1
|
Pfeffer M, von Gall C, Wicht H, Korf HW. The Role of the Melatoninergic System in Circadian and Seasonal Rhythms—Insights From Different Mouse Strains. Front Physiol 2022; 13:883637. [PMID: 35492605 PMCID: PMC9039042 DOI: 10.3389/fphys.2022.883637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
The melatoninergic system comprises the neurohormone melatonin and its molecular targets. The major source of melatonin is the pineal organ where melatonin is rhythmically produced during darkness. In mammals, melatonin biosynthesis is controlled by the central circadian rhythm generator in the suprachiasmatic nucleus (SCN) and photoreceptors in the retina. Melatonin elicits its function principally through two specific receptors called MT1 and MT2. MT1 is highly expressed in the SCN and the hypophysial pars tuberalis (PT), an important interface for control of seasonal functions. The expression of the MT2 is more widespread. The role of the melatoninergic system in the control of seasonal functions, such as reproduction, has been known for more than 4 decades, but investigations on its impact on the circadian system under normal (entrained) conditions started 2 decades later by comparing mouse strains with a fully functional melatoninergic system with mouse strains which either produce insufficient amounts of melatonin or lack the melatonin receptors MT1 and MT2. These studies revealed that an intact melatoninergic system is not required for the generation or maintenance of rhythmic behavior under physiological entrained conditions. As shown by jet lag experiments, the melatoninergic system facilitated faster re-entrainment of locomotor activity accompanied by a more rapid adaptation of the molecular clock work in the SCN. This action depended on MT2. Further studies indicated that the endogenous melatoninergic system stabilizes the locomotor activity under entrained conditions. Notably, these effects of the endogenous melatoninergic system are subtle, suggesting that other signals such as corticosterone or temperature contribute to the synchronization of locomotor activity. Outdoor experiments lasting for a whole year indicate a seasonal plasticity of the chronotype which depends on the melatoninergic system. The comparison between mice with an intact or a compromised melatoninergic system also points toward an impact of this system on sleep, memory and metabolism.
Collapse
Affiliation(s)
- Martina Pfeffer
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Martina Pfeffer,
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin der Goethe-Universität, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
3
|
Boutin JA, Legros C. The five dimensions of receptor pharmacology exemplified by melatonin receptors: An opinion. Pharmacol Res Perspect 2020; 8:e00556. [PMID: 31893125 PMCID: PMC6935684 DOI: 10.1002/prp2.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Receptology has been complicated with enhancements in our knowledge of G-protein-coupled-receptor (GPCR) biochemistry. This complexity is exemplified by the pharmacology of melatonin receptors. Here, we describe the complexity of GPCR biochemistry in five dimensions: (a) receptor expression, particularly in organs/tissues that are only partially understood; (b) ligands and receptor-associated proteins (interactome); (c) receptor function, which might be more complex than the known G-protein-coupled systems; (d) ligand bias, which favors a particular pathway; and (e) receptor dimerization, which might concern all receptors coexpressed in the same cell. Thus, receptor signaling might be modified or modulated, depending on the nature of the receptor complex. Fundamental studies are needed to clarify these points and find new ways to tackle receptor functionality. This opinion article emphasizes the global questions attached to new descriptions of GPCRs and aims to raise our awareness of the tremendous complexity of modern receptology.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales ServierSuresnesFrance
| | - Céline Legros
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
| |
Collapse
|
4
|
Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P, Felder-Schmittbuhl MP. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res 2019; 67:e12575. [PMID: 30937953 DOI: 10.1111/jpi.12575] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Melatonin (MLT) exerts its physiological effects principally through two high-affinity membrane receptors MT1 and MT2. Understanding the exact mechanism of MLT action necessitates the use of highly selective agonists/antagonists to stimulate/inhibit a given MLT receptor. The respective distribution of MT1 and MT2 within the CNS and elsewhere is controversial, and here we used a "knock-in" strategy replacing MT1 or MT2 coding sequences with a LacZ reporter. The data show striking differences in the distribution of MT1 and MT2 receptors in the mouse brain: whereas the MT1 subtype was expressed in very few structures (notably including the suprachiasmatic nucleus and pars tuberalis), MT2 subtype receptors were identified within numerous brain regions including the olfactory bulb, forebrain, hippocampus, amygdala and superior colliculus. Co-expression of the two subtypes was observed in very few structures, and even within these areas they were rarely present in the same individual cell. In conclusion, the expression and distribution of MT2 receptors are much more widespread than previously thought, and there is virtually no correspondence between MT1 and MT2 cellular expression. The precise phenotyping of cells/neurons containing MT1 or MT2 receptor subtypes opens new perspectives for the characterization of links between MLT brain targets, MLT actions and specific MLT receptor subtypes.
Collapse
Affiliation(s)
- Paul Klosen
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | - Sarawut Lapmanee
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | | | | | - David Hicks
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | - Paul Pevet
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
5
|
Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol 2018; 258:215-221. [PMID: 28533170 DOI: 10.1016/j.ygcen.2017.05.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/27/2017] [Accepted: 05/16/2017] [Indexed: 01/02/2023]
Abstract
In mammals, the rhythmic secretion of melatonin from the pineal gland is driven by the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. The robust nightly peak of melatonin secretion is an output signal of the circadian clock and is supposed to deliver the circadian message to the whole of the organism. Since the circadian system regulates many behavioral and physiological processes, its disruption by external (shift-work, jet-lag) or internal desynchronization (blindness, aging) causes many different health problems. Externally applied melatonin is used in humans as a chronobiotic drug to treat desynchronization and circadian disorders, and the success of these treatments does, at first glance, underline the supposed pivotal role of melatonin in the synchronization of the circadian system. On the other hand, pinealectomy in experimental animals and humans does not abolish their rhythms of rest and activity. Furthermore, mice with deficient melatoninergic systems neither display overt defects in their rhythmic behavior nor do they show obvious signs of disease susceptibility, let alone premature mortality. During the last years, our laboratory has investigated several mouse stains with intact or compromised internal melatonin signaling systems in order to better understand the physiological role of the melatoninergic system. These and other investigations which will be reviewed in the present contribution confirm the synchronizing effect of endogenous melatonin and the melatoninergic system. However, these effects are subtle. Thus melatonin does not appear as the master of internal synchronization, but as one component in a cocktail of synchronizing agents.
Collapse
Affiliation(s)
- Martina Pfeffer
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Horst-Werner Korf
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Ramírez-Reveco A, Villarroel-Espíndola F, Rodríguez-Gil JE, Concha II. Neuronal signaling repertoire in the mammalian sperm functionality. Biol Reprod 2017; 96:505-524. [PMID: 28339693 DOI: 10.1095/biolreprod.116.144154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
The common embryonic origin has been a recurrent explanation to understand the presence of "neural receptors" in sperm. However, this designation has conditioned a bias marked by the classical neurotransmission model, dismissing the possibility that neurotransmitters can play specific roles in the sperm function by themselves. For instance, the launching of acrosome reaction, a fundamental sperm function, includes several steps that recall the process of presynaptic secretion. Unlike of postsynaptic neuron, whose activation is mediated by molecular interaction between neurotransmitter and postsynaptic receptors, the oocyte activation is not mediated by receptors, but by cytosolic translocation of sperm phospholipase (PLCζ). Thus, the sperm has a cellular design to access and activate the oocyte and restore the ploidy of the species by an "allogenic pronuclear fusion." At subcellular level, the events controlling sperm function, particularly the capacitation process, are activated by chemical signals that trigger ion fluxes, sterol oxidation, synthesis of cyclic adenosine monophosphate, protein kinase A activation, tyrosine phosphorylations and calcium signaling, which correspond to second messengers similar to those associated with exocytosis and growth cone guidance in neurons. Classically, the sperm function associated with neural signals has been analyzed as a unidimensional approach (single ligand-receptor effect). However, the in vivo sperm are exposed to multidimensional signaling context, for example, the GABAergic, monoaminergic, purinergic, cholinergic, and melatoninergic, to name a few. The aim of this review is to present an overview of sperm functionality associated with "neuronal signaling" and possible cellular and molecular mechanisms involved in their regulation.
Collapse
Affiliation(s)
- Alfredo Ramírez-Reveco
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Franz Villarroel-Espíndola
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Department of Pathology and Pediatric Pathology, Yale University, New Haven, Connecticut, USA
| | - Joan E Rodríguez-Gil
- Unitat de Reproducció Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ilona I Concha
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Cebrián-Pérez JA, Casao A, González-Arto M, dos Santos Hamilton TR, Pérez-Pé R, Muiño-Blanco T. Melatonin in sperm biology: breaking paradigms. Reprod Domest Anim 2015; 49 Suppl 4:11-21. [PMID: 25277428 DOI: 10.1111/rda.12378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
Melatonin is a ubiquitous molecule, present in a wide range of organisms, and involved in multiple functions. Melatonin relays the information about the photoperiod to the tissues that express melatonin-binding sites in both central and peripheral nervous systems. This hormone has a complex mechanism of action. It can cross the cell plasma membrane and exert its actions in all cells of the body. Certain melatonin actions are mediated by receptors that belong to the superfamily of G-protein-coupled receptors (GPCRs), the MT1 and MT2 membrane. Melatonin can also bind to calmodulin as well as to nuclear receptors of the retinoic acid receptor family, RORα1, RORα2 and RZRβ. The purpose of this review is to report on recent developments in the physiological role of melatonin and its receptors. Specific issues concerning the biological function of melatonin in mammalian seasonal reproduction and spermatozoa are considered. The significance of the continuous presence of melatonin in seminal plasma with a fairly constant concentration is also discussed.
Collapse
Affiliation(s)
- J A Cebrián-Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
10
|
Lipsky RH, Lin M. Genetic predictors of outcome following traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:23-41. [PMID: 25702208 DOI: 10.1016/b978-0-444-52892-6.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nature of traumatic brain injury (TBI) has acute and chronic outcomes for those who survive. Over time, the chronic process of injury impacts multiple organ systems that may lead to disease. We discuss possible mechanisms and methodological issues in the context of candidate gene association studies using TBI patient populations. Because study population sizes have been generally limited, we discussed results on genes that have been the focus of independent studies. We also present a justification for testing more speculative candidate genes in recovery from TBI, such as those involved in circadian rhythm, to outline the importance of prioritizing functional variants in genes that may modulate recovery or provide neuroprotection from TBI. Finally, we provide a perspective on how future research will integrate population level genetic findings with the biological basis of disease in order to create a resource of predictive outcome measures for individual patients.
Collapse
Affiliation(s)
- Robert H Lipsky
- Department of Neurosciences, Inova Health System, Falls Church, VA, USA.
| | - Mingkuan Lin
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
11
|
Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays 2014; 36:778-87. [PMID: 24903552 PMCID: PMC4151498 DOI: 10.1002/bies.201400017] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications toward type 2 diabetes development, visual functions, sleep disturbances, and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2 , which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1 /MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models.
Collapse
Affiliation(s)
- Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
12
|
Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 2014; 66:413-34. [PMID: 24515647 PMCID: PMC3973609 DOI: 10.1124/pr.113.008052] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most evidence indicates that, as for family C G protein-coupled receptors (GPCRs), family A GPCRs form homo- and heteromers. Homodimers seem to be a predominant species, with potential dynamic formation of higher-order oligomers, particularly tetramers. Although monomeric GPCRs can activate G proteins, the pentameric structure constituted by one GPCR homodimer and one heterotrimeric G protein may provide a main functional unit, and oligomeric entities can be viewed as multiples of dimers. It still needs to be resolved if GPCR heteromers are preferentially heterodimers or if they are mostly constituted by heteromers of homodimers. Allosteric mechanisms determine a multiplicity of possible unique pharmacological properties of GPCR homomers and heteromers. Some general mechanisms seem to apply, particularly at the level of ligand-binding properties. In the frame of the dimer-cooperativity model, the two-state dimer model provides the most practical method to analyze ligand-GPCR interactions when considering receptor homomers. In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to different intrinsic efficacy of ligands for different signaling pathways (functional selectivity). This gives a rationale for the use of GPCR oligomers, and particularly heteromers, as novel targets for drug development. Herein, we review the functional and pharmacological properties of GPCR oligomers and provide some guidelines for the application of discrete direct screening and high-throughput screening approaches to the discovery of receptor-heteromer selective compounds.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Department of Health and Human Services, 333 Cassell Drive, Baltimore, Maryland 21224.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zlotos DP, Jockers R, Cecon E, Rivara S, Witt-Enderby PA. MT1 and MT2 Melatonin Receptors: Ligands, Models, Oligomers, and Therapeutic Potential. J Med Chem 2013; 57:3161-85. [DOI: 10.1021/jm401343c] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Darius. P. Zlotos
- Department
of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Ralf Jockers
- Inserm, U1016,
Institut Cochin, Paris, France
- CNRS UMR
8104, Paris, France
- Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Erika Cecon
- Department
of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | - Silvia Rivara
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parco Area
delle Scienze 27/A, 43124 Parma, Italy
| | - Paula A. Witt-Enderby
- Division
of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 421 Mellon Hall, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
14
|
Baba K, Benleulmi-Chaachoua A, Journé AS, Kamal M, Guillaume JL, Dussaud S, Gbahou F, Yettou K, Liu C, Contreras-Alcantara S, Jockers R, Tosini G. Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal 2013; 6:ra89. [PMID: 24106342 DOI: 10.1126/scisignal.2004302] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The formation of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) heteromers enables signaling diversification and holds great promise for improved drug selectivity. Most studies of these oligomerization events have been conducted in heterologous expression systems, and in vivo validation is lacking in most cases, thus questioning the physiological significance of GPCR heteromerization. The melatonin receptors MT1 and MT2 exist as homomers and heteromers when expressed in cultured cells. We showed that melatonin MT1/MT2 heteromers mediated the effect of melatonin on the light sensitivity of rod photoreceptors in mice. This effect of melatonin involved activation of the heteromer-specific phospholipase C and protein kinase C (PLC/PKC) pathway and was abolished in MT1(-/-) or MT2(-/-) mice, as well as in mice overexpressing a nonfunctional MT2 mutant that interfered with the formation of functional MT1/MT2 heteromers in photoreceptor cells. Not only does this study establish an essential role of melatonin receptor heteromers in retinal function, it also provides in vivo support for the physiological importance of GPCR heteromerization. Thus, the MT1/MT2 heteromer complex may provide a specific pharmacological target to improve photoreceptor function.
Collapse
Affiliation(s)
- Kenkichi Baba
- 1Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Evaluation of the Role of Chronic Daily Melatonin Administration and Pinealectomy on Penicillin-Induced Focal Epileptiform Activity and Spectral Analysis of ECoG in Rats: An In Vivo Electrophysiological Study. Neurochem Res 2013; 38:1672-85. [DOI: 10.1007/s11064-013-1069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
16
|
Bähr I, Mühlbauer E, Albrecht E, Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res 2012; 53:390-8. [PMID: 22672634 DOI: 10.1111/j.1600-079x.2012.01009.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melatonin has been shown to modulate glucose metabolism by influencing insulin secretion. Recent investigations have also indicated a regulatory function of melatonin on the pancreatic α-cells. The present in vitro and in vivo studies evaluated whether melatonin mediates its effects via melatonin receptors and which signaling cascade is involved. Incubation experiments using the glucagon-producing mouse pancreatic α-cell line αTC1 clone 9 (αTC1.9) as well as isolated pancreatic islets of rats and mice revealed that melatonin increases glucagon secretion. Preincubation of αTC1.9 cells with the melatonin receptor antagonists luzindole and 4P-PDOT abolished the glucagon-stimulatory effect of melatonin. In addition, glucagon secretion was lower in the pancreatic islets of melatonin receptor knockout mice than in the islets of the wild-type (WT) control animals. Investigations of melatonin receptor knockout mice revealed decreased plasma glucagon concentrations and elevated mRNA expression levels of the hepatic glucagon receptor when compared to WT mice. Furthermore, studies using pertussis toxin, as well as measurements of cAMP concentrations, ruled out the involvement of Gαi- and Gαs-coupled signaling cascades in mediating the glucagon increase induced by melatonin. In contrast, inhibition of phospholipase C in αTC1.9 cells prevented the melatonin-induced effect, indicating the physiological relevance of the Gαq-coupled pathway. Our data point to the involvement of the phosphatidylinositol 3-kinase signaling cascade in mediating melatonin effects in pancreatic α-cells. In conclusion, these findings provide evidence that the glucagon-stimulatory effect of melatonin in pancreatic α-cells is melatonin receptor mediated, thus supporting the concept of melatonin-modulated and diurnal glucagon release.
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Diabetes Mellitus, Type 2/enzymology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation
- Glucagon/blood
- Glucagon/metabolism
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/enzymology
- Glucagon-Secreting Cells/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Melanins/pharmacology
- Mice
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Phosphatidylinositol 3-Kinase/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Tetrahydronaphthalenes/pharmacology
- Tissue Culture Techniques
- Tryptamines/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | |
Collapse
|
17
|
Devavry S, Legros C, Brasseur C, Delagrange P, Spadoni G, Cohen W, Malpaux B, Boutin JA, Nosjean O. Description of the constitutive activity of cloned human melatonin receptors hMT(1) and hMT(2) and discovery of inverse agonists. J Pineal Res 2012; 53:29-37. [PMID: 22017484 DOI: 10.1111/j.1600-079x.2011.00968.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin receptors have been described to activate different G protein-dependent signaling pathways, both in laboratory, heterologous, cellular models and in physiological conditions. Furthermore, the constitutive activity of G protein-coupled receptors has been shown to be key in physiological and pathological conditions. In the case of melatonin receptors, information is rather scare and concerns only MT1 receptors. In the present report, we show that the G protein-coupled melatonin receptors do have a constitutive, nonmelatonin-induced signaling activity using two cellular models of different origins, the Chinese hamster ovary cell line and Neuro2A, a neuroblastoma cell line. Furthermore, we show that this constitutive activity involves mainly Gi proteins, which is consistent with the common knowledge on the melatonin receptors. Importantly, we also describe, for the first time, inverse agonist properties for melatonin ligands. Although it is clear than more in-depth, biochemistry-based studies will be required to better understand by which pathway(s) the constitutively active melatonin receptors transfer melatonin information into intracellular biochemical events; our data open interesting perspectives for understanding the importance of the constitutive activity of melatonin receptors in physiological conditions.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cloning, Molecular
- Cricetinae
- Cricetulus
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Melatonin/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Séverine Devavry
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 2012; 351:152-66. [PMID: 22245784 PMCID: PMC3288509 DOI: 10.1016/j.mce.2012.01.004] [Citation(s) in RCA: 481] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 12/15/2022]
Abstract
Many of melatonin's actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Russel J. Reiter
- Department of Cellular & Structural Biology, UT Health Science Center, San Antonio, TX 78229-3900, United States
| | - Natalia Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Rennolds S. Ostrom
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Andrzej T. Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Division of Dermatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Corresponding author at: Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, Suite 5000, Memphis, TN 38163, United States. Tel.: +1 901 448 3741. (A.T. Slominski)
| |
Collapse
|
19
|
Darbandi-Tehrani K, Hermand P, Carvalho S, Dorgham K, Couvineau A, Lacapère JJ, Combadière C, Deterre P. Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays. FASEB J 2010; 24:4585-4598. [PMID: 20667981 DOI: 10.1096/fj.10-156612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemokine CX3CL1 is expressed as a membrane protein that forms a potent adhesive pair with its unique receptor CX3CR1. This receptor has 3 natural variants, V249-T280 (VT), I249-T280 (IT), and I249-M280 (IM), whose relative frequencies are significantly associated with the incidence of various inflammatory diseases. To assess the adhesive potency of CX3CR1 and the molecular diversity of its variants, we assayed their clustering status and their possible structural differences by fluorescence/bioluminescence resonance energy transfer (FRET or BRET) techniques. FRET assays by flow cytometry showed that the CX3CR1 variants cluster, in comparison with appropriate controls. BRET assays showed low nonspecific signals for VT and IT variants and high specific signals for IM, and thus pointed out a structural difference in this variant. We used molecular modeling to show how natural point mutations of CX3CR1 affect the packing of the 6th and 7th helices of this G-protein coupled receptor. Moreover, we found that the BRET technique is sensitive enough to detect these tiny changes. Consistently with our previous finding that CX3CL1 aggregates, our data here indicate that CX3CR1 clustering may contribute to the adhesiveness of the CX3CL1-CX3CR1 pair and may thus represent a new target for anti-inflammatory therapies.
Collapse
|
20
|
Abstract
Glucose triggers insulin secretion of the pancreatic β-cells. The pineal hormone melatonin interferes in this process by inhibiting secretion and transmitting circadian timing information to the islets. Circadian insulin secretion is adapted to day/night changes through melatonin-dependent synchronization. In rats and mice, melatonin levels are high during the dark period, which is their active feeding period, while, in humans, melatonin levels are high during the overnight fasting and sleeping period. This implies a different read-out of melatonin signaling in day-active species, including man. Dysregulation of circadian secretion may be a key to the increase of type 2 diabetes (T2D). This review discusses the impact of melatonin on insulin secretion transmitted through both the pertussis-toxin-sensitive membrane receptors MT1 (MTNR1a) and MT2 (MTNR1b) and the second messengers cAMP, cGMP and IP3. This is an important topic since, in several genetic association studies, single nucleotide polymorphisms of the human MT2-receptor have been described as being causally linked with an elevated risk of developing T2D. This article summarizes interrelationships between melatonin and insulin in type 1 diabetic (T1D) and type 2 diabetic (T2D) rats and humans.
Collapse
Affiliation(s)
- Elmar Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06097 Halle, Germany.
| | | |
Collapse
|
21
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 418] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F. Melatonin signaling and cell protection function. FASEB J 2010; 24:3603-24. [PMID: 20534884 DOI: 10.1096/fj.10-154450] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Besides its well-known regulatory role on circadian rhythm, the pineal gland hormone melatonin has other biological functions and a distinct metabolism in various cell types and peripheral tissues. In different tissues and organs, melatonin has been described to act as a paracrine and also as an intracrine and autocrine agent with overall homeostatic functions and pleiotropic effects that include cell protection and prosurvival factor. These latter effects, documented in a number of in vitro and in vivo studies, are sustained through both receptor-dependent and -independent mechanisms that control detoxification and stress response genes, thus conferring protection against a number of xenobiotics and endobiotics produced by acute and chronic noxious stimuli. Redox-sensitive components are included in the cell protection signaling of melatonin and in the resulting transcriptional response that involves the control of NF-κB, AP-1, and Nrf2. By these pathways, melatonin stimulates the expression of antioxidant and detoxification genes, acting in turn as a glutathione system enhancer. A further and converging mechanism of cell protection by this indoleamine described in different models seems to lie in the control of damage and signaling function of mitochondria that involves decreased production of reactive oxygen species and activation of the antiapoptotic and redox-sensitive element Bcl2. Recent evidence suggests that upstream components in this mitochondrial route include the calmodulin pathway with its central role in melatonin signaling and the survival-promoting component of MAPKs, ERK1/2. In this review article, we will discuss these and other molecular aspects of melatonin signaling relevant to cell protection and survival mechanisms.
Collapse
Affiliation(s)
- Francesca Luchetti
- Dipartimento di Scienze Dell’Uomo dell’Ambiente e della Natura, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mandrika I, Petrovska R, Klovins J. Evidence for constitutive dimerization of niacin receptor subtypes. Biochem Biophys Res Commun 2010; 395:281-7. [PMID: 20380810 DOI: 10.1016/j.bbrc.2010.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/17/2022]
Abstract
The recently deorphanized niacin receptor subtypes NIACR1 (GPR109A) and NIACR2 (GPR109B) play an essential role in the regulation of metabolic processes and immune reactions. Both receptors belong to the G-protein-coupled receptor (GPCR) family, whose members have traditionally been treated as monomeric entities, but now appear to exist and function as both homodimers and heterodimers. In this study, a close physical interaction is shown between the highly homologous niacin receptor subtypes, NIACR1 and NIACR2, using bioluminescence resonance energy transfer (BRET(2)) in living cells. The extent of homo- and hetero-dimerization of the niacin receptors did not vary after activation of the receptors with selective agonists, indicating that the dimerization state of NIACR1 and NIACR2 is not regulated by ligand binding. Moreover, detection of niacin receptor dimers in both plasma membrane- and endoplasmic reticulum-enriched fractions suggests that they are formed early in the biosynthetic pathway. Taken together, these results demonstrate that niacin receptor dimerization is a constitutive process occurring early during biosynthesis.
Collapse
Affiliation(s)
- Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, LV 1067, Latvia.
| | | | | |
Collapse
|
24
|
Srinivasan V, Pandi-Perumal SR, Spence DW, Moscovitch A, Trakht I, Brown GM, Cardinali DP. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Res Bull 2010; 81:362-71. [PMID: 20005925 DOI: 10.1016/j.brainresbull.2009.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 12/12/2022]
Abstract
Melatonin is a remarkable molecule with diverse physiological functions. Some of its effects are mediated by receptors while other, like cytoprotection, seem to depend on direct and indirect scavenging of free radicals not involving receptors. Among melatonin's many effects, its antinociceptive actions have attracted attention. When given orally, intraperitoneally, locally, intrathecally or through intracerebroventricular routes, melatonin exerts antinociceptive and antiallodynic actions in a variety of animal models. These effects have been demonstrated in animal models of acute pain like the tail-flick test, formalin test or endotoxin-induced hyperalgesia as well as in models of neuropathic pain like nerve ligation. Glutamate, gamma-aminobutyric acid, and particularly, opioid neurotransmission have been demonstrated to be involved in melatonin's analgesia. Results using melatonin receptor antagonists support the participation of melatonin receptors in melatonin's analgesia. However, discrepancies between the affinity of the receptors and the very high doses of melatonin needed to cause effects in vivo raise doubts about the uniqueness of that physiopathological interpretation. Indeed, melatonin could play a role in pain through several alternative mechanisms including free radicals scavenging or nitric oxide synthase inhibition. The use of melatonin analogs like the MT(1)/MT(2) agonist ramelteon, which lacks free radical scavenging activity, could be useful to unravel the mechanism of action of melatonin in analgesia. Melatonin has a promising role as an analgesic drug that could be used for alleviating pain associated with cancer, headache or surgical procedures.
Collapse
|
25
|
Srinivasan V, Spence DW, Moscovitch A, Pandi-Perumal SR, Trakht I, Brown GM, Cardinali DP. Malaria: therapeutic implications of melatonin. J Pineal Res 2010; 48:1-8. [PMID: 20025640 DOI: 10.1111/j.1600-079x.2009.00728.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malaria, which infects more than 300 million people annually, is a serious disease. Epidemiological surveys indicate that of those who are affected, malaria will claim the lives of more than one million individuals, mostly children. There is evidence that the synchronous maturation of Plasmodium falciparum, the parasite that causes a severe form of malaria in humans and Plasmodium chabaudi, responsible for rodent malaria, could be linked to circadian changes in melatonin concentration. In vitro melatonin stimulates the growth and development of P. falciparum through the activation of specific melatonin receptors coupled to phospholipase-C activation and the concomitant increase of intracellular Ca2+. The Ca2+ signaling pathway is important to stimulate parasite transition from the trophozoite to the schizont stage, the final stage of intraerythrocytic cycle, thus promoting the rise of parasitemia. Either pinealectomy or the administration of the melatonin receptor blocking agent luzindole desynchronizes the parasitic cell cycle. Therefore, the use of melatonin antagonists could be a novel therapeutic approach for controlling the disease. On the other hand, the complexity of melatonin's action in malaria is underscored by the demonstration that treatment with high doses of melatonin is actually beneficial for inhibiting apoptosis and liver damage resulting from the oxidative stress in malaria. The possibility that the coordinated administration of melatonin antagonists (to impair the melatonin signal that synchronizes P. falciparum) and of melatonin in doses high enough to decrease oxidative damage could be a novel approach in malaria treatment is discussed.
Collapse
|
26
|
Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 2009; 61:383-410. [PMID: 19605939 DOI: 10.1016/s1734-1140(09)70081-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/01/2009] [Indexed: 01/01/2023]
Abstract
Melatonin is an evolutionarily conserved molecule that serves a time-keeping function in various species. In vertebrates, melatonin is produced predominantly by the pineal gland with a marked circadian rhythm that is governed by the central circadian pacemaker (biological clock) in the suprachiasmatic nuclei of the hypothalamus. High levels of melatonin are normally found at night, and low levels are seen during daylight hours. As a consequence, melatonin has been called the "darkness hormone". This review surveys the current state of knowledge regarding the regulation of melatonin synthesis, receptor expression, and function. In particular, it addresses the physiological, pathological, and therapeutic aspects of melatonin in humans, with an emphasis on biological rhythms.
Collapse
|
27
|
Cernysiov V, Gerasimcik N, Mauricas M, Girkontaite I. Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. Int Immunol 2009; 22:25-34. [DOI: 10.1093/intimm/dxp109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Brown GM, Pandi-Perumal SR, Trakht I, Cardinali DP. Melatonin and its relevance to jet lag. Travel Med Infect Dis 2008; 7:69-81. [PMID: 19237140 DOI: 10.1016/j.tmaid.2008.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 12/11/2022]
Abstract
Jet lag is a disorder in which body rhythms are out of phase with the environment because of rapid travel across time zones. Although it often produces minor symptoms it can cause serious problems in those who need to make rapid critical decisions including airline pilots and business travelers. In this article the authors review basic knowledge underlying the body clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, and the manner in which it regulates the sleep/wake cycle. The regulation of melatonin by the SCN is described together with the role of the melatonin receptors which are integral to its function as the major hormonal output of the body clock. Several factors are known that help prevent and treat jet lag, including ensuring adequate sleep, appropriate timing of exposure to bright light and treatment with melatonin. Because travel can cross a variable number of time zones and in two different directions, recommendations for treatment are given that correspond with these different types of travel. In addition to use of bright light and melatonin, other factors including timed exercise, timed and selective diets and social stimuli deserve study as potential treatments. Moreover, new melatonin agonists are currently under investigation for treatment of jet lag.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, 100 Bronte Road, Unit 422, Oakville, ON L6L 6L5, Canada.
| | | | | | | |
Collapse
|
29
|
Stumpf I, Mühlbauer E, Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. J Pineal Res 2008; 45:318-27. [PMID: 18363673 DOI: 10.1111/j.1600-079x.2008.00593.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent investigations have demonstrated an influence of melatonin on insulin secretion in pancreatic beta-cells. The effects are receptor-mediated via two parallel signaling pathways. The aim of this study was to examine the relevance of a second melatonin receptor (MT2) as well as the involvement of a third signaling cascade in mediating melatonin effects, i.e. the cyclic guanosine monophosphate (cGMP) pathway. Our results demonstrate that the insulin-inhibiting effect of melatonin could be partly reversed by preincubation with the unspecific melatonin receptor antagonist luzindole as well as by the MT2-receptor-specific antagonist 4P-PDOT (4-phenyl-2-propionamidotetraline). As melatonin is known to modulate cGMP concentration via the MT2 receptor, these data indicate transmission of the melatonin effects via the cGMP transduction cascade. Molecular investigations established the presence of different types of guanylate cyclases, cGMP-specific phosphodiesterases and cyclic nucleotide-gated channels in rat insulinoma beta-cells (INS1). Moreover, variations in mRNA expression were found when comparing day and night values as well as different states of glucose metabolism. Incubation experiments provided evidence that 3-isobutyl-1-methylxanthine (IBMX)-stimulated cGMP concentrations were significantly decreased in INS1 cells exposed to melatonin for 1 hr in a dose- and time-dependent manner. This effect could also be reversed by application of luzindole and 4P-PDOT. Stimulation with 8-Br-cGMP resulted in significantly increased insulin production. In conclusion, it could be demonstrated that the melatonin receptor subtype MT2 as well as the cGMP signaling pathway are involved in mediating the insulin-inhibiting effect of melatonin.
Collapse
Affiliation(s)
- Ina Stumpf
- Institute of Anatomy and Cell Biology, Martin Luther University, Halle-Wittenberg, Halle/Saale, Germany
| | | | | |
Collapse
|
30
|
Imbesi M, Uz T, Manev H. Role of melatonin receptors in the effects of melatonin on BDNF and neuroprotection in mouse cerebellar neurons. J Neural Transm (Vienna) 2008; 115:1495-9. [DOI: 10.1007/s00702-008-0066-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|
31
|
Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new? Br J Pharmacol 2008; 154:1182-95. [PMID: 18493248 DOI: 10.1038/bjp.2008.184] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a neurohormone that has been claimed to be involved in a wide range of physiological functions. Nevertheless, for most of its effects, the mechanism of action is not really known. In mammals, two melatonin receptors, MT1 and MT2, have been cloned. They belong to the G-protein-coupled receptor (GPCR) superfamily. They share some specific short amino-acid sequences, which suggest that they represent a specific subfamily. Another receptor from the same subfamily, the melatonin-related receptor has been cloned in different species including humans. This orphan receptor also named GPR50 does not bind melatonin and its endogenous ligand is still unknown. Nevertheless, this receptor has been shown to behave as an antagonist of the MT1 receptor, which opens new pharmacological perspectives for GPR50 despite the lack of endogenous or synthetic ligands. Moreover, MT1 and MT2 interact together through the formation of heterodimers at least in cells transfected with the cDNA of these two receptors. Lastly, signalling complexes associated with MT1 and MT2 receptors are starting to be deciphered. A third melatonin-binding site has been purified and characterized as the enzyme quinone reductase 2 (QR2). Inhibition of QR2 by melatonin may explain melatonin's protective effect that has been reported in different animal models and that is generally associated with its well-documented antioxidant properties.
Collapse
|
32
|
Faust R, Garratt PJ, Trujillo Pérez MA, Piccio VJD, Madsen C, Stenstrøm A, Frølund B, Davidson K, Teh MT, Sugden D. 7-Substituted-melatonin and 7-substituted-1-methylmelatonin analogues: Effect of substituents on potency and binding affinity. Bioorg Med Chem 2007; 15:4543-51. [PMID: 17459711 DOI: 10.1016/j.bmc.2007.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 12/15/2022]
Abstract
A series of 7-substituted melatonin and 1-methylmelatonin analogues were prepared and tested against human and amphibian melatonin receptors. 7-Substituents reduced the agonist potency of all the analogues in the Xenopus laevis melanophore assay, 7-bromomelatonin (5d) and N-butanoyl 7-bromo-5-methoxytryptamine (5f) being the most active compounds, but both were 42-fold less potent than melatonin (1). Whereas all the analogues bind with lower affinity at the human MT(1) receptor than melatonin, 5d, 5f and N-propanoyl 7-bromo-5-methoxytryptamine (5e) show a similar binding affinity to melatonin at the MT(2) receptor and consequently show some MT(2) selectivity. These results suggest that the receptor pocket around C-7 favours binding by an electronegative group, suggesting an electropositive region in this area of the receptor.
Collapse
Affiliation(s)
- Rüdiger Faust
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hirsch-Rodriguez E, Imbesi M, Manev R, Uz T, Manev H. The pattern of melatonin receptor expression in the brain may influence antidepressant treatment. Med Hypotheses 2007; 69:120-4. [PMID: 17197111 PMCID: PMC1950672 DOI: 10.1016/j.mehy.2006.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022]
Abstract
The pineal hormone melatonin produces most of its biological effects via G protein-coupled receptors MT1 and MT2. In mammals, these receptors are expressed in various tissues and organs including in the brain. Recent research points to a putative role of MT1/MT2 dimerization as a mechanism that could determine the receptor-mediated biological effects of melatonin. Brain content and the ratios between MT1 and MT2 receptors are affected by illness, e.g., Alzheimer's disease, and by prolonged drug treatment, e.g., antidepressants. New drugs with antidepressant properties that bind and activate melatonin receptors have been discovered. We hypothesize that endogenous, i.e., low, levels of melatonin could contribute to antidepressant effects depending on the expression pattern of melatonin receptors in the brain. Hence, we propose that a prolonged treatment with classical antidepressant drugs alters the brain ratio of MT1/MT2 receptors to enable the endogenous melatonin, which is secreted during the night, to further improve the antidepressant effects. A corollary of this hypothesis is that antidepressants would be less effective in conditions of pathologically altered brain melatonin receptors, e.g., in Alzheimer's patients or due to genetic polymorphisms. If our hypothesis is confirmed, supplementing classical antidepressant treatment with an appropriate dose of a melatonin receptor agonist might be used to improve antidepressant effects in subjects with a susceptible pattern of brain melatonin receptor expression.
Collapse
Affiliation(s)
- Eric Hirsch-Rodriguez
- Department of Psychiatry and the Psychiatric Institute, University of Illinois at Chicago, 1601 West Taylor Street, M/C912, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
34
|
Giannoulia-Karantana A, Vlachou A, Polychronopoulou S, Papassotiriou I, Chrousos GP. Melatonin and immunomodulation: connections and potential clinical applications. Neuroimmunomodulation 2006; 13:133-44. [PMID: 17119342 DOI: 10.1159/000097258] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 09/13/2006] [Indexed: 11/19/2022] Open
Abstract
Melatonin is the main hormone secreted by the pineal gland in the human brain. It has a strong impact on the sleep-wake cycle and is considered a general modulator of the human circadian rhythm. Apart from these well-established properties, melatonin possesses immunomodulatory, antioxidative and antiinflammatory properties. The potential ability of this hormone to act synergistically with several cytokines by enhancing their antitumoral activity and dramatically decreasing their adverse effects has placed melatonin among the new and promising agents in cancer immunotherapy. The use of the neurohormone alone or in combination with cytokines and traditional chemotherapeutic drugs is currently under vigorous investigation. Experimental and clinical trials have already depicted some of the immunomodulatory and antitumor effects of melatonin, delineating the need for further research in this field.
Collapse
|