeness and toxicity of the top candidate were predicted using Swiss ADME and Pro Tox-II online servers. All top hits show desirable drug-likeness properties, but toxicity pattern analysis discloses the toxic effect of scytonemin and its derivatives, resulting in the elimination from the screening pipeline. Further molecular interaction study of the rest two ligands, mycosporine-glycine-valine and shinorine with ACE2 was performed using PyMol, Biovia Discovery studio and LigPlot+. Lastly biological activity of both the ligands was predicted by using the PASS online server. Combining the docking score and other studied properties, we believe that mycosporine-glycine-valine and shinorine have potential to be potent inhibitors of ACE2 and can be explored further to use against COVID-19.
Collapse
Affiliation(s)
- Niharika Sahu
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Sonal Mishra
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Minu Kesheri
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Swarna Kanchan
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
5
|
Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening. Int J Mol Sci 2023; 24:ijms24054397. [PMID: 36901828 PMCID: PMC10002104 DOI: 10.3390/ijms24054397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Papain-like protease (PLpro) is critical to COVID-19 infection. Therefore, it is a significant target protein for drug development. We virtually screened a 26,193 compound library against the PLpro of SARS-CoV-2 and identified several drug candidates with convincing binding affinities. The three best compounds all had better estimated binding energy than those of the drug candidates proposed in previous studies. By analyzing the docking results for the drug candidates identified in this and previous studies, we demonstrate that the critical interactions between the compounds and PLpro proposed by the computational approaches are consistent with those proposed by the biological experiments. In addition, the predicted binding energies of the compounds in the dataset showed a similar trend as their IC50 values. The predicted ADME and drug-likeness properties also suggested that these identified compounds can be used for COVID-19 treatment.
Collapse
|
6
|
Mohan Kumar R, Anantapur R, Peter A, H V C. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. J Biomol Struct Dyn 2022; 40:12165-12183. [PMID: 34463218 DOI: 10.1080/07391102.2021.1968500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshni Mohan Kumar
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Ramachandra Anantapur
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Anitha Peter
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Chaitra H V
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
7
|
Taguchi YH, Turki T. Adapted tensor decomposition and PCA based unsupervised feature extraction select more biologically reasonable differentially expressed genes than conventional methods. Sci Rep 2022; 12:17438. [PMID: 36261574 PMCID: PMC9580456 DOI: 10.1038/s41598-022-21474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Tensor decomposition- and principal component analysis-based unsupervised feature extraction were proposed almost 5 and 10 years ago, respectively; although these methods have been successfully applied to a wide range of genome analyses, including drug repositioning, biomarker identification, and disease-causing genes' identification, some fundamental problems have been identified: the number of genes identified was too small to assume that there were no false negatives, and the histogram of P values derived was not fully coincident with the null hypothesis that principal component and singular value vectors follow the Gaussian distribution. Optimizing the standard deviation such that the histogram of P values is as much as possible coincident with the null hypothesis results in an increase in the number and biological reliability of the selected genes. Our contribution was that we improved these methods so as to be able to select biologically more reasonable differentially expressed genes than the state of art methods that must empirically assume negative binomial distributions and dispersion relation, which is required for the selecting more expressed genes than less expressed ones, which can be achieved by the proposed methods that do not have to assume these.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Nada H, Elkamhawy A, Lee K. Identification of 1H-purine-2,6-dione derivative as a potential SARS-CoV-2 main protease inhibitor: molecular docking, dynamic simulations, and energy calculations. PeerJ 2022; 10:e14120. [PMID: 36225900 PMCID: PMC9549888 DOI: 10.7717/peerj.14120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
The rapid spread of the coronavirus since its first appearance in 2019 has taken the world by surprise, challenging the global economy, and putting pressure on healthcare systems across the world. The introduction of preventive vaccines only managed to slow the rising death rates worldwide, illuminating the pressing need for developing effective antiviral therapeutics. The traditional route of drug discovery has been known to require years which the world does not currently have. In silico approaches in drug design have shown promising results over the last decade, helping to decrease the required time for drug development. One of the vital non-structural proteins that are essential to viral replication and transcription is the SARS-CoV-2 main protease (Mpro). Herein, using a test set of recently identified COVID-19 inhibitors, a pharmacophore was developed to screen 20 million drug-like compounds obtained from a freely accessible Zinc database. The generated hits were ranked using a structure based virtual screening technique (SBVS), and the top hits were subjected to in-depth molecular docking studies and MM-GBSA calculations over SARS-COV-2 Mpro. Finally, the most promising hit, compound (1), and the potent standard (III) were subjected to 100 ns molecular dynamics (MD) simulations and in silico ADME study. The result of the MD analysis as well as the in silico pharmacokinetic study reveal compound 1 to be a promising SARS-Cov-2 MPro inhibitor suitable for further development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| |
Collapse
|
9
|
Rieder AS, Deniz BF, Netto CA, Wyse ATS. A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease. Neurotox Res 2022; 40:1553-1569. [PMID: 35917086 PMCID: PMC9343570 DOI: 10.1007/s12640-022-00542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein-ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer's disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.
Collapse
Affiliation(s)
- Alessandra S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna F Deniz
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Alexandre Netto
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
10
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Bhura N, Gupta P, Gupta J. Target-based in-silico screening of basil polysaccharides against different epigenetic targets responsible for breast cancer. J Recept Signal Transduct Res 2022; 42:521-530. [PMID: 35862239 DOI: 10.1080/10799893.2022.2058016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Breast cancer (BC) is one of the leading types of cancer found in women. One of the causes reported for BC is improper regulation of epigenetic modifications. Various epigenetic targets such as histone deacetylases (HDAC) and histone acetyltransferases (HAT) regulate many types of cancer, including BC. Basil is known to possess anti-cancer properties; however, the role of its polysaccharides against different epigenetic targets is still not very clear. Therefore, the molecular docking method is used to find out the binding potential of the BPSs against different epigenetic targets responsible for BC. METHODS All the basil polysaccharides (BPSs) were screened against the diverse epigenetic targets reported for BC (HDAC1-2, 4-8, and HAT) using molecular docking studies alongwith swissADME studies to check the drug likeliness of the BPSs. RESULTS It was found that glucosamine ring, glucosamine linear, glucuronic acid linear, rhamnose linear, glucuronic acid ring, galactose ring, mannose, glucose, and xylose were exhibited consistent binding potential against the epigenetic targets (HDAC1, HDAC2, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HAT,) responsible for BC. CONCLUSION This is the first report where BPSs were reported against these epigenetic targets. These studies can help to understand the underlying mechanism of BPSs used against epigenetic targets for BC. These results can be further validated experimentally to confirm their potential as a promising inhibitor against the epigenetic targets (HDAC1-2, 4-8, and HAT) having a role in BC.
Collapse
Affiliation(s)
- Nancy Bhura
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pawan Gupta
- Department of Research and Development, Lovely Professional University, Phagwara, Punjab, India.,Department of Pharmacology, Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19. CHEMICAL PAPERS 2022; 76:6271-6285. [PMID: 35757111 PMCID: PMC9216297 DOI: 10.1007/s11696-022-02298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The non-structural protein 3 is essential for the replication of transcriptase complex (RTC) and may be regarded as a possible target against SARS-CoV-2. Here, we have used a comprehensive in silico technique to find potent drug molecules against the NSP3 receptor of SARS-CoV-2. Virtual screening of 150 Isatin derivatives taken from PubChem was performed based on their binding affinity estimated by docking simulations, resulting in the selection of 46 ligands having binding energy greater than -7.1 kcal/mol. Moreover, the molecular interactions of the nine best-docked ligands having a binding energy of ≥ -8.5 kcal/mol were analyzed. The molecular interactions showed that the three ligands (S5, S16, and S42) were stabilized by forming hydrogen bonds and other significant interactions. Molecular dynamic simulations were performed to mimic an in vitro protein-like aqueous environment and to check the stability of the best three ligands and NSP3 complexes in an aqueous environment. The binding energy of the S5, S16, and S42 systems obtained from the molecular mechanics Poisson-Boltzmann surface area also favor the system's stability. The MD and MM/PBSA results explore that S5, S16, and S42 are more stable and can be considered more potent drug candidates against COVID-19 disease. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02298-7.
Collapse
|
14
|
Cegłowska M, Szubert K, Grygier B, Lenart M, Plewka J, Milewska A, Lis K, Szczepański A, Chykunova Y, Barreto-Duran E, Pyrć K, Kosakowska A, Mazur-Marzec H. Pseudanabaena galeata CCNP1313—Biological Activity and Peptides Production. Toxins (Basel) 2022; 14:toxins14050330. [PMID: 35622577 PMCID: PMC9146944 DOI: 10.3390/toxins14050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Even cyanobacteria from ecosystems of low biodiversity, such as the Baltic Sea, can constitute a rich source of bioactive metabolites. Potent toxins, enzyme inhibitors, and anticancer and antifungal agents were detected in both bloom-forming species and less commonly occurring cyanobacteria. In previous work on the Baltic Pseudanabaena galeata CCNP1313, the induction of apoptosis in the breast cancer cell line MCF-7 was documented. Here, the activity of the strain was further explored using human dermal fibroblasts, African green monkey kidney, cancer cell lines (T47D, HCT-8, and A549ACE2/TMPRSS2) and viruses (SARS-CoV-2, HCoV-OC43, and WNV). In the tests, extracts, chromatographic fractions, and the main components of the P. galeata CCNP1313 fractions were used. The LC-MS/MS analyses of the tested samples led to the detection of forty-five peptides. For fourteen of the new peptides, putative structures were proposed based on MS/MS spectra. Although the complex samples (i.e., extracts and chromatographic fractions) showed potent cytotoxic and antiviral activities, the effects of the isolated compounds were minor. The study confirmed the significance of P. galeata CCNP1313 as a source of metabolites with potent activity. It also illustrated the difficulties in assigning the observed biological effects to specific metabolites, especially when they are produced in minute amounts.
Collapse
Affiliation(s)
- Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
- Correspondence: (M.C.); (H.M.-M.)
| | - Karolina Szubert
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
| | - Beata Grygier
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Kinga Lis
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, PL-31155 Cracow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Yuliya Chykunova
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Alicja Kosakowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
- Correspondence: (M.C.); (H.M.-M.)
| |
Collapse
|
15
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Zackria AA, Pattabiraman R, Murthy TPK, Kumar SB, Mathew BB, Biju VG. Computational screening of natural compounds from Salvia plebeia R. Br. for inhibition of SARS-CoV-2 main protease. VEGETOS (BAREILLY, INDIA) 2022; 35:345-359. [PMID: 34690453 PMCID: PMC8523934 DOI: 10.1007/s42535-021-00304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has emerged to be the reason behind the COVID-19 pandemic. It was discovered in Wuhan, China and then began spreading around the world, impacting the health of millions. Efforts for treatment have been hampered as there are no antiviral drugs that are effective against this virus. In the present study, we have explored the phytochemical constituents of Salvia plebeia R. Br., in terms of its binding affinity by targeting COVID-19 main protease (Mpro) using computational analysis. Molecular docking analysis was performed using PyRx software. The ADMET and drug-likeness properties of the top 10 compounds showing binding affinity greater than or equal to - 8.0 kcal/mol were analysed using pkCSM and DruLiTo, respectively. Based on the docking studies, it was confirmed that Rutin and Plebeiosides B were the most potent inhibitors of the main protease of SARS-CoV-2 with the best binding affinities of - 9.1 kcal/mol and - 8.9 kcal/mol, respectively. Further, the two compounds were analysed by studying their biological activity using the PASS webserver. Molecular dynamics simulation analysis was performed for the selected protein-ligand complexes to confirm their stability at 300 ns. MM-PBSA provided the basis for analyzing the affinity of the phytochemicals towards Mpro by calculating the binding energy, and secondary structure analysis indicated the stability of protease structure when it is bound to Rutin and Plebeiosides B. Altogether, the study identifies Rutin and Plebeiosides B to be potent Mpro inhibitors of SARS-CoV-2. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42535-021-00304-z.
Collapse
Affiliation(s)
- Afraa Aqeel Zackria
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - Ramya Pattabiraman
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - S. Birendra Kumar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - Blessy Baby Mathew
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, Karnataka 560078 India
| | - Vinai George Biju
- Department of Computer Science and Engineering, Christ (Deemed-to-be University), Bengaluru, Karnataka 560060 India
| |
Collapse
|
17
|
Phycochemistry and bioactivity of cyanobacterial secondary metabolites. Mol Biol Rep 2022; 49:11149-11167. [PMID: 36161579 PMCID: PMC9513011 DOI: 10.1007/s11033-022-07911-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Microbes are a huge contributor to people's health around the world since they produce a lot of beneficial secondary metabolites. Cyanobacteria are photosynthetic prokaryotic bacteria cosmopolitan in nature. Adaptability of cyanobacteria to wide spectrum of environment can be contributed to the production of various secondary metabolites which are also therapeutic in nature. As a result, they are a good option for the development of medicinal molecules. These metabolites could be interesting COVID-19 therapeutic options because the majority of these compounds have demonstrated substantial pharmacological actions, such as neurotoxicity, cytotoxicity, and antiviral activity against HCMV, HSV-1, HHV-6, and HIV-1. They have been reported to produce a single metabolite active against wide spectrum of microbes like Fischerella ambigua produces ambigols active against bacteria, fungi and protozoa. Similarly, Moorea producens produces malygomides O and P, majusculamide C and somocystinamide which are active against bacteria, fungi and tumour cells, respectively. In addition to the above, Moorea sp. produce apratoxin A and dolastatin 15 possessing anti cancerous activity but unfortunately till date only brentuximab vedotin (trade name Adcetris), a medication derived from marine peptides, for the treatment of Hodgkin lymphoma and anaplastic large cell lymphoma has been approved by FDA. However, several publications have effectively described and categorised cyanobacterial medicines based on their biological action. In present review, an effort is made to categorize cyanobacterial metabolites on the basis of their phycochemistry. The goal of this review is to categorise cyanobacterial metabolites based on their chemical functional group, which has yet to be described.
Collapse
|
18
|
Razali R, Asis H, Budiman C. Structure-Function Characteristics of SARS-CoV-2 Proteases and Their Potential Inhibitors from Microbial Sources. Microorganisms 2021; 9:2481. [PMID: 34946083 PMCID: PMC8706127 DOI: 10.3390/microorganisms9122481] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is considered the greatest challenge to the global health community of the century as it continues to expand. This has prompted immediate urgency to discover promising drug targets for the treatment of COVID-19. The SARS-CoV-2 viral proteases, 3-chymotrypsin-like protease (3CLpro) and papain-like cysteine protease (PLpro), have become the promising target to study due to their essential functions in spreading the virus by RNA transcription, translation, protein synthesis, processing and modification, virus replication, and infection of the host. As such, understanding of the structure and function of these two proteases is unavoidable as platforms for the development of inhibitors targeting this protein which further arrest the infection and spread of the virus. While the abundance of reports on the screening of natural compounds such as SARS-CoV-2 proteases inhibitors are available, the microorganisms-based compounds (peptides and non-peptides) remain less studied. Indeed, microorganisms-based compounds are also one of the potent antiviral candidates against COVID-19. Microbes, especially bacteria and fungi, are other resources to produce new drugs as well as nucleosides, nucleotides, and nucleic acids. Thus, we have compiled various reported literature in detail on the structures, functions of the SARS-CoV-2 proteases, and potential inhibitors from microbial sources as assistance to other researchers working with COVID-19. The compounds are also compared to HIV protease inhibitors which suggested the microorganisms-based compounds are advantageous as SARS-CoV2 proteases inhibitors. The information should serve as a platform for further development of COVID-19 drug design strategies.
Collapse
Affiliation(s)
| | | | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (R.R.); (H.A.)
| |
Collapse
|
19
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
20
|
Gupta A, Pradhan A, Maurya VK, Kumar S, Theengh A, Puri B, Saxena SK. Therapeutic approaches for SARS-CoV-2 infection. Methods 2021; 195:29-43. [PMID: 33962011 PMCID: PMC8096528 DOI: 10.1016/j.ymeth.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
Therapeutic approaches to COVID-19 treatment require appropriate inhibitors to target crucial proteins of SARS-CoV-2 replication machinery. It's been approximately 12 months since the pandemic started, yet no known specific drugs are available. However, research progresses with time in terms of high throughput virtual screening (HTVS) and rational design of repurposed, novel synthetic and natural products discovery by understanding the viral life cycle, immuno-pathological and clinical outcomes in patients based on host's nutritional, metabolic, and lifestyle status. Further, complementary and alternative medicine (CAM) approaches have also improved resiliency and immune responses. In this article, we summarize all the therapeutic antiviral strategies for COVID-19 drug discovery including computer aided virtual screening, repurposed drugs, immunomodulators, vaccines, plasma therapy, various adjunct therapies, and phage technology to unravel insightful mechanistic pathways of targeting SARS-CoV-2 and host's intrinsic, innate immunity at multiple checkpoints that aid in the containment of the disease.
Collapse
Affiliation(s)
- Ankur Gupta
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Anish Pradhan
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Angila Theengh
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Bipin Puri
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India.
| |
Collapse
|
21
|
Naidoo D, Kar P, Roy A, Mutanda T, Bwapwa J, Sen A, Anandraj A. Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, M pro and PL pro of SARS-CoV-2: Protein-Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules 2021; 26:molecules26175114. [PMID: 34500548 PMCID: PMC8434238 DOI: 10.3390/molecules26175114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (−16.8 ± 0.02 kcal/mol, −12.3 ± 0.03 kcal/mol and −13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson–Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.
Collapse
Affiliation(s)
- Devashan Naidoo
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; (T.M.); (J.B.); (A.A.)
- Correspondence: (D.N.); (A.R.)
| | - Pallab Kar
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734013, India; (P.K.); (A.S.)
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
- Correspondence: (D.N.); (A.R.)
| | - Taurai Mutanda
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; (T.M.); (J.B.); (A.A.)
| | - Joseph Bwapwa
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; (T.M.); (J.B.); (A.A.)
| | - Arnab Sen
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734013, India; (P.K.); (A.S.)
| | - Akash Anandraj
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; (T.M.); (J.B.); (A.A.)
| |
Collapse
|
22
|
Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A, Bayu A, Putra MY. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e68432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the uncontrolled spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), development and distribution of antiviral drugs and vaccines have gained tremendous importance. This study focused on two viral proteases namely main protease (Mpro) and papain-like protease (PLpro) and human angiotensin-converting enzyme (ACE-2) to identify which of these are essential for viral replication. We screened 102 secondary metabolites against SARS-CoV-2 isolated from 36 terrestrial plants and 36 marine organisms from Indonesian biodiversity. These organisms are typically presumed to have antiviral effects, and some of them have been used as an immunomodulatory activity in traditional medicine. For the molecular docking procedure to obtain Gibbs free energy value (∆G), toxicity, ADME and Lipinski, AutoDock Vina was used. In this study, five secondary metabolites, namely corilagin, dieckol, phlorofucofuroeckol A, proanthocyanidins, and isovitexin, were found to inhibit ACE-2, Mpro, and PLpro receptors in SARS-CoV-2, with a high affinity to the same sites of ptilidepsin, remdesivir, and chloroquine as the control molecules. This study was delimited to molecular docking without any validation by simulations concerned with molecular dynamics. The interactions with two viral proteases and human ACE-2 may play a key role in developing antiviral drugs for five active compounds. In future, we intend to investigate antiviral drugs and the mechanisms of action by in vitro study.
Collapse
|
23
|
The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: A critical review. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021; 12:100826. [PMID: 34222718 PMCID: PMC8240443 DOI: 10.1016/j.cegh.2021.100826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objective There is no specific antiviral treatment available for coronavirus disease 2019 (COVID-19). Among the possible natural constituents is carrageenan, a polymer derived from marine algae that possesses a variety of antiviral properties. The purpose of this review was to summarize the evidence supporting carrageenan subtypes' antiviral activity against the emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19. Methods PubMed/MEDLINE and Google Scholar searches were conducted for publications using the terms 'carrageenan', 'iota carrageenan', 'kappa carrageenan', lambda-carrageenan', 'coronavirus', 'common cold', 'rhinovirus', and 'SARS-CoV-2' search was also done in grey literature to increase our understanding. A search for the word "carrageenan" was also carried out. Most of the publications were discussed in narrative. Results Carrageenan has been shown to have potent antiviral activity against both coronaviruses (coronavirus NL63, SARS-CoV-2) and non-coronaviruses such as dengue virus, herpes simplex virus, cytomegalovirus, vaccinia virus, vesicular stomatitis virus, sindbis virus, human immunodeficiency virus, influenza virus, human papillomavirus, rabies virus, junin virus, tacaribe virus, African swine fever, bovine herpes virus, suid herpes virus, and rhinovirus. No in vivo study has been conducted using carrageenan as an anti-SARS-CoV-2 agent. The majority of the in vivo research was done on influenza, a respiratory virus that causes common cold together with coronavirus. Thus, various clinical trials were conducted to determine the transferability of these in vitro data to clinical effectiveness against SARS-CoV-2. When combined with oral ivermectin, nasally administered iota-carrageenan improved outcome in COVID-19 patients. It is still being tested in clinics for single-dose administration. Conclusion Though the carrageenan exhibited potent antiviral activity against SARS-CoV-2 and was used to treat COVID-19 under emergency protocol in conjunction with oral medications such as ivermectin, there is no solid evidence from clinical trials to support its efficacy. Thus, clinical trials are required to assess its efficacy for COVID-19 treatment prior to broad application.
Collapse
|
24
|
Tian D, Liu Y, Liang C, Xin L, Xie X, Zhang D, Wan M, Li H, Fu X, Liu H, Cao W. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed Pharmacother 2021; 137:111313. [PMID: 33556871 PMCID: PMC7857046 DOI: 10.1016/j.biopha.2021.111313] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak and pandemic that began near the end of 2019 has posed a challenge to global health. At present, many candidate small-molecule therapeutics have been developed that can inhibit both the infection and replication of SARS-CoV-2 and even potentially relieve cytokine storms and other related complications. Meanwhile, host-targeted drugs that inhibit cellular transmembrane serine protease (TMPRSS2) can prevent SARS-CoV-2 from entering cells, and its combination with chloroquine and dihydroorotate dehydrogenase (DHODH) inhibitors can limit the spread of SARS-CoV-2 and reduce the morbidity and mortality of patients with COVID-19. The present article provides an overview of these small-molecule therapeutics based on insights from medicinal chemistry research and focuses on RNA-dependent RNA polymerase (RdRp) inhibitors, such as the nucleoside analogues remdesivir, favipiravir and ribavirin. This review also covers inhibitors of 3C-like protease (3CLpro), papain-like protease (PLpro) and other potentially innovative active ingredient molecules, describing their potential targets, activities, clinical status and side effects.
Collapse
Affiliation(s)
- Dengke Tian
- School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Life Sciences, Jilin University, Changchun, 130012, PR China; Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| |
Collapse
|
25
|
Khalifa SAM, Shedid ES, Saied EM, Jassbi AR, Jamebozorgi FH, Rateb ME, Du M, Abdel-Daim MM, Kai GY, Al-Hammady MAM, Xiao J, Guo Z, El-Seedi HR. Cyanobacteria-From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar Drugs 2021; 19:241. [PMID: 33923369 PMCID: PMC8146687 DOI: 10.3390/md19050241] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eslam S. Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Fatemeh H. Jamebozorgi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, UK;
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Guo-Yin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | | | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
26
|
Kumar V, Parate S, Yoon S, Lee G, Lee KW. Computational Simulations Identified Marine-Derived Natural Bioactive Compounds as Replication Inhibitors of SARS-CoV-2. Front Microbiol 2021; 12:647295. [PMID: 33967984 PMCID: PMC8097174 DOI: 10.3389/fmicb.2021.647295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
The rapid spread of COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide health emergency. Unfortunately, to date, a very small number of remedies have been to be found effective against SARS-CoV-2 infection. Therefore, further research is required to achieve a lasting solution against this deadly disease. Repurposing available drugs and evaluating natural product inhibitors against target proteins of SARS-CoV-2 could be an effective approach to accelerate drug discovery and development. With this strategy in mind, we derived Marine Natural Products (MNP)-based drug-like small molecules and evaluated them against three major target proteins of the SARS-CoV-2 virus replication cycle. A drug-like database from MNP library was generated using Lipinski's rule of five and ADMET descriptors. A total of 2,033 compounds were obtained and were subsequently subjected to molecular docking with 3CLpro, PLpro, and RdRp. The docking analyses revealed that a total of 14 compounds displayed better docking scores than the reference compounds and have significant molecular interactions with the active site residues of SARS-CoV-2 virus targeted proteins. Furthermore, the stability of docking-derived complexes was analyzed using molecular dynamics simulations and binding free energy calculations. The analyses revealed two hit compounds against each targeted protein displaying stable behavior, binding affinity, and molecular interactions. Our investigation identified two hit compounds against each targeted proteins displaying stable behavior, higher binding affinity and key residual molecular interactions, with good in silico pharmacokinetic properties, therefore can be considered for further in vitro studies.
Collapse
Affiliation(s)
- Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Shraddha Parate
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju, South Korea
| | - Sanghwa Yoon
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Gihwan Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju, South Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
27
|
Antiviral Cyanometabolites-A Review. Biomolecules 2021; 11:biom11030474. [PMID: 33810129 PMCID: PMC8004682 DOI: 10.3390/biom11030474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system’s response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.
Collapse
|
28
|
Jafari Porzani S, Konur O, Nowruzi B. Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. J Biomol Struct Dyn 2021; 40:7629-7644. [PMID: 33749496 DOI: 10.1080/07391102.2021.1899050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), positive-sense RNA viruses, originated from Wuhan City in December 2019 and propagated widely globally. Hence, the disease caused by this virus has been declared as a global pandemic by the WHO. As of 18th February 2021, at least seven different vaccines across three platforms have been rolled out in countries and more than 200 additional vaccine candidates have been in development, of which more than 60 are at the stage of the clinical development. So far, Most of the approved vaccine manufacturers are Pfizer, AstraZeneca, and Serum Institute of India, which have been finalized by WHO. Synthetic drug-associated complications have evoked scientific attention for natural product-based drugs. There has been a surge in the antiviral compounds from natural resources along with some therapies. Cyanobacteria are the fruitful reservoir of many metabolites like sulfated polysaccharides and lectins that possess strong antiviral activities and immunity boosting effects. However, the research in this field has been relatively under-developed. The current research highlights important features of cyanobacterial antiviral biomaterials, benefits and drawbacks of cyanobacterial drugs, challenges, future perspectives as well as overview of drugs against COVID-19. In addition, we have described mutated variants and transmission rate of coronaviruses. The current research suggests that cyanobacterial species and their extracts have promising applications as potentially antiviral drug biomaterials against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
Kar P, Kumar V, Vellingiri B, Sen A, Jaishee N, Anandraj A, Malhotra H, Bhattacharyya S, Mukhopadhyay S, Kinoshita M, Govindasamy V, Roy A, Naidoo D, Subramaniam MD. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. J Biomol Struct Dyn 2020; 40:4532-4542. [PMID: 33305988 PMCID: PMC7808002 DOI: 10.1080/07391102.2020.1860133] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an unprecedented challenge to global public health with researchers striving to find a possible therapeutic candidate that could limit the spread of the virus. In this context, the present study employed an in silico molecular interaction-based approach to estimate the inhibitory potential of the phytochemicals from ethnomedicinally relevant Indian plants including Justicia adhatoda, Ocimum sanctum and Swertia chirata, with reported antiviral activities against crucial SARS-CoV-2 proteins. SARS-CoV-2 proteins associated with host attachment and viral replication namely, spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) are promising druggable targets for COVID-19 therapeutic research. Extensive molecular docking of the phytocompounds at the binding pockets of the viral proteins revealed their promising inhibitory potential. Subsequent assessment of physicochemical features and potential toxicity of the compounds followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function revealed anisotine against SARS-CoV-2 spike and Mpro proteins and amarogentin against SARS-CoV-2 RdRp as potential inhibitors. It was interesting to note that these compounds displayed significantly higher binding energy scores against the respective SARS-CoV-2 proteins compared to the relevant drugs that are currently being targeted against them. Present research findings confer scopes to explore further the potential of these compounds in vitro and in vivo towards deployment as efficient SARS-CoV-2 inhibitors and development of novel effective therapeutics. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Pallab Kar
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Punjab, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arnab Sen
- Department of Botany, University of North Bengal, Siliguri, India
| | - Nishika Jaishee
- Department of Botany, St Joseph's College, Darjeeling, India
| | - Akash Anandraj
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Himani Malhotra
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Punjab, India
| | | | - Subhasish Mukhopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | | | - Ayan Roy
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Punjab, India
| | - Devashan Naidoo
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020; 18:E583. [PMID: 33238488 PMCID: PMC7700686 DOI: 10.3390/md18110583] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | | |
Collapse
|
31
|
Mondal P, Natesh J, Abdul Salam AA, Thiyagarajan S, Meeran SM. Traditional medicinal plants against replication, maturation and transmission targets of SARS-CoV-2: computational investigation. J Biomol Struct Dyn 2020; 40:2715-2732. [PMID: 33150860 PMCID: PMC7651333 DOI: 10.1080/07391102.2020.1842246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COVID-19 is an infectious pandemic caused by the SARS-CoV-2 virus. The critical components of SARS-CoV-2 are the spike protein (S-protein) and the main protease (Mpro). Mpro is required for the maturation of the various polyproteins involved in replication and transcription. S-protein helps the SARS-CoV-2 to enter the host cells through the angiotensin-converting enzyme 2 (ACE2). Since ACE2 is required for the binding of SARS-CoV-2 on the host cells, ACE2 inhibitors and blockers have got wider attention, in addition to S-protein and Mpro modulators as potential therapeutics for COVID-19. So far, no specific drugs have shown promising therapeutic potential against COVID-19. The current study was undertaken to evaluate the therapeutic potential of traditional medicinal plants against COVID-19. The bioactives from the medicinal plants, along with standard drugs, were screened for their binding against S-protein, Mpro and ACE2 targets using molecular docking followed by molecular dynamics. Based on the higher binding affinity compared with standard drugs, bioactives were selected and further analyzed for their pharmacological properties such as drug-likeness, ADME/T-test, biological activities using in silico tools. The binding energies of several bioactives analyzed with target proteins were relatively comparable and even better than the standard drugs. Based on Lipinski factors and lower binding energies, seven bioactives were further analyzed for their pharmacological and biological characteristics. The selected bioactives were found to have lower toxicity with a higher GI absorption rate and potent anti-inflammatory and anti-viral activities against targets of COVID-19. Therefore, the bioactives from these medicinal plants can be further developed as phytopharmaceuticals for the effective treatment of COVID-19.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanamuthu Thiyagarajan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City Phase I, Electronic City, Bangalore, Karnataka, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
32
|
Petushkova AI, Zamyatnin AA. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Pharmaceuticals (Basel) 2020; 13:E277. [PMID: 32998368 PMCID: PMC7601131 DOI: 10.3390/ph13100277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/23/2022] Open
Abstract
Papain-like proteases (PLpro) of coronaviruses (CoVs) support viral reproduction and suppress the immune response of the host, which makes CoV PLpro perspective pharmaceutical targets. Their inhibition could both prevent viral replication and boost the immune system of the host, leading to the speedy recovery of the patient. Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third CoV outbreak in the last 20 years. Frequent mutations of the viral genome likely lead to the emergence of more CoVs. Inhibitors for CoV PLpro can be broad-spectrum and can diminish present and prevent future CoV outbreaks as PLpro from different CoVs have conservative structures. Several inhibitors have been developed to withstand SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). This review summarizes the structural features of CoV PLpro, the inhibitors that have been identified over the last 20 years, and the compounds that have the potential to become novel effective therapeutics against CoVs in the near future.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|