1
|
Dimitrova L, Mileva M, Georgieva A, Tzvetanova E, Popova M, Bankova V, Najdenski H. Redox-Modulating Capacity and Effect of Ethyl Acetate Roots and Aerial Parts Extracts from Geum urbanum L. on the Phenotype Inhibition of the Pseudomonas aeruginosa Las/RhI Quorum Sensing System. PLANTS (BASEL, SWITZERLAND) 2025; 14:213. [PMID: 39861566 PMCID: PMC11768107 DOI: 10.3390/plants14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance. Therefore, new preparations of natural origin are sought, such as plant extracts, which are phytocomplexes and to which it is practically impossible to develop resistance. Geum urbanum L. (Rosacea) is a perennial herb known for many biological properties. This study aimed to investigate the redox-modulating capacity and effect of ethyl acetate (EtOAc) extracts from roots (EtOAcR) and aerial parts (EtOAcAP) of the Bulgarian plant on the phenotype inhibition of the P. aeruginosa Las/RhI quorum sensing (QS) system, which primarily determines drug resistance in pathogenic bacteria, including biofilm formation, motility, and pigment production. We performed QS assays to account for the effects of the two EtOAc extracts. At sub-minimal inhibitory concentrations (sub-MICs) ranging from 1.56 to 6.25 mg/mL, the biofilm formation was inhibited 85% and 84% by EtOAcR and 62% and 39% by EtOAcAP extracts, respectively. At the same sub-MICs, the pyocyanin synthesis was inhibited by 17-27% after treatment with EtOAcAP and 26-30% with EtOAcR extracts. The motility was fully inhibited at 3.12 mg/mL and 6.25 mg/mL (sub-MICs). We investigated the inhibitory potential of lasI, lasR, rhiI, and rhiR gene expression in biofilm and pyocyanin probes with the PCR method. Interestingly, the genes were inhibited by two extracts at 3.12 mg/mL and 6.25 mg/mL. Antiradical studies, assessed by DPPH, CUPRAC, and ABTS radical scavenging methods and superoxide anion inhibition showed that EtOAcAP extract has effective antioxidant capacity. These results could help in the development of new phytocomplexes that could be applied as biocontrol agents to inhibit the phenotype of the P. aeruginosa QS system and other antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Lyudmila Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tzvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (V.B.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| |
Collapse
|
2
|
Khadraoui N, Essid R, Damergi B, Fares N, Gharbi D, Forero AM, Rodríguez J, Abid G, Kerekes EB, Limam F, Jiménez C, Tabbene O. Myrtus communis leaf compounds as novel inhibitors of quorum sensing-regulated virulence factors and biofilm formation: In vitro and in silico investigations. Biofilm 2024; 8:100205. [PMID: 38988475 PMCID: PMC11231753 DOI: 10.1016/j.bioflm.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 μg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 μg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Abel Mateo Forero
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre de Biotechnology de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Erika-Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, Hungary
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
3
|
Sikdar B, Mukherjee S, Bhattacharya R, Raj A, Roy A, Banerjee D, Gangopadhyay G, Roy S. The anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract and prediction of the roles of the potent phytocompounds. Microb Pathog 2024; 195:106864. [PMID: 39153575 DOI: 10.1016/j.micpath.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The leaves of Piper betle L., known as betel leaf, have immense medicinal properties. It possesses potent antimicrobial efficacies and can be a valuable tool to combat drug-resistant microorganisms. Quorum sensing (QS) inhibition is one of the best strategies to combat drug resistance. The present study investigates the anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract against two bacterial strains, Chromobacterium violaceum and Pseudomonas aeruginosa. The extract produced substantial QS-inhibition zones in a biosensor strain of C. violaceum (CV026), indicating interference with quorum-sensing signals. The Results demonstrated significant inhibition in biofilm formation and different QS-regulated virulence factors (violacein, exopolysaccharides, pyocyanin, pyoverdine, elastase) in both C. violaceum and P. aeruginosa at sub-MIC concentrations of the extract and tetracycline, an antibiotic with known anti-QS activity. The quantitative real-time PCR (qRT-PCR) revealed decreased gene expression in different QS-related genes in C. violaceum (cviI, cviR, and vioA) and P. aeruginosa (lasI, lasR, lasB, rhlI, rhlR, and rhlA) strains after treatment. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified the significant phytocompounds, mainly derivatives of chavicol and eugenol, in the extract. Of these compounds, chavicol acetate (affinity: -7.00 kcal/mol) and acetoxy chavicol acetate (affinity: -7.87 kcal/mol) showed the highest potential to bind with the CviR and LasR protein, respectively, as evident from the in-silico molecular docking experiment. The findings of this endeavour highlight the promising role of Piper betle L. as a source of natural compounds with anti-quorum sensing properties against pathogenic bacteria, opening avenues for developing novel therapeutic agents to combat bacterial infections.
Collapse
Affiliation(s)
- Bratati Sikdar
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Sourav Mukherjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Rupsa Bhattacharya
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Adarsha Raj
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Alokesh Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Midnapore City College, Kuturiya, Bhadutala, Paschim Medinipore, 721129, West Bengal, India
| | - Debarati Banerjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Gaurab Gangopadhyay
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India.
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
4
|
Mohan MS, Salim SA, Ranganathan S, Parasuraman P, Anju VT, Ampasala DR, Dyavaiah M, Lee JK, Busi S. Attenuation of Las/Rhl quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1 by Artocarpesin. Microb Pathog 2024; 189:106609. [PMID: 38452830 DOI: 10.1016/j.micpath.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The emergence of multidrug resistance and increased pathogenicity in microorganisms is conferred by the presence of highly synchronized cell density dependent signalling pathway known as quorum sensing (QS). The QS hierarchy is accountable for the secretion of virulence phenotypes, biofilm formation and drug resistance. Hence, targeting the QS phenomenon could be a promising strategy to counteract the bacterial virulence and drug resistance. In the present study, artocarpesin (ACN), a 6-prenylated flavone was investigated for its capability to quench the synthesis of QS regulated virulence factors. From the results, ACN showed significant inhibition of secreted virulence phenotypes such as pyocyanin (80%), rhamnolipid (79%), protease (69%), elastase (84%), alginate (88%) and biofilm formation (88%) in opportunistic pathogen, Pseudomonas aeruginosa PAO1. Further, microscopic observation of biofilm confirmed a significant reduction in biofilm matrix when P. aeruginosa PAO1 was supplemented with ACN at its sub-MIC concentration. Quantitative gene expression studies showed the promising aspects of ACN in down regulation of several QS regulatory genes associated with production of virulence phenotypes. Upon treatment with sub-MIC of ACN, the bacterial colonization in the gut of Caenorhabditis elegans was potentially reduced and the survival rate was greatly improved. The promising QS inhibition activities were further validated through in silico studies, which put an insight into the mechanism of QS inhibition. Thus, ACN could be considered as possible drug candidate targeting chronic microbial infections.
Collapse
Affiliation(s)
- Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sampathkumar Ranganathan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India; Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Dinakara Rao Ampasala
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
5
|
Mehmood S, Hussain M, Bux K, Hussain Z, Raza Shah M, Ali Jakhrani M, Ali Channar P, Begum I, Saboor R, Yildiz CB, Ali K, Herwig R. Structural dynamics and anti-biofilm screening of novel imidazole derivative to explore their anti-biofilm inhibition mechanism against Pseudomonas Aeruginosa. J Biomol Struct Dyn 2024:1-15. [PMID: 38385459 DOI: 10.1080/07391102.2024.2317983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The biofilm formation is still prevalent mechanism of developing the drug resistance in the Pseudomonas aeruginosa, gram-negative bacteria, known for its major role in nosocomial, ventilator-associated pneumonia (VAP), lung infections and catheter-associated urinary tract infections. As best of our knowledge, current study first time reports the most potent inhibitors of LasR, a transcriptional activator of biofilm and virulence regulating genes in, Pseudomonas aeruginosa LasR, utilizing newly functionalized imidazoles (5a-d), synthesized via 1,3-dipolar cycloaddition using click approach. The synthesized ligands were characterized through Mass Spectrometry and 1H NMR. The binding potency and mode of biding of ligands. Quantum Mechanical(QM) methods were utilized to investigate the electronic basis, HOMO/LUMO and dipole moment of the geometry of the ligands for their binding potency. Dynamics cross correlation matrix (DCCMs) and protein surface analysis were further utilized to explore the structural dynamics of the protein. Free energy of binding of ligands and protein were further estimated using Molecular Mechanical Energies with the Poisson-Boltzmann surface area (MMPBSA) method. Molecular Docking studies revealed significant negative binding energies (5a - 10.33, 5b -10.09, 5c - 10.11, and 5d -8.33 KJ/mol). HOMO/LUMO and potential energy surface map estimation showed the ligands(5a) with lower energy gaps and larger dipole moments had relatively larger binding potency. The significant change in the structural dynamics of LasR protein due to complex formation with newlyfunctionalized imidazoles ligands. Hydrogen bond surface analysis followed by MMPBSA calculations of free energy of binding further complemented the Molecular docking revelations showing the specifically ligand (5a) having the relatively higher energy of binding(-65.22kj/mol).
Collapse
Affiliation(s)
- Shahab Mehmood
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Khair Bux
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, Karachi, Pakistan
| | - Mushtaque Ali Jakhrani
- Institute of Chemistry, Shah Abdul Latif University Khairpur mirs, Khairpurmirs, Sindh, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology Karachi, Karachi, Pakistan
| | - Irshad Begum
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Rukhsana Saboor
- Department of Pathology, Ghulam Muhammad Mahar Medical College, Sukkur, Pakistan
| | - Cem B Yildiz
- Department of Medicinal and Aromatic Plants, University of Aksaray, Aksaray, Turkey
| | - Kashif Ali
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan
| | - Ralf Herwig
- Laboratories PD Dr. R. Herwig, 80337 Munich, Germany and Heimerer-College, Pristina, Kosovo
| |
Collapse
|
6
|
Kar A, Mukherjee SK, Barik S, Hossain ST. Antimicrobial Activity of Trigonelline Hydrochloride Against Pseudomonas aeruginosa and Its Quorum-Sensing Regulated Molecular Mechanisms on Biofilm Formation and Virulence. ACS Infect Dis 2024; 10:746-762. [PMID: 38232080 DOI: 10.1021/acsinfecdis.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pseudomonas aeruginosa, a vivid biofilm-producing bacterium, is considered a dreadful opportunistic pathogen, and thus, management of biofilm-associated infections due to multidrug resistant strains by traditional drugs currently is of great concern. This study was aimed to assess the impact of trigonelline hydrochloride, a pyridine alkaloid, on P. aeruginosa PAO1, in search of an alternative therapeutant. The effect of trigonelline on colony morphology and motility was studied along with its role on biofilm and expression virulence factors. Trigonelline influenced the colony structure, motility, biofilm architecture, and the production of virulence factors in a dose-dependent manner. Alterations in quorum sending (QS)-regulated gene expression after treatment and molecular docking analysis for certain regulator proteins confirmed its effect on the QS-system network by affecting Las, Rhl, and Pqs signaling pathways and as possible molecular targets. Thus, trigonelline might be considered as a potential chemical lead to manage biofilm-associated pathogenesis or to develop other analogues with enhanced pharmacokinetic actions.
Collapse
Affiliation(s)
- Amiya Kar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | | | - Subhasis Barik
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal 700026, India
| | | |
Collapse
|
7
|
Tel-Çayan G, Çiftçi BH, Taş-Küçükaydın M, Temel Y, Çayan F, Küçükaydın S, Duru ME. Citrus Honeys from Three Different Regions of Turkey: HPLC-DAD Profiling and in Vitro Enzyme Inhibition, Antioxidant, Anti-Inflammatory and Antimicrobial Properties with Chemometric Study. Chem Biodivers 2023; 20:e202300990. [PMID: 37548632 DOI: 10.1002/cbdv.202300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
The objectives of the present study are to compare the phenolic profiles and biological activities of 15 citrus honey samples from three different locations in Turkey using a chemometric approach. The HPLC-DAD analysis was used to determine phenolic profiles. Nineteen phenolic compounds were identified. Gallic acid (107.14-717.04 μg/g) was recorded as the predominant compound. AF (Antalya-Finike) had the highest antioxidant activity in ABTS⋅+ (IC50 : 18.01±0.69 mg/mL), metal chelating (IC50 : 6.20±0.19 mg/mL) and CUPRAC (A0.50 : 12.05±0.68 mg/mL) assays, while it revealed the best anti-inflammatory activity against COX-2 (17.28±0.22 %) and COX-1 (43.28±0.91 %). AM (Antalya-Manavgat) was the most active in β-carotene-linoleic acid (IC50 : 10.05±0.19 mg/mL), anti-urease (38.90±0.69 %), anti-quorum sensing and antimicrobial activities. AKO1 (Adana-Kozan-1) in DPPH⋅ (IC50 : 34.25±0.81 mg/mL) assay, AKU1 (Antalya-Kumluca-1) in tyrosinase inhibition activity (37.73±0.38 %) assay, AKU2 (Antalya-Kumluca-2) in AChE (10.55±0.63 %) and BChE (9.18±0.45 %) inhibition activity assays showed the best activity. Chemometric tools were applied to the phenolic compositions and biological properties. PCA and HCA ensured that 15 citrus honey samples were grouped into 3 clusters. The results showed that myricetin, kaempferol, vanillin, protocatechuic acid, rosmarinic acid, rutin, vanillic acid, gallic acid, catechin and p-hydroxyphenyl acetic acid are phenolic compounds that can be used in the classification of citrus honeys.
Collapse
Affiliation(s)
- Gülsen Tel-Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Begüm Hazar Çiftçi
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Meltem Taş-Küçükaydın
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Yeşim Temel
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Fatih Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Selçuk Küçükaydın
- Department of Medical Services and Techniques, Köyceğiz Vocational School of Health Services, Muğla Sıtkı Koçman University, 48000, Köyceğiz/Muğla, Turkey
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| |
Collapse
|
8
|
Emam M, Abdel-Haleem DR, Salem MM, Abdel-Hafez LJM, Latif RRA, Farag SM, Sobeh M, El Raey MA. Phytochemical Profiling of Lavandula coronopifolia Poir. Aerial Parts Extract and Its Larvicidal, Antibacterial, and Antibiofilm Activity Against Pseudomonas aeruginosa. Molecules 2021; 26:1710. [PMID: 33808553 PMCID: PMC8003439 DOI: 10.3390/molecules26061710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Infections associated with the emergence of multidrug resistance and mosquito-borne diseases have resulted in serious crises associated with high mortality and left behind a huge socioeconomic burden. The chemical investigation of Lavandulacoronopifolia aerial parts extract using HPLC-MS/MS led to the tentative identification of 46 compounds belonging to phenolic acids, flavonoids and their glycosides, and biflavonoids. The extract displayed larvicidal activity against Culex pipiens larvae (LC50 = 29.08 µg/mL at 72 h). It significantly inhibited cytochrome P-450 monooxygenase (CYP450), acetylcholinesterase (AChE), and carboxylesterase (CarE) enzymes with the comparable pattern to the control group, which could explain the mode of larvae toxification. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa by 17-38% at different Minimum Inhibitory Concentrations (MICs) (0.5-0.125 mg/mL) while the activity was doubled when combined with ciprofloxacin (ratio = 1:1 v:v). In conclusion, the wild plant, L.coronopifolia, can be considered a promising natural source against resistant bacteria and infectious carriers.
Collapse
Affiliation(s)
- Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China;
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| | - Doaa R. Abdel-Haleem
- Department of entomology, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt; (D.R.A.-H.); (S.M.F.)
| | - Maha M. Salem
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| | - Lina Jamil M. Abdel-Hafez
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, 6th October City, Giza 12585, Egypt;
| | - Rasha R. Abdel Latif
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| | - Shaimaa Mahmoud Farag
- Department of entomology, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt; (D.R.A.-H.); (S.M.F.)
| | - Mansour Sobeh
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, 43150 Ben-Guerir, Morocco
| | - Mohamed A. El Raey
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| |
Collapse
|