1
|
Xiong G, Xiao Z. Computational approaches for the identification of novel metal-binding pharmacophores: advances and challenges. Drug Discov Today 2025; 30:104293. [PMID: 39805538 DOI: 10.1016/j.drudis.2025.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches. We also discuss major challenges to the recognition of novel MBPs and MIs. The evidence provided herein could expedite future computational efforts to guide metalloenzyme-based drug discovery.
Collapse
Affiliation(s)
- Guoli Xiong
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Karakuş S, Başçıl E, Tok F, Erdoğan Ö, Çevik Ö, Başoğlu F. Synthesis, biological evaluation and molecular docking studies of novel 1,3,4-thiadiazoles as potential anticancer agents and human carbonic anhydrase inhibitors. Mol Divers 2024; 28:3801-3815. [PMID: 38123787 DOI: 10.1007/s11030-023-10778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Thiosemicarbazide and also 1,3,4-thiadiazole derivatives have been garnering substantial attention from researchers worldwide due to their expansive range of biological activities, encompassing antimicrobial, anti-inflammatory, and anticancer properties. Herein, we embarked on a comprehensive investigation in this study, introducing a novel series of thiosemicarbazides (3a-3i) and their corresponding 1,3,4-thiadiazole (4a-4i) derivatives. The compounds were meticulously designed, synthesized, and subjected to meticulous characterization using various spectroscopic methods such as FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. Afterward, their potential anti-proliferative effectiveness was assessed using MTT assay against two cancer cell lines (U87 and HeLa) and normal fibroblast cells (L929). Among the compounds, 4d showed the highest cytotoxic activity against U87 and 4i against HeLa. Compound 3b exhibited selective cytotoxic activity against both cancer cells. Among the molecules with selective activity against the U87 cell line; 3a, 3b, 4d and 4e were further evaluated by caspase-3 activity levels, Bax and Bcl-2 protein expression, and total oxidant status assay. Besides, carbonic anhydrase IX activity studies were also performed in order to understand the underlying mechanism of action. The results indicated that compound 4e showed higher efficacy than standard acetazolamide (IC50 = 0.58 ± 0.02 µM) with an IC50 value of 0.03 ± 0.01 µM. Furthermore, molecular docking studies were carried out using carbonic anhydrase IX crystals to determine the compound's interactions with the enzyme's active sites. This comprehensive investigation sheds light on the intricate interplay between molecular structure and biological activity, providing valuable insights into the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Sevgi Karakuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye
| | - Elif Başçıl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye.
| | - Ömer Erdoğan
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, 27010, Gaziantep, Türkiye
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, 09010, Aydın, Türkiye
| | - Faika Başoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, European University of Lefke, Northern Cyprus TR-10, Mersin, Türkiye.
| |
Collapse
|
3
|
Moulishankar A, Sankaranarayanan M, Thirugnanasambandam S, Dhamotharan J, Mohanradja D, Sivakumar PM. Identification of novel DNA gyrase inhibitor by combined pharmacophore modeling, QSAR analysis, molecular docking, molecular dynamics, ADMET and DFT approaches. Acta Trop 2024; 260:107460. [PMID: 39527993 DOI: 10.1016/j.actatropica.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
DNA gyrase, an ATP-dependent enzyme, plays a critical role in DNA replication, transcription, and recombination in Mycobacterium tuberculosis (MTB). While fluoroquinolones are effective antibacterial agents targeting DNA gyrase, their clinical use is often limited due to side effects and the emergence of bacterial resistance. In this study, we developed a quantitative structure-activity relationship (QSAR) model to predict the anti-tubercular activity of Quinoline-Aminopiperidine derivatives targeting the DNA gyrase enzyme, using a dataset of 48 compounds obtained from the literature. The QSAR model was validated using both internal and external validation metrics. Model 4, the best predictive model, demonstrated a strong fit with an R² of 0.8393, an adjusted R² (R²adj) of 0.8010, and a lack of fit (LOF) parameter of 0.0626. The QSAR results revealed that DNA gyrase inhibition is significantly influenced by factors such as partition coefficient, molecular flexibility, hydrogen bonding potential, and the presence of fluorine atoms. Twelve quinoline-aminopiperidine derivatives were designed, and their anti-tubercular activity was predicted using QSAR model-4. These compounds were further assessed for pharmacokinetic properties, toxicity, and binding affinity to DNA gyrase. Pharmacophore modeling was also performed and validated using MOE software. The final pharmacophore model includes the features of two aromatic hydrophobic features, one hydrogen bond acceptor, and one hydrogen bond donor. The results indicated that designed compounds QA-3 and dataset compounds C-34 exhibit favorable drug-likeness properties. Molecular dynamics simulations confirmed the stable binding of compounds QA-3 and C-34 to the DNA gyrase protein, highlighting their potential as promising anti-tubercular agents. The developed QSAR Model-4 will facilitate the prediction of anti-tubercular activity in Quinoline-Aminopiperidine derivatives.
Collapse
Key Words
- %A, Percent ratio of active compounds in the hit list
- %Y, Number of active Compounds percent of yields
- ADMET study
- ADMET, Absorption Distribution Metabolism Excretion, Toxicity
- ATP, Adenosine triphosphate
- Abbriviations: QSAR, Quantitative Structure-Activity Relationship
- Aro, aromatic center
- B3LYP, Beck's three-parameter hybrid functional
- CCC, concordance correlation coefficient
- DFT, Density functional theory
- DOTS, Directly Observed Therapy Short-course
- E, enrichment factor
- FNs, false negatives
- FPs, false positives
- GA, genetic algorithms
- GH, Güner-Henry score or Goodness of hit score
- HBA, hydrogen bond acceptor
- HBD, hydrogen bond donar
- HBD, hydrogen bond donor
- HOMO, Highest occupied molecular orbital
- Ht, Hit list
- HydA, hydrophobic atom
- LMO, Leave many out
- LOF, Friedman's lack of fit
- LOO, leave one out
- LUMO, Lowest unoccupied molecular orbital
- MAE, Mean absolute error
- MDR-Tb, multidrug resistance tuberculosis
- MDS, Molecular dynamics simulation
- MIC, minimum inhibitory concentration
- MLR, multiple linear regressions
- MMV, Molegro Molecular Viewer
- MOE, Molecular Operating Environment
- Molecular modeling
- Mycobacterium tuberculosis
- OECD, Organisation for Economic Co-operation and Development
- OLS, Ordinary Least Squares
- PDB, Protein Data Bank
- PiN, Pi ring normal or aromatic ring
- Q(2)(LOO), Cross validation
- QSAR
- Quinoline – aminopiperidine derivatives
- R(2)(ad), Adjusted coefficient of determination
- R(2), Coefficient of determination
- RMSD, Root mean square deviation
- RMSE, Root mean square error
- RMSF, Root mean square fluctuation
- S, Standard deviation
- TB, Tuberculosis
- TNs, true negatives
- TPs, true positives
- VMD, Visual Molecular Dynamics
- WHO, World Health Organization
- XDR-Tb, extensive drug resistance tuberculosis
- logP, Partition coefficient
- pMIC, logarithmic scale of the minimum inhibitory concentration
Collapse
Affiliation(s)
- Anguraj Moulishankar
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemsitry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Sundarrajan Thirugnanasambandam
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.
| | - Jothieswari Dhamotharan
- Department of Pharmaceutical Analysis, Sri Venkateswara College of Pharmacy, Rvs Nagar, Tirupati Road, Chittoor 517127, Andhra Pradesh, India
| | - Dhanalakshmi Mohanradja
- Department of Pharmaceutical Analysis, SMVEC Pharmacy College, Madagadipet 605107, Puducherry, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
4
|
Noor MAA, Haq MM, Chowdhury MAR, Tayara H, Shim H, Chong KT. In Silico Exploration of Novel EGFR Kinase Mutant-Selective Inhibitors Using a Hybrid Computational Approach. Pharmaceuticals (Basel) 2024; 17:1107. [PMID: 39338272 PMCID: PMC11434943 DOI: 10.3390/ph17091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for treating non-small cell lung cancer (NSCLC). This study focused on the computational identification and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design and validation by deep learning, virtual screening, ADMET (Absorption, distribution, metabolism, excretion and toxicity), and molecular docking-dynamics simulations. A pharmacophore model was generated using Pharmit based on the potent inhibitor JBJ-125, which targets the mutant EGFR (PDB 5D41) and is used for the virtual screening of the Zinc database. In total, 16 hits were retrieved from 13,127,550 molecules and 122,276,899 conformers. The pharmacophore model was validated via DeepCoy, generating 100 inactive decoy structures for each active molecule and ADMET tests were conducted using SWISS ADME and PROTOX 3.0. Filtered compounds underwent molecular docking studies using Glide, revealing promising interactions with the EGFR allosteric site along with better docking scores. Molecular dynamics (MD) simulations confirmed the stability of the docked conformations. These results bring out five novel compounds that can be evaluated as single agents or in combination with existing therapies, holding promise for treating the EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Md Ali Asif Noor
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Md Mazedul Haq
- Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.M.H.); (M.A.R.C.)
| | - Md Arifur Rahman Chowdhury
- Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.M.H.); (M.A.R.C.)
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - HyunJoo Shim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
5
|
Dash S, Rathi E, Kumar A, Chawla K, Kini SG. Identification of DprE1 inhibitors for tuberculosis through integrated in-silico approaches. Sci Rep 2024; 14:11315. [PMID: 38760437 PMCID: PMC11101490 DOI: 10.1038/s41598-024-61901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Decaprenylphosphoryl-β-D-ribose-2'-epimerase (DprE1), a crucial enzyme in the process of arabinogalactan and lipoarabinomannan biosynthesis, has become the target of choice for anti-TB drug discovery in the recent past. The current study aims to find the potential DprE1 inhibitors through in-silico approaches. Here, we built the pharmacophore and 3D-QSAR model using the reported 40 azaindole derivatives of DprE1 inhibitors. The best pharmacophore hypothesis (ADRRR_1) was employed for the virtual screening of the chEMBL database. To identify prospective hits, molecules with good phase scores (> 2.000) were further evaluated by molecular docking studies for their ability to bind to the DprE1 enzyme (PDB: 4KW5). Based on their binding affinities (< - 9.0 kcal/mole), the best hits were subjected to the calculation of free-binding energies (Prime/MM-GBSA), pharmacokinetic, and druglikeness evaluations. The top 10 hits retrieved from these results were selected to predict their inhibitory activities via the developed 3D-QSAR model with a regression coefficient (R2) value of 0.9608 and predictive coefficient (Q2) value of 0.7313. The induced fit docking (IFD) studies and in-silico prediction of anti-TB sensitivity for these top 10 hits were also implemented. Molecular dynamics simulations (MDS) were performed for the top 5 hit molecules for 200 ns to check the stability of the hits with DprE1. Based on their conformational stability throughout the 200 ns simulation, hit 2 (chEMBL_SDF:357100) was identified as the best hit against DprE1 with an accepted safety profile. The MD results were also in accordance with the docking score, MM-GBSA value, and 3D-QSAR predicted activity. The hit 2 molecule, (N-(3-((2-(((1r,4r)-4-(dimethylamino)cyclohexyl)amino)-9-isopropyl-9H-purin-6-yl)amino)phenyl)acrylamide) could serve as a lead for the discovery of a novel DprE1 inhibiting anti-TB drug.
Collapse
Affiliation(s)
- Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Avinash Kumar
- Department of Medical Affairs, Curie Sciences Private Limited, Samastipur, Bihar, India, 848125
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
- Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
6
|
Touati I, Abdalla M, Boulaamane Y, Al-Hoshani N, Alouffi A, Britel MR, Maurady A. Identification of novel dual acting ligands targeting the adenosine A2A and serotonin 5-HT1A receptors. J Biomol Struct Dyn 2023; 42:12580-12595. [PMID: 37850444 DOI: 10.1080/07391102.2023.2270753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
GPCRs are a family of transmembrane receptors that are profoundly linked to various neurological disorders, among which is Parkinson's disease (PD). PD is the second most ubiquitous neurological disorder after Alzheimer's disease, characterized by the depletion of dopamine in the central nervous system due to the impairment of dopaminergic neurons, leading to involuntary movements or dyskinesia. The current standard of care for PD is Levodopa, a dopamine precursor, yet the chronic use of this agent can exacerbate motor symptoms. Recent studies have investigated the effects of combining A2AR antagonist and 5-HT1A agonist on dyskinesia and motor complications in animal models of PD. It has been proved that the drug combination has significantly improved involuntary movements while maintaining motor activity, highlighting as a result new lines of therapy for PD treatments, through the regulation of both receptors. Using a combination of ligand-based pharmacophore modelling, virtual screening, and molecular dynamics simulation, this study intends on identifying potential dual-target compounds from IBScreen. Results showed that the selected models displayed good enrichment metrics with a near perfect receiver operator characteristic (ROC) and Area under the accumulation curve (AUAC) values, signifying that the models are both specific and sensitive. Molecular docking and ADMET analysis revealed that STOCK2N-00171 could be potentially active against A2AR and 5-HT1A. Post-MD analysis confirmed that the ligand exhibits a stable behavior throughout the simulation while maintaining crucial interactions. These results imply that STOCK2N-00171 can serve as a blueprint for the design of novel and effective dual-acting ligands targeting A2AR and 5-HT1A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
7
|
Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates. Molecules 2023; 28:molecules28031009. [PMID: 36770674 PMCID: PMC9919727 DOI: 10.3390/molecules28031009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor cell lines and non-malignant fibroblasts. As a result, the best inhibitors were derived from betulin and glycyrrhetinic acid while those derived from ursolic or oleanolic acid were significantly weaker inhibitors but also of diminished cytotoxicity. A betulin-derived conjugate held a Ki = 0.129 μM and an EC50 = 8.5 μM for human A375 melanoma cells.
Collapse
|
8
|
Gheshlaghi SZ, Nakhaei E, Ebrahimi A, Jafari M, Shahraki A, Rezazadeh S, Saberinasab E, Nowroozi A, Hosseini SS. Analysis of medicinal and therapeutic potential of Withania somnifera derivatives against COVID-19. J Biomol Struct Dyn 2022:1-11. [PMID: 35993530 DOI: 10.1080/07391102.2022.2112977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Apart from chemical and allopathic drugs, several medicinal plants contain phytochemicals that are potentially useful to counter the COVID-19 pandemic. Withania somnifera (Ashwagandha), which has a good effect on some viral infections, can be considered as a candidate against the virus. In the present study, thirty-nine natural compounds of Ashwagandha were investigated in terms of their binding to the important drug targets to treat the COVID-19. Although the molecular docking calculations reveal the binding affinities of the compounds to Mpro, TMPRSS2, NSP15, PLpro, Spike RBD + ACE2, RdRp and NSP12 as targets in controlling the coronavirus enzymes, Withanoside II is expected to be the most effective compound due to the high affinity in binding with many of considered targets. Furthermore, the Withanoside III, IV, V, X, and XI have favorable binding affinities as ligands with respect to the MM/GBSA calculations. The molecular dynamics simulations MD explore a stable hydrogen bond network between ligands and the active sites residues. Also, the dynamic fluctuations of the binding site residues verify their tight binding to ligands. Moreover, the stability of ligand-protein complexes is approved by the RMSD ranges lower than 0.5 Å in equilibration zone for all mentioned complexes. The TMPRSS2-Withanolide Q and Mpro-Withanoside IV complexes are the most stable pairs using the MM/GBSA calculations and MD simulation.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ebrahim Nakhaei
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, College of Agriculture
| | - Asiyeh Shahraki
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shiva Rezazadeh
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Erfan Saberinasab
- School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
9
|
Saraswat J, Riaz U, Patel R. In-silico study for the screening and preparation of ionic liquid-AVDs conjugate to combat COVID-19 surge. J Mol Liq 2022; 359:119277. [PMID: 35530033 PMCID: PMC9061583 DOI: 10.1016/j.molliq.2022.119277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
The pandemic due to COVID-19 caused by SARS-CoV-2 has led to the recorded deaths worldwide and is still a matter of concern for scientists to find an effective counteragent. The combination therapy is always been a successful attempt in treating various threatful diseases. Recently, Ionic liquids (ILs) are known for their antiviral activity. Fascinating tunable properties of ILs make them a potential candidate for designing the therapeutic agent. The concern while using ILs in biomedical field remains is toxicity therefore, choline-based ILs were used in the study as they are considered to be greener as compared to other ILs. In the present study strategically, we performed the blind molecular docking of antiviral drug (Abacavir, Acyclovir, and Galidesivir)-choline based ILs conjugates with the target protein (Mpro protease). The molecules were screened on the basis of binding energy. The data suggested that the combination of AVDs-ILs have greater antiviral potential as compared to the drugs and ILs alone. Further, the ADME properties and toxicity analysis of the screened conjugates was done which revealed the non-toxicity of the conjugates. Additionally, the energetic profiling of the ILs drugs and their conjugates was done using DFT calculations which revealed the stability of the conjugates and have a better option to be developed as a therapeutic agent. Also, from molecular dynamic simulation was done and results showed the stability of the complex formed between target protein and the designed conjugates of AVDs and ILs.
Collapse
Affiliation(s)
- Juhi Saraswat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ufana Riaz
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
10
|
Özdemir M, Köksoy B, Ceyhan D, Sayın K, Erçağ E, Bulut M, Yalçın B. Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes. J Biomol Struct Dyn 2022; 40:4905-4920. [PMID: 33357038 PMCID: PMC7784838 DOI: 10.1080/07391102.2020.1863263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023]
Abstract
The novel coronavirus (SARS-CoV-2) causes severe acute respiratory syndrome and can be fatal. In particular, antiviral drugs that are currently available to treat infection in the respiratory tract have been experienced, but there is a need for new antiviral drugs that are targeted and inhibit coronavirus. The antiviral properties of organic compounds found in nature, especially coumarins, are known and widely studied. Coumarins, which are also metabolites in many medicinal drugs, should be investigated as inhibitors against coronavirus due to their pharmacophore properties (low toxicity and high pharmacokinetic properties). The easy addition of substituents to the chemical structures of coumarins makes these structures unique for the drug design. This study focuses on factors that increase the molecular binding and antiviral properties of coumarins. Molecular docking studies have been carried out to five different proteins (Spike S1-subunit, NSP5, NSP12, NSP15, and NSP16) of the SARS-CoV-2 and two proteins (ACE2 and VKORC1) of human. The best binding scores for 17 coumarins were determined for NSP12 (NonStructural Protein-12). The highest score (-10.01 kcal/mol) in the coumarin group is 2-morpholinoethan-1-amine substituted coumarin. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of selected ligand-protein complexes were performed. The binding energies in each 5 ns were calculated and it was found that the interaction between ligand and target protein were stable.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mücahit Özdemir
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Baybars Köksoy
- Department of Chemistry, Bursa Technical University, Bursa, Turkey
| | - Deniz Ceyhan
- Department of Chemistry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Koray Sayın
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
- Advanced Technology Research and Application Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Erol Erçağ
- Department of Chemistry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Mustafa Bulut
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Bahattin Yalçın
- Department of Chemistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
11
|
Lokhande K, Nawani N, K. Venkateswara S, Pawar S. Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. J Biomol Struct Dyn 2022; 40:4376-4388. [PMID: 33300454 PMCID: PMC7738212 DOI: 10.1080/07391102.2020.1858165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has quickly become a worldwide pandemic and generated panic threats for both the human population and the global economy. The unavailability of effective vaccines or drugs has enforced researchers to hunt for a potential drug to combat this virus. Plant-derived phytocompounds are of applicable interest in the search for novel drugs. Bioflavonoids from Rhus succedanea are already reported to exert antiviral activity against RNA viruses. SARS-CoV-2 Mpro protease plays a vital role in viral replication and therefore can be considered as a promising target for drug development. A computational approach has been employed to search for promising potent bioflavonoids from Rhus succedanea against SARS-CoV-2 Mpro protease. Binding affinities and binding modes between the biflavonoids and Mpro enzyme suggest that all six biflavonoids exhibit possible interaction with the Mpro catalytic site (-19.47 to -27.04 kcal/mol). However, Amentoflavone (-27.04 kcal/mol) and Agathisflavone (-25.87 kcal/mol) interact strongly with the catalytic residues. Molecular dynamic simulations (100 ns) further revealed that these two biflavonoids complexes with the Mpro enzyme are highly stable and are of less conformational fluctuations. Also, the hydrophobic and hydrophilic surface mapping on the Mpro structure as well as biflavonoids were utilized for the further lead optimization process. Altogether, our findings showed that these natural biflavonoids can be utilized as promising SARS-CoV-2 Mpro inhibitors and thus, the computational approach provides an initial footstep towards experimental studies in in vitro and in vivo, which is necessary for the therapeutic development of novel and safe drugs to control SARS-CoV-2. Communicated by Ramaswamy H. SarmaResearch highlightsRhus succedanea biflavonoids have antiviral activity.The molecular interactions and molecular dynamics displayed that all six biflavonoids bound with a good affinity to the same catalytic site of Mpro.The compound Amentoflavone has a strong binding affinity (-27.0441 kcal/mol) towards Mpro.The binding site properties of SARS-CoV-2-Mpro can be utilized in a novel discovery and lead optimization of the SARS-CoV-2-Mpro inhibitor.
Collapse
Affiliation(s)
- Kiran Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K. Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Sarika Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| |
Collapse
|
12
|
Venugopal PP, Chakraborty D. Molecular mechanism of inhibition of COVID-19 main protease by β-adrenoceptor agonists and adenosine deaminase inhibitors using in silico methods. J Biomol Struct Dyn 2022; 40:5112-5127. [PMID: 33397209 PMCID: PMC7784836 DOI: 10.1080/07391102.2020.1868337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
Novel coronavirus (COVID-19) responsible for viral pneumonia which emerged in late 2019 has badly affected the world. No clinically proven drugs are available yet as the targeted therapeutic agents for the treatment of this disease. The viral main protease which helps in replication and transcription inside the host can be an effective drug target. In the present study, we aimed to discover the potential of β-adrenoceptor agonists and adenosine deaminase inhibitors which are used in asthma and cancer/inflammatory disorders, respectively, as repurposing drugs against protease inhibitor by ligand-based and structure-based virtual screening using COVID-19 protease-N3 complex. The AARRR pharmacophore model was used to screen a set of 22,621 molecules to obtain hits, which were subjected to high-throughput virtual screening. Extra precision docking identified four top-scored molecules such as +/--fenoterol, FR236913 and FR230513 with lower binding energy from both categories. Docking identified three major hydrogen bonds with Gly143, Glu166 and Gln189 residues. 100 ns MD simulation was performed for four top-scored molecules to analyze the stability, molecular mechanism and energy requirements. MM/PBSA energy calculation suggested that van der Waals and electrostatic energy components are the main reasons for the stability of complexes. Water-mediated hydrogen bonds between protein-ligand and flexibility of the ligand are found to be responsible for providing extra stability to the complexes. The insights gained from this combinatorial approach can be used to design more potent and bio-available protease inhibitors against novel coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pushyaraga P. Venugopal
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, India
| |
Collapse
|
13
|
Computational studies evidenced the potential of steroidal lactone to disrupt surface interaction of SARS-CoV-2 spike protein and hACE2. Comput Biol Med 2022; 146:105598. [PMID: 35596971 PMCID: PMC9098575 DOI: 10.1016/j.compbiomed.2022.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/16/2022]
Abstract
The critical event in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis is recognition of host cells by the virus, which is facilitated by protein-protein interaction (PPI) of viral Spike-Receptor Binding Domain (S-RBD) and Human Angiotensin Converting Enzyme 2-Receptor (hACE2-R). Thus, disrupting the interaction between S-RBD and hACE2-R is widely accepted as a primary strategy for managing COVID-19. The purpose of this study is to assess the ability of three steroidal lactones (SL) (4-Dehydrowithaferin A, Withaferin A, and Withalongolide A) derived from plants to disrupt the PPI of S-RBD and hACE2-R under two conditions (CON-I and CON-II) using in-silico methods. Under CON-I, 4-Dehydrowithaferin A destabilizing the interactions between S-RBD and hACE2-R, as indicated by an increase in binding energy (BE) from -1028.5 kJ/mol (control) to -896.12 kJ/mol 4-Dehydrowithaferin A exhibited a strong interaction with S-RBD GLY496 with a hydrogen bond occupancy (HBO) of 37.33%. Under CON-II, Withalongolide A was capable of disrupting all types of PPI, as evidenced by an increased BE from -913 kJ/mol (control) to -133.69 kJ/mol and an increased distance (>3.55 nm) between selected AAR combinations of S-RBD and hACE2-R. Withalongolide A formed a hydrogen bond with TYR453 (97%, HBO) of S-RBD, which is required for interaction with hACE2-R's HIS34. Our studies demonstrated that SL molecules have the potential to disrupt the S-RBD and hACE2-R interaction, thereby preventing SARS-CoV-2 from recognizing host cells. The SL molecules can be considered for additional in-vitro and in-vivo studies with this research evidence.
Collapse
|
14
|
Debnath SK, Debnath M, Srivastava R, Omri A. Drugs repurposing for SARS-CoV-2: new insight of COVID-19 druggability. Expert Rev Anti Infect Ther 2022; 20:1187-1204. [PMID: 35615888 DOI: 10.1080/14787210.2022.2082944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The ongoing epidemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) creates a massive panic worldwide due to the absence of effective medicines. Developing a new drug or vaccine is time-consuming to pass safety and efficacy testing. Therefore, repurposing drugs have been introduced to treat COVID-19 until effective drugs are developed. AREA COVERED A detailed search of repurposing drugs against SARS-CoV-2 was carried out using the PubMed database, focusing on articles published 2020 years onward. A different class of drugs has been described in this article to target hosts and viruses. Based on the previous pandemic experience of SARS-CoV and MERS, several antiviral and antimalarial drugs are discussed here. This review covers the failure of some repurposed drugs that showed promising activity in the earlier CoV-pandemic but were found ineffective against SARS-CoV-2. All these discussions demand a successful drug development strategy for screening and identifying an effective drug for better management of COVID-19. The drug development strategies described here will serve a new scope of research for academicians and researchers. EXPERT OPINION Repurposed drugs have been used since COVID-19 to eradicate disease propagation. Drugs found effective for MERS and SARS may not be effective against SARS-CoV-2. Drug libraries and artificial intelligence are helpful tools to screen and identify different molecules targeting viruses or hosts.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug & Vaccine Delivery Systems Facility, Laurentian University, Sudbury, Canada
| |
Collapse
|
15
|
Jamadagni DS, Pandkar DP, Saundankar DT, Shirke DG, Malekar S, Vaidya DV. Efficacy of Madhav Rasayan Plus as adjuvant in moderate COVID-19 patients: Preliminary Outcomes of Randomized controlled trial. J Ayurveda Integr Med 2022; 13:100590. [PMID: 35634544 PMCID: PMC9127050 DOI: 10.1016/j.jaim.2022.100590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Apart from all the gloominess, the COVID-19 Pandemic has a silver lining of bringing a renaissance as Ayurveda and integrated medicine are becoming a choice for acute as well as infective diseases. Here we report outcomes of a preliminary work, the randomized controlled trial (CTRI/2021/02/031256) of Madhav Rasayan Plus, an Ayurveda formulation as adjuvant in moderate COVID-19 patients. Madhav Rasayan Plus is a herbomineral formulation beneficial for respiratory, coagulative and other systemic complements of COVID-19. Forty patients with moderate COVID-19 disease were included in two parallel groups (n = 20/group). The Intervention group (Treatment) received Madhav Rasayan Plus tablets (250 mg) twice a day for 15 days, along with standard care (SOC), while the control group received SOC alone. The intervention group significantly improved symptoms of COVID-19 like cough, breathlessness, fatigue and gastric disturbances. There was also statistically significant reduction in inflammatory markers like CRP and Ferritin. Tissue level markers like creatinine phosphokinase and NT- Pro BNP were found restored after treatment. The requirement of supplemental oxygen in the control group (6 days) was reduced by 2.5 times compared to the intervention group (2.4 days). There was also reduced hospital stay and reduced requirement of ICU in comparison with the control group. Also, the indices of fatigue severity score, disturbed sleep cycle score and quality of life revealed better and holistic recovery in the intervention group. This study reveals that COVID-19 and such infective diseases with vital complications can be better dealt with integrated management as immunomodulation and protection of tissues and vital organs are strengths of Ayurveda.
Collapse
Affiliation(s)
- Dr Sameer Jamadagni
- Shri Vishwavati Ayurvedic Chikitsalay and Research Centre, Kolhapur, Maharashtra, India
| | - Dr Prasad Pandkar
- Bharati Vidyapeeth Deemed University, College of Ayurved, Pune Maharashtra, India
| | - Dr Tushar Saundankar
- Shri Vishwavati Ayurvedic Chikitsalay and Research Centre, Kolhapur, Maharashtra, India
| | - Dr Girish Shirke
- Shri Vishwavati Ayurvedic Chikitsalay and Research Centre, Kolhapur, Maharashtra, India
| | - Shailesh Malekar
- Shri Vishwavati Ayurvedic Chikitsalay and Research Centre, Kolhapur, Maharashtra, India
| | - Dr Vg Vaidya
- Lokmanya medical Research Centre, Chinchwad, Pune, Maharashtra, India
| |
Collapse
|
16
|
Lee M, Park J, Cho IH. Target-Specific Drug Discovery of Natural Products against SARS-CoV-2 Life Cycle and Cytokine Storm in COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:927-959. [PMID: 35729089 DOI: 10.1142/s0192415x22500380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is currently a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are no drugs that can specifically combat SARS-CoV-2. Besides, multiple SARS-CoV-2 variants are circulating globally. These variants may lead to immune escape or drug resistance. Natural products may be appropriate for this need due to their cost efficiency, fewer side effects, and antiviral activities. Considering these circumstances, there is a need to develop or discover more compounds that have potential to target SARS-CoV-2. Therefore, we searched for articles on natural products describing anti-SARS-CoV-2 activities by targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19 from academic databases. We reviewed anti-SARS-CoV-2 activities of natural products, especially those that target the SARS-CoV-2 life cycle (angiotensin-converting enzyme 2, transmembrane serine protease 2, cathepsin L, 3CL protease, PL protease, RNA-dependent RNA polymerase, and helicase) and cytokine storm in COVID-19. This review may provide a repurposed approach for the discovery of specific medications using natural products to treat COVID-19 through targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Minjun Lee
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junwoo Park
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. PHARMACEUTICAL BIOLOGY 2021; 59:696-703. [PMID: 34110959 PMCID: PMC8204995 DOI: 10.1080/13880209.2021.1931353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT COVID-19 is a novel coronavirus that causes a severe infection in the respiratory system. Nigella sativa L. (Ranunculaceae) is an annual flowering plant used traditionally as a natural food supplement and multipurpose medicinal agent. OBJECTIVE The possible beneficial effects of N. sativa, and its constituent, thymoquinone (TQ) on COVID-19 were reviewed. METHODS The key words including, COVID-19, N. sativa, thymoquinone, antiviral effects, anti-inflammatory and immunomodulatory effects in different databases such as Web of Science (ISI), PubMed, Scopus, and Google Scholar were searched from 1990 up to February 2021. RESULTS The current literature review showed that N. sativa and TQ reduced the level of pro-inflammatory mediators including, IL-2, IL-4, IL-6, and IL-12, while enhancing IFN-γ. Nigella sativa and TQ increased the serum levels of IgG1 and IgG2a, and improved pulmonary function tests in restrictive respiratory disorders. DISCUSSION AND CONCLUSIONS These preliminary data of molecular docking, animal, and clinical studies propose N. sativa and TQ might have beneficial effects on the treatment or control of COVID-19 due to antiviral, anti-inflammatory and immunomodulatory properties as well as bronchodilatory effects. The efficacy of N. sativa and TQ on infected patients with COVID-19 in randomize clinical trials will be suggested.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Pharmaceutical Science and Clinical Physiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shoukouh Ghafari
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
18
|
Rodrigues FC, Hari G, Pai KSR, Suresh A, Nayak UY, Anilkumar NV, Thakur G. Molecular modeling piloted analysis for semicarbazone derivative of curcumin as a potent Abl-kinase inhibitor targeting colon cancer. 3 Biotech 2021; 11:506. [PMID: 34840927 PMCID: PMC8606278 DOI: 10.1007/s13205-021-03051-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin's IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03051-9.
Collapse
Affiliation(s)
- Fiona C. Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - K. S. R. Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - N. V. Anilkumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 India
| |
Collapse
|
19
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
20
|
Farshi P, Kaya EC, Hashempour-Baltork F, Khosravi-Darani K. The effect of plant metabolites on coronaviruses: A comprehensive review focusing on their IC50 values and molecular docking scores. Mini Rev Med Chem 2021; 22:457-483. [PMID: 34488609 DOI: 10.2174/1389557521666210831152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/10/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome), was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we did a review of 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.
Collapse
Affiliation(s)
- Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan, Kansas. United States
| | - Eda Ceren Kaya
- Food Science Institute, Kansas State University, Manhattan, Kansas. United States
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Kianoush Khosravi-Darani
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
21
|
Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Comput Biol Med 2021; 135:104568. [PMID: 34174757 PMCID: PMC8195690 DOI: 10.1016/j.compbiomed.2021.104568] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
The disease outbreak of Coronavirus disease-19 (COVID-19), caused by the novel SARS-CoV-2 virus, remains a public health concern. COVID-19 is spreading rapidly with a high mortality rate due to unavailability of effective treatment or vaccine for the disease. The high rate of mutation and recombination in SARS-CoV2 makes it difficult for scientist to develop specific anti-CoV2 drugs and vaccines. SARS-CoV-2-Mpro cleaves the viral polyprotein to produce a variety of non-structural proteins, but in human host it also cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), which suppresses the activation of the NF-κB pathway and weakens the immune response. Since the main protease (Mpro) is required for viral gene expression and replication, it is a promising target for antagonists to treat novel coronavirus disease and discovery of high resolution crystal structure of SARS-CoV-2-Mpro provide an opportunity for in silico identification of its possible inhibitors. In this study we intend to find novel and potential Mpro inhibitors from around 1830 chemically diverse and therapeutically important secondary metabolites available in the MeFSAT database by performing molecular docking against the Mpro structure of SARS-CoV-2 (PDB ID: 6LZE). After ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and binding energy calculation through MM-GBSA for top five hits, Sterenin M was proposed as a SARS-CoV2-Mpro inhibitor with validation of molecular dynamics (MD) simulation study. Sterenin M seems to have the potential to be a promising ligand against SARS-CoV-2, and thus it requires further validation by in vitro and in vivo studies.
Collapse
|
22
|
Giofrè SV, Napoli E, Iraci N, Speciale A, Cimino F, Muscarà C, Molonia MS, Ruberto G, Saija A. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Comput Biol Med 2021; 134:104538. [PMID: 34116362 PMCID: PMC8186839 DOI: 10.1016/j.compbiomed.2021.104538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
The outbreak of COVID-19 disease caused by SARS-CoV-2, along with the lack of targeted medicaments, forced the scientific world to search for new antiviral formulations. In the current emergent situation, drug repurposing of well-known traditional and/or approved drugs could be the most effective strategy. Herein, through computational approaches, we aimed to screen 14 natural compounds from limonoids and terpenoids class for their ability to inhibit the key therapeutic target proteins of SARS-CoV-2. Among these, some limonoids, namely deacetylnomilin, ichangin and nomilin, and the terpenoid β-amyrin provided good interaction energies with SARS-CoV-2 3CL hydrolase (Mpro) in molecular dynamic simulation. Interestingly, deacetylnomilin and ichangin showed direct interaction with the catalytic dyad of the enzyme so supporting their potential role in preventing SARS-CoV-2 replication and growth. On the contrary, despite the good affinity with the spike protein RBD site, all the selected phytochemicals lose contact with the amino acid residues over the course of 120ns-long molecular dynamics simulations therefore suggesting they scarcely can interfere in SARS-CoV-2 binding to the ACE2 receptor. The in silico analyses of docking score and binding energies, along with predicted pharmacokinetic profiles, indicate that these triterpenoids might have potential as inhibitors of SARS-CoV-2 Mpro, recommending further in vitro and in vivo investigations for a complete understanding and confirmation of their inhibitory potential.
Collapse
Affiliation(s)
- Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Nunzio Iraci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonio Speciale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Francesco Cimino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.
| | - Claudia Muscarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Maria Sofia Molonia
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Antonella Saija
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
23
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
24
|
Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021; 214:105778. [PMID: 33253656 PMCID: PMC7695590 DOI: 10.1016/j.actatropica.2020.105778] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
We are living through an unprecedented crisis with the rapid spread of the new coronavirus disease (COVID-19) worldwide within a short time. The timely availability of thousands of SARS-CoV-2 genomes has enabled the scientific community to study the origin, structures, and pathogenesis of the virus. The pandemic has spurred research publication and resulted in an unprecedented number of therapeutic proposals. Because the development of new drugs is time consuming, several strategies, including drug repurposing and repositioning, are being tested to treat patients with COVID-19. Researchers have developed several potential vaccine candidates that have shown promise in phase II and III trials. As of 12 November 2020, 164 candidate vaccines are in preclinical evaluation, and 48 vaccines are in clinical evaluation, of which four have cleared phase III trials (Pfizer/BioNTech's BNT162b2, Moderna's mRNA-1273, University of Oxford & AstraZeneca's AZD1222, and Gamaleya's Sputnik V vaccine). Despite the acquisition of a vast body of scientific information, treatment depends only on the clinical management of the disease through supportive care. At the pandemic's 1-year mark, we summarize current information on SARS-CoV-2 origin and biology, and advances in the development of therapeutics. The updated information presented here provides a comprehensive report on the scientific progress made in the past year in understanding of SARS-CoV-2 biology and therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar Mishra
- Department of Botany, Ewing Christian College, Prayagraj- 211003, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
25
|
Meena MK, Kumar D, Kumari K, Kaushik NK, Kumar RV, Bahadur I, Vodwal L, Singh P. Promising inhibitors of nsp2 of CHIKV using molecular docking and temperature-dependent molecular dynamics simulations. J Biomol Struct Dyn 2021; 40:5827-5835. [PMID: 33472563 DOI: 10.1080/07391102.2021.1873863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection due to the Chikungunya virus (CHIKV) has taken the life of lots of people; and researchers are working to find the vaccine or promisng drug candidates against this viral infection. In this work, the authors have designed one component reaction based on the thia-/oxa-azolidineone and created a library of 2000 molecules based on the product obtained. Further, the compounds were screened through the docking using iGemdock against the non-structural protein 2 (nsp2) of CHIKV. Molecular docking gives the binding energy (BE) or energy for the formation of the complex between the designed compound and nsp2 of CHIKV; and CMPD222 gave the lowest energy. This is based on the energy obtained from van der Waal's interaction, hydrogen bonding and electrostatic instructions. Further, molecular dynamics simulations (MDS) of nsp2 of CHIKV with and without screened compound (222) were performed to validate the docking results and the change in free energy for the formation of the complex is -10.8327 kcal/mol. To explore the potential of CMPD222, the MDS of the CMPD222-nsp2 of CHIKV were performed at different temperatures (325, 350, 375 and 400 K) to understand the inhibition of the protease. MM-GBSA calculations were performed to determined change in entropy, change in enthalpy and change in free energy to understand the inhibition. Maximum inhibition of nsp2 of CHIKV with CMPD222 is observed at 375 K with a change in free energy of -19.3754 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahendera Kumar Meena
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.,Department of Chemistry, Shivaji College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Nagendra Kumar Kaushik
- Deptartment of Electrical & Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | | | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
26
|
Kumar A, Bagri K, Nimbhal M, Kumar P. In silico exploration of the fingerprints triggering modulation of glutaminyl cyclase inhibition for the treatment of Alzheimer's disease using SMILES based attributes in Monte Carlo optimization. J Biomol Struct Dyn 2020; 39:7181-7193. [PMID: 32795153 DOI: 10.1080/07391102.2020.1806111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disorder and being a social burden Alzheimer's has become an economic liability on developing countries. With limited understanding regarding the cause of disease, it is commonly identified by extracellular deposit of amyloid β (Aβ) peptides as senile plaques. Pyroglutamated Aβ is identified from the brain of AD patients and constituted the majority of total Aβ present. The formation of Pyroglutamated Aβ could be hindered by the use of Glutaminyl cyclase inhibitors and could efficiently improve the symptoms of Alzheimer's. The literature revealed the competence of quantitative structure activity/property relationship studies in drug discovery. The present work explores the efficiency of Monte Carlo based QSAR modelling studies on a dataset of 125 Glutaminyl cyclase inhibitors with pKi taken as the endpoint for QSAR analysis. The dataset is divided into training, subtraining, calibration and validation sets resulting in the generation of five random splits. The validation is performed in accordance with the Organization of Economic Corporation and Development principles. The values of R2, Q2, index of ideality of correlation, concordance correlation coefficient, av. rm2 and delta rm2 of calibration set of the best split are found to be 0.9012, 0.8775, 0.9479, 0.9435, 0.8347 and 0.0847, respectively. The structural features responsible for increasing the inhibitory activity are identified. These structural features are added to a base compound from the dataset to design six novel molecules. These new molecules possess improved inhibitory activity as compare to the base compound. The results are further supported by docking studies.Communicated by Vsevolod Makeev.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Kiran Bagri
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Manisha Nimbhal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
27
|
Mukherjee S, Dasgupta S, Adhikary T, Adhikari U, Panja SS. Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: inhibitor modelling study through molecular docking and MD-simulation study. J Biomol Struct Dyn 2020; 39:7322-7334. [PMID: 32772895 PMCID: PMC7484585 DOI: 10.1080/07391102.2020.1804458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The spread of novel coronavirus strain, Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) causes Coronavirus disease (COVID-19) has now spread worldwide and effecting the entire human race. The viral genetic material is transcripted and replicated by 3 C-like protease, as a result, it is an important drug target for COVID-19. Hydroxychloroquine (HCQ) report promising results against this drug target so, we perform molecular docking followed by MD-simulation studies of HCQ and modelled some ligand (Mod-I and Mod-II) molecules with SARS-CoV-2-main protease which reveals the structural organization of the active site residues and presence of a conserve water-mediated catalytic triad that helps in the recognition of Mod-I/II ligand molecules. The study may be helpful to gain a detailed structural insight on the presence of water-mediated catalytic triad which could be useful for inhibitor modelling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| | - Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| | - Tapasendra Adhikary
- Department of Metallurgical & Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| |
Collapse
|