1
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Liu Y, Ye Q. The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines (Basel) 2023; 11:1472. [PMID: 37766148 PMCID: PMC10537874 DOI: 10.3390/vaccines11091472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide public health and economic threat, and virus variation amplifies the difficulty in epidemic prevention and control. The structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been studied extensively and is now well defined. The S protein is the most distinguishing feature in terms of infection and immunity, mediating virus entrance and inducing neutralizing antibodies. The S protein and its essential components are also the most promising target to develop vaccines and antibody-based drugs. Therefore, the key site mutation in the S gene is of high interest. Among them, RBD, NTD, and furin cleavage sites are the most mutable regions with the most mutation sites and the most serious consequences for SARS-CoV-2 biological characteristics, including infectivity, pathogenicity, natural immunity, vaccine efficacy, and antibody therapeutics. We are also aware that this outbreak may not be the last. Therefore, in this narrative review, we summarized viral variation and prevalence condition, discussed specific amino acid replacement and associated immune challenges and attempted to sum up some prevention and control strategies by reviewing the literature on previously published research about SARS-CoV-2 variation to assist in clarifying the mutation pathway and consequences of SARS-CoV-2 for developing countermeasures against such viruses as soon as possible.
Collapse
Affiliation(s)
| | - Qing Ye
- Department of ‘A’, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| |
Collapse
|
3
|
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, Uversky VN, Ranaei Siadat SO, Mozaffari-Jovin S, Sefidbakht Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:32-49. [PMID: 36801471 PMCID: PMC9938630 DOI: 10.1016/j.pbiomolbio.2023.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA; TardigradeNano LLC, Irvine, CA, 92604, USA
| | - Mahdi Alijanianzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | | | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
4
|
Ghasemlou A, Uskoković V, Sefidbakht Y. Exploration of potential inhibitors for SARS-CoV-2 Mpro considering its mutants via structure-based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnol Appl Biochem 2023; 70:439-457. [PMID: 35642754 DOI: 10.1002/bab.2369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
The main protease (Mpro) of SARS-COV-2 plays a vital role in the viral life cycle and pathogenicity. Due to its specific attributes, this 3-chymotrypsin like protease can be a reliable target for the drug design to combat COVID-19. Since the advent of COVID-19, Mpro has undergone many mutations. Here, the impact of 10 mutations based on their frequency and five more based on their proximity to the active site was investigated. For comparison purposes, the docking process was also performed against the Mpros of SARS-COV and MERS-COV. Four inhibitors with the highest docking score (11b, α-ketoamide 13b, Nelfinavir, and PF-07321332) were selected for the structure-based ligand design via fragment replacement, and around 2000 new compounds were thus obtained. After the screening of these new compounds, the pharmacokinetic properties of the best ones were predicted. In the last step, comparative molecular dynamics (MD) simulations, molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA), and density functional theory calculations were performed. Among the 2000 newly designed compounds, three of them (NE1, NE2, and NE3), which were obtained by modifications of Nelfinavir, showed the highest affinity against all the Mpro targets. Together, NE1 compound is the best candidate for follow-up Mpro inhibition and drug development studies.
Collapse
Affiliation(s)
| | - Vuk Uskoković
- TardigradeNano, LLC, Irvine, California, USA.,Department of Mechanical Engineering, San Diego State University, San Diego, California, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Bayani F, Safaei Hashkavaei N, Karamian MR, Uskoković V, Sefidbakht Y. In silico design of a multi-epitope vaccine against the spike and the nucleocapsid proteins of the Omicron variant of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:11748-11762. [PMID: 36703619 DOI: 10.1080/07391102.2023.2170470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
Computational studies can comprise an effective approach to treating and preventing viral infections. Since 2019, the world has been dealing with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most important achievement in this short period of time in the effort to reduce morbidity and mortality was the production of vaccines and effective antiviral drugs. Although the virus has been significantly suppressed, it continues to evolve, spread, and evade the host's immune system. Recently, researchers have turned to immunoinformatics tools to reduce side effects and save the time and cost of traditional vaccine production methods. In the present study, an attempt has been made to design a multi-epitope vaccine with humoral and cellular immune response stimulation against the Omicron variant of SARS-CoV-2 by investigating new mutations in spike (S) and nucleocapsid (N) proteins. The population coverage of the vaccine was evaluated as appropriate compared to other studies. The results of molecular dynamics simulation and molecular mechanics/generalized Born surface area (MM/GBSA) calculations predict the stability and proper interaction of the vaccine with Toll-like receptor 4 (TLR-4) as an innate immune receptor. The results of the immune simulation show a significant increase in the coordinated response of IgM and IgG after the third injection of the vaccine. Also, in the continuation of the research, spike proteins from BA.4 and BA.5 lineages were screened by immunoinformatics filters and effective epitopes were suggested for vaccine design. Despite the high precision of computational studies, in-vivo and in-vitro research is needed for final confirmation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Mohammad Reza Karamian
- Department of Cell and Molecular Biology, Faculty of Science, Kharazmi University, Tehran, Iran
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, USA
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Verma S, Patil VM, Gupta MK. Mutation informatics: SARS-CoV-2 receptor-binding domain of the spike protein. Drug Discov Today 2022; 27:103312. [PMID: 35787481 PMCID: PMC9250815 DOI: 10.1016/j.drudis.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) undergoes mutations at a high rate and with frequent genetic reassortment (antigenic drift/shift), leading to variability in targets. The receptor-binding domain (RBD) of the spike (S) protein has a major role in the binding of SARS-CoV-2 with human angiotensin-converting enzyme 2 (ACE2). Mutations at the RBD influence the binding interaction at the SARS-CoV-2 S-ACE2 interface and impact viral pathogenicity. Here, we discuss different reported mutations of concern in RBD, physicochemical characteristic changes resulting from mutated amino acids and their effect on binding between the RBD and ACE2. Along with mutation informatics, we highlight recently developed small-molecule inhibitors of RBD and the ACE2 interface. This information provides a rational basis for the design of inhibitors against the multivariant strains of SARS-CoV-2.
Collapse
Affiliation(s)
- Saroj Verma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India,Corresponding author
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206, India
| | - Manish K. Gupta
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| |
Collapse
|
7
|
Rezaei S, Pereira F, Uversky VN, Sefidbakht Y. Molecular dynamics and intrinsic disorder analysis of the SARS-CoV-2 Nsp1 structural changes caused by substitution and deletion mutations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2075546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, G.C., Tehran, Iran
| | - Filipe Pereira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- IDENTIFICA genetic testing, Maia, Portugal
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, G.C., Tehran, Iran
| |
Collapse
|
8
|
Insights into the structure and dynamics of SARS-CoV-2 spike glycoprotein double mutant L452R-E484Q. 3 Biotech 2022; 12:87. [PMID: 35265451 PMCID: PMC8893057 DOI: 10.1007/s13205-022-03151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/13/2022] [Indexed: 12/26/2022] Open
Abstract
The Receptor Binding Domain (RBD) of SARS-CoV-2, located on the S1 subunit, plays a vital role in the virus binding and its entry into the host cell through angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, understanding the dynamic effects of mutants on the SARS-CoV-2 RBD is essential for discovering drugs to inhibit the virus binding and disrupt its entry into the host cells. A recent study reported a double mutant of SARS-CoV-2, L452R-E484Q, located in the RBD region. Thus, this study employed various computational algorithms and methods to understand the structural impact of both individual variants L452R, E484Q, and the double mutant L452R-E484Q on the native RBD of spike glycoprotein. The effects of the mutations on native RBD structure were predicted by in silico algorithms, which predicted changes in the protein structure and function upon the mutations. Subsequently, molecular dynamics (MD) simulations were employed to understand the conformational stability and functional changes on the RBD upon the mutations. The comparative results of MD simulation parameters displayed that the double mutant induces significant conformational changes in the spike glycoprotein RBD, which may alter its biological functions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03151-0.
Collapse
|
9
|
Moss DL, Rappaport J. SARS-CoV-2 beta variant substitutions alter spike glycoprotein receptor binding domain structure and stability. J Biol Chem 2021; 297:101371. [PMID: 34756892 PMCID: PMC8553658 DOI: 10.1016/j.jbc.2021.101371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the subsequent COVID-19 pandemic have visited a terrible cost on the world in the forms of disease, death, and economic turmoil. The rapid development and deployment of extremely effective vaccines against SARS-CoV-2 have seemingly brought within reach the end of the pandemic. However, the virus has acquired mutations. and emerging variants of concern are more infectious and reduce the efficacy of existing vaccines. Although promising efforts to combat these variants are underway, the evolutionary pressures leading to these variants are poorly understood. To that end, here we have studied the effects on the structure and function of the SARS-CoV-2 spike glycoprotein receptor-binding domain of three amino-acid substitutions found in several variants of concern, including alpha (B.1.1.7), beta (B.1.351), and gamma (P.1). We found that these substitutions alter the receptor-binding domain structure, stability, and ability to bind to angiotensin converting enzyme 2, in such a way as to possibly have opposing and compensatory effects. These findings provide new insights into how these variants of concern may have been selected for infectivity while maintaining the structure and stability of the receptor binding domain.
Collapse
Affiliation(s)
- Daniel L Moss
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA.
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
10
|
Suleman M, Yousafi Q, Ali J, Ali SS, Hussain Z, Ali S, Waseem M, Iqbal A, Ahmad S, Khan A, Wang Y, Wei DQ. Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor. Comput Biol Med 2021; 138:104936. [PMID: 34655895 PMCID: PMC8501515 DOI: 10.1016/j.compbiomed.2021.104936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Reports of new variants that potentially increase virulence and viral transmission, as well as reduce the efficacy of available vaccines, have recently emerged. In this study, we computationally analyzed the N439K, S477 N, and T478K variants for their ability to bind Angiotensin-converting enzyme 2 (ACE2). We used the protein-protein docking approach to explore whether the three variants displayed a higher binding affinity to the ACE2 receptor than the wild type. We found that these variants alter the hydrogen bonding network and the cluster of interactions. Additional salt bridges, hydrogen bonds, and a high number of non-bonded contacts (i.e., non-bonded interactions between atoms in the same molecule and those in other molecules) were observed only in the mutant complexes, allowing efficient binding to the ACE2 receptor. Furthermore, we used a 2.0-μs all-atoms simulation approach to detect differences in the structural dynamic features of the resulting protein complexes. Our findings revealed that the mutant complexes possessed stable dynamics, consistent with the global trend of mutations yielding variants with improved stability and enhanced affinity. Binding energy calculations based on molecular mechanics/generalized Born surface area (MM/GBSA) further revealed that electrostatic interactions principally increased net binding energies. The stability and binding energies of N439K, S477 N, and T478K variants were enhanced compared to the wild-type-ACE2 complex. The net binding energy of the systems was -31.86 kcal/mol for the wild-type-ACE2 complex, -67.85 kcal/mol for N439K, -69.82 kcal/mol for S477 N, and -69.64 kcal/mol for T478K. The current study provides a basis for exploring the enhanced binding abilities and structural features of SARS-CoV-2 variants to design novel therapeutics against the virus.
Collapse
Affiliation(s)
- Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Javaid Ali
- Swat Institute of Nuclear Medicine Oncology and Radiotherapy (SINOR) Hospital, Saidu Sharif, Khyber Pakhtunkhwa, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Arshad Iqbal
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Khyber Pakhtunkhwa, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yanjing Wang
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
11
|
Cedro-Tanda A, Gómez-Romero L, Alcaraz N, de Anda-Jauregui G, Peñaloza F, Moreno B, Escobar-Arrazola MA, Ramirez-Vega OA, Munguia-Garza P, Garcia-Cardenas F, Cisneros-Villanueva M, Moreno-Camacho JL, Rodriguez-Gallegos J, Luna-Ruiz Esparza MA, Fernández Rojas MA, Mendoza-Vargas A, Reyes-Grajeda JP, Campos-Romero A, Angulo O, Ruiz R, Sheinbaum-Pardo C, Sifuentes-Osornio J, Kershenobich D, Hidalgo-Miranda A, Herrera LA. The Evolutionary Landscape of SARS-CoV-2 Variant B.1.1.519 and Its Clinical Impact in Mexico City. Viruses 2021; 13:2182. [PMID: 34834987 PMCID: PMC8617872 DOI: 10.3390/v13112182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33-2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32-4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves.
Collapse
Affiliation(s)
- Alberto Cedro-Tanda
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Nicolás Alcaraz
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Guillermo de Anda-Jauregui
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
- Cátedras CONACYT para Jóvenes Investigadores, CONACYT, Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico
| | - Fernando Peñaloza
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Bernardo Moreno
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Marco A. Escobar-Arrazola
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| | - Oscar A. Ramirez-Vega
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| | - Francisco Garcia-Cardenas
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Mireya Cisneros-Villanueva
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Jose L. Moreno-Camacho
- Clinical Laboratory Division, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (J.L.M.-C.); (J.R.-G.)
| | - Jorge Rodriguez-Gallegos
- Clinical Laboratory Division, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (J.L.M.-C.); (J.R.-G.)
- Molecular Biology Laboratory, National Reference Center, Salud Digna, Tlalnepantla de Baz, Estado de Mexico 54075, Mexico
| | - Marco A. Luna-Ruiz Esparza
- Innovation and Research Department, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (M.A.L.-R.E.); (M.A.F.R.); (A.C.-R.)
| | - Miguel A. Fernández Rojas
- Innovation and Research Department, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (M.A.L.-R.E.); (M.A.F.R.); (A.C.-R.)
| | - Alfredo Mendoza-Vargas
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Juan Pablo Reyes-Grajeda
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Abraham Campos-Romero
- Innovation and Research Department, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (M.A.L.-R.E.); (M.A.F.R.); (A.C.-R.)
| | - Ofelia Angulo
- Secretaría de Educación, Ciencia, Tecnología e Innovacion, Av Chapultepec 49, Colonia Centro, Cuauhtémoc, Mexico City 06010, Mexico; (O.A.); (R.R.)
| | - Rosaura Ruiz
- Secretaría de Educación, Ciencia, Tecnología e Innovacion, Av Chapultepec 49, Colonia Centro, Cuauhtémoc, Mexico City 06010, Mexico; (O.A.); (R.R.)
| | - Claudia Sheinbaum-Pardo
- Gobierno de la Ciudad de México, Antiguo Palacio del Ayuntamiento, Avenida Plaza de la Constitución 2, Colonia Centro, Mexico City 06010, Mexico;
| | - José Sifuentes-Osornio
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (J.S.-O.); (D.K.)
| | - David Kershenobich
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (J.S.-O.); (D.K.)
| | - Alfredo Hidalgo-Miranda
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Luis A. Herrera
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| |
Collapse
|
12
|
Moghaddar M, Radman R, Macreadie I. Severity, Pathogenicity and Transmissibility of Delta and Lambda Variants of SARS-CoV-2, Toxicity of Spike Protein and Possibilities for Future Prevention of COVID-19. Microorganisms 2021; 9:2167. [PMID: 34683488 PMCID: PMC8540532 DOI: 10.3390/microorganisms9102167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
The World Health Organization reports that SARS-CoV-2 has infected over 220 million people and claimed over 4.7 million lives globally. While there are new effective vaccines, the differences in behavior of variants are causing challenges in vaccine development or treatment. Here, we discuss Delta, a variant of concern, and Lambda, a variant of interest. They demonstrate high infectivity and are less responsive to the immune response in vaccinated individuals. In this review, we briefly summarize the reason for infectivity and the severity of the novel variants. Delta and Lambda variants exhibit more changes in NSPs proteins and the S protein, compared to the original Wuhan strain. Lambda also has numerous amino acid substitutions in NSPs and S proteins, plus a deletion in the NTD of S protein, leading to partial escape from neutralizing antibodies (NAbs) in vaccinated individuals. We discuss the role of furin protease and the ACE2 receptor in virus infection, hotspot mutations in the S protein, the toxicity of the S protein and the increased pathogenicity of Delta and Lambda variants. We discuss future therapeutic strategies, including those based on high stability of epitopes, conservation of the N protein and the novel intracellular antibody receptor, tripartite-motif protein 21 (TRIM21) recognized by antibodies against the N protein.
Collapse
Affiliation(s)
- Mehrnoosh Moghaddar
- School of Science, RMIT University, Bundoora, VIC 3083, Australia; (M.M.); (R.R.)
| | - Ramtin Radman
- School of Science, RMIT University, Bundoora, VIC 3083, Australia; (M.M.); (R.R.)
- School of Health and Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia; (M.M.); (R.R.)
| |
Collapse
|
13
|
Di Giacomo S, Mercatelli D, Rakhimov A, Giorgi FM. Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K. J Med Virol 2021; 93:5638-5643. [PMID: 33951211 PMCID: PMC8242375 DOI: 10.1002/jmv.27062] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged, posing a renewed threat to coronavirus disease 2019 containment and to vaccine and drug efficacy. In this study, we analyzed more than 1,000,000 SARS-CoV-2 genomic sequences deposited up to April 27, 2021, on the GISAID public repository, and identified a novel T478K mutation located on the SARS-CoV-2 Spike protein. The mutation is structurally located in the region of interaction with human receptor ACE2 and was detected in 11,435 distinct cases. We show that T478K has appeared and risen in frequency since January 2021, predominantly in Mexico and the United States, but we could also detect it in several European countries.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Daniele Mercatelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Amir Rakhimov
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Federico M. Giorgi
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| |
Collapse
|
14
|
What Binds Cationic Photosensitizers Better: Brownian Dynamics Reveals Key Interaction Sites on Spike Proteins of SARS-CoV, MERS-CoV, and SARS-CoV-2. Viruses 2021; 13:v13081615. [PMID: 34452480 PMCID: PMC8402653 DOI: 10.3390/v13081615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in “open” and “closed” conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the “open” state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.
Collapse
|
15
|
Rezaei S, Sefidbakht Y, Uskoković V. Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Brief Bioinform 2021; 22:6313266. [PMID: 34219142 DOI: 10.1093/bib/bbab241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
With the onset of the COVID-19 pandemic, the amount of data on genomic and proteomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stored in various databases has exponentially grown. A large volume of these data has led to the production of equally immense sets of immunological data, which require rigorous computational approaches to sort through and make sense of. Immunoinformatics has emerged in the recent decades as a field capable of offering this approach by bridging experimental and theoretical immunology with state-of-the-art computational tools. Here, we discuss how immunoinformatics can assist in the development of high-performance vaccines and drug discovery needed to curb the spread of SARS-CoV-2. Immunoinformatics can provide a set of computational tools to extract meaningful connections from the large sets of COVID-19 patient data, which can be implemented in the design of effective vaccines. With this in mind, we represent a pipeline to identify the role of immunoinformatics in COVID-19 treatment and vaccine development. In this process, a number of free databases of protein sequences, structures and mutations are introduced, along with docking web servers for assessing the interaction between antibodies and the SARS-CoV-2 spike protein segments as most commonly considered antigens in vaccine design.
Collapse
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center at Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center at Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Founder of the biotech startup, TardigradeNano, and formerly a Professor at University of Illinois in Chicago, Chapman University, and University of California in Irvine
| |
Collapse
|
16
|
Uskoković V. Nanomedicine for the poor: a lost cause or an idea whose time has yet to come? Nanomedicine (Lond) 2021; 16:1203-1218. [PMID: 33988035 PMCID: PMC8120867 DOI: 10.2217/nnm-2021-0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
The most effective COVID-19 vaccines, to date, utilize nanotechnology to deliver immunostimulatory mRNA. However, their high cost equates to low affordability. Total nano-vaccine purchases per capita and their proportion within the total vaccine lots have increased directly with the GDP per capita of countries. While three out of four COVID-19 vaccines procured by wealthy countries by the end of 2020 were nano-vaccines, this amounted to only one in ten for middle-income countries and nil for the low-income countries. Meanwhile, economic gains of saving lives with nano-vaccines in USA translate to large costs in middle-/low-income countries. It is discussed how nanomedicine can contribute to shrinking this gap between rich and poor instead of becoming an exquisite technology for the privileged. Two basic routes are outlined: (1) the use of qualitative contextual analyses to endorse R&D that positively affects the sociocultural climate; (2) challenging the commercial, competitive realities wherein scientific innovation of the day operates.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials & Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, USA
| |
Collapse
|