1
|
Chadwick C, Lehman H, Luebbert S, Abdul-Aziz R, Borowitz D. Autoimmunity in people with cystic fibrosis. J Cyst Fibros 2023; 22:969-979. [PMID: 36966037 DOI: 10.1016/j.jcf.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Cystic fibrosis (CF) clinicians may see patients who have difficult-to-manage symptoms that do not have a clear CF-related etiology, such as unusual gastrointestinal (GI) complaints, vasculitis, or arthritis. Alterations in immunity, inflammation and intraluminal dysbiosis create a milieu that may lead to autoimmunity, and the CF transmembrane regulator protein may have a direct role as well. While autoantibodies and other autoimmune markers may develop, these may or may not lead to organ involvement, therefore they are helpful but not sufficient to establish an autoimmune diagnosis. Autoimmune involvement of the GI tract is the best-established association. Next steps to understand autoimmunity in CF should include a more in-depth assessment of the community perspective on its impact. In addition, bringing together specialists in various fields including, but not limited to, pulmonology, gastroenterology, immunology, and rheumatology, would lead to cross-dissemination and help define the path forward in basic science and clinical practice.
Collapse
Affiliation(s)
| | - Heather Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Chen M, Wang J, Yuan M, Long M, Sun Y, Wang S, Luo W, Zhou Y, Zhang W, Jiang W, Chao J. AT2 cell-derived IgA trapped by the extracellular matrix in silica-induced pulmonary fibrosis. Int Immunopharmacol 2023; 122:110545. [PMID: 37390644 DOI: 10.1016/j.intimp.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Mengling Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yuheng Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sha Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun Zhou
- Department of Health Management, School of Health Science, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Wei Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China.
| |
Collapse
|
4
|
Zeng Y, Xiao Y, Zeng F, Jiang L, Yan S, Wang X, Lin Q, Yu L, Lu X, Zhang Y, Lin Y. Assessment of anti-nucleosome antibody (ANuA) isotypes for the diagnosis and prediction of systemic lupus erythematosus and lupus nephritis activity. Clin Exp Med 2023; 23:1677-1689. [PMID: 36385418 DOI: 10.1007/s10238-022-00942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Our study aims to investigate the serum levels of anti-nucleosome antibody (ANuA) isotypes in patients with systemic lupus erythematosus (SLE) and clarify ANuA isotypes that may diagnose and predict SLE. We detected anti-nucleosome antibodies (ANuA) in the serum from 120 patients with SLE, 99 patients suffering from other autoimmune diseases (OAD), and 50 healthy controls by performing IgG-, IgA-, and IgM-specific ELISAs. The serum levels of total anti-nuclear antibodies (ANA IgG), ANuA IgG subclasses (IgG1, IgG2, IgG3, and IgG4), anti-dsDNA antibodies, and the avidities of ANA IgG were also analysed using ELISAs. The levels of three ANuA isotypes (IgG, IgA, and IgM) were significantly higher in patients with SLE than in patients with OAD and healthy controls (p < 0.05). Moreover, the concentrations of ANuA isotypes increased in the active SLE and lupus nephritis (LN) groups and in patients with SLE presenting high-avidity IgG ANA (p < 0.05). Furthermore, ANuA isotype levels decreased significantly with drug therapy, while anti-dsDNA IgG levels decreased with the same trend. Additionally, ANuA isotypes were positively related to the SLEDAI (SLE Disease Activity Index) score, RAI (relative avidity index) of high-avidity IgG ANAs, and serum anti-dsDNA IgG levels. Last, the sensitivity and specificity values for SLE were 83.33 and 96.67% for ANuA IgG, 85.83 and 93.33% for ANuA IgA, and83.33 and 86.67% for ANuA IgM, respectively. The sensitivity and specificity values for LN were 61.67 and 96.67% for ANuA IgG, 49.17 and 96.67% for ANuA IgA, and 52.50 and 96.67% for ANuA IgM, respectively. In conclusion, we evaluated whether ANuA isotypes represent a diagnostic tool to predict SLE activity and define subsets of patients with LN.
Collapse
Affiliation(s)
- Yanli Zeng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China.
| | - Yun Xiao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Fanxiang Zeng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Longcan Jiang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Shuidi Yan
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Xuelian Wang
- Department of Obstetrics and Gynecology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Qiaoduan Lin
- Department of Ultrasonography, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Liang Yu
- Department of Ultrasonography, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Xinxin Lu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Yan Zhang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Yiqiang Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
5
|
Bertrand Y, Sánchez-Montalvo A, Hox V, Froidure A, Pilette C. IgA-producing B cells in lung homeostasis and disease. Front Immunol 2023; 14:1117749. [PMID: 36936934 PMCID: PMC10014553 DOI: 10.3389/fimmu.2023.1117749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant Ig in mucosae where it plays key roles in host defense against pathogens and in mucosal immunoregulation. Whereas intense research has established the different roles of secretory IgA in the gut, its function has been much less studied in the lung. This review will first summarize the state-of-the-art knowledge on the distribution and phenotype of IgA+ B cells in the human lung in both homeostasis and disease. Second, it will analyze the studies looking at cellular and molecular mechanisms of homing and priming of IgA+ B cells in the lung, notably following immunization. Lastly, published data on observations related to IgA and IgA+ B cells in lung and airway disease such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, or chronic rhinosinusitis, will be discussed. Collectively it provides the state-of-the-art of our current understanding of the biology of IgA-producing cells in the airways and identifies gaps that future research should address in order to improve mucosal protection against lung infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Youri Bertrand
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
| | - Alba Sánchez-Montalvo
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke universiteit (KU) Leuven, Leuven, Belgium
| | - Valérie Hox
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Froidure
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Charles Pilette,
| |
Collapse
|
6
|
Albrecht M, Halle O, Gaedcke S, Pallenberg ST, Camargo Neumann J, Witt M, Roediger J, Schumacher M, Jirmo AC, Warnecke G, Jonigk D, Braubach P, DeLuca D, Hansen G, Dittrich AM. Interleukin-17A and interleukin-22 production by conventional and non-conventional lymphocytes in three different end-stage lung diseases. Clin Transl Immunology 2022; 11:e1398. [PMID: 35757569 PMCID: PMC9202301 DOI: 10.1002/cti2.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives The contribution of adaptive vs. innate lymphocytes to IL-17A and IL-22 secretion at the end stage of chronic lung diseases remains largely unexplored. In order to uncover tissue- and disease-specific secretion patterns, we compared production patterns of IL-17A and IL-22 in three different human end-stage lung disease entities. Methods Production of IL-17A, IL-22 and associated cytokines was assessed in supernatants of re-stimulated lymphocytes by multiplex assays and multicolour flow cytometry of conventional T cells, iNKT cells, γδ T cells and innate lymphoid cells in bronchial lymph node and lung tissue from patients with emphysema (n = 19), idiopathic pulmonary fibrosis (n = 14) and cystic fibrosis (n = 23), as well as lung donors (n = 17). Results We detected secretion of IL-17A and IL-22 by CD4+ T cells, CD8+ T cells, innate lymphoid cells, γδ T cells and iNKT cells in all end-stage lung disease entities. Our analyses revealed disease-specific contributions of individual lymphocyte subpopulations to cytokine secretion patterns. We furthermore found the high levels of microbial detection in CF samples to associate with a more pronounced IL-17A signature upon antigen-specific and unspecific re-stimulation compared to other disease entities and lung donors. Conclusion Our results show that both adaptive and innate lymphocyte populations contribute to IL-17A-dependent pathologies in different end-stage lung disease entities, where they establish an IL-17A-rich microenvironment. Microbial colonisation patterns and cytokine secretion upon microbial re-stimulation suggest that pathogens drive IL-17A secretion patterns in end-stage lung disease.
Collapse
Affiliation(s)
- Melanie Albrecht
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Molecular Allergology Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines Langen Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Olga Halle
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Sophia T Pallenberg
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Julia Camargo Neumann
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marius Witt
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Johanna Roediger
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marina Schumacher
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Adan Chari Jirmo
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Department of Cardiac Surgery Heidelberg Medical School Heidelberg Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - David DeLuca
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gesine Hansen
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Anna-Maria Dittrich
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
7
|
Linnemann RW, Yadav R, Zhang C, Sarr D, Rada B, Stecenko AA. Serum anti-PAD4 autoantibodies are present in cystic fibrosis children and increase with age and lung disease severity. Autoimmunity 2022; 55:109-117. [PMID: 35199621 PMCID: PMC9996683 DOI: 10.1080/08916934.2021.2021193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cystic fibrosis (CF) lung disease begins early in childhood and is characterized by neutrophilic inflammation of the airways. Neutrophil extracellular traps (NETs) represent one mechanism by which neutrophils contribute to lung damage. The enzyme peptidylarginine deiminase 4 (PAD4) is required for NET formation. Our overall concept is that NET formation delivers PAD4 outside the neutrophil resulting in autoantibody generation, and this autoimmunity may be a novel mechanism contributing to CF lung disease progression. The aim of this study was to investigate clinical predictors of serum anti-PAD4 autoantibody (PAD4 Ab) levels in CF subjects with a wide range of ages from early childhood through middle age. We measured PAD4 Ab levels in sera from 104 CF subjects. PAD4 Abs were detectable among CF children as young as one year of age and elevated compared to paediatric healthy controls. PAD4 Ab levels increased significantly with age (r = 0.584, p <.001) and correlated with lower lung function (r = -0.481, n = 99, p <.001). PAD4 Abs were elevated in subjects with chronic Pseudomonas aeruginosa airways infection (p <.001), but not with other key clinical CF co-variates including sex, CFTR genotype, sweat chloride, pancreatic enzyme use, nutritional status, recent pulmonary exacerbations, Staphylococcus aureus, or CF-related diabetes. PAD4 Ab levels were also correlated with serum anti-double-stranded DNA IgA autoantibodies, which have similarly been shown to be elevated in CF subjects and associated with lung damage. In multivariable analysis, age and lung function remained correlated with PAD4 Ab levels. In summary, we describe novel findings of anti-PAD4 autoantibodies in CF that are present early in childhood, increase over time with age, and correlate with lung disease severity. Autoimmunity to antigens extruded by NETs appears to be an early event in CF lung disease, and airway autoimmunity related to NET formation is a potential mechanism of lung disease progression in CF.HighlightsSerum anti-PAD4 autoantibodies are detected in paediatric CF serum and are elevated compared to healthy paediatric controlsAnti-PAD4 autoantibodies increase with ageAnti-PAD4 autoantibodies correlate with lower lung function, Pseudomonas aeruginosa airway infection and anti-dsDNA IgA autoantibodies, but not with other key clinical CF co-variatesAge and lung function remain correlated with anti-PAD4 autoantibodies in multivariable analysis.
Collapse
Affiliation(s)
- Rachel W Linnemann
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Chao Zhang
- Biostatistics Core, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Arlene A Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Sarr D, Oliveira LJ, Russ BN, Owino SO, Middii JD, Mwalimu S, Ambasa L, Almutairi F, Vulule J, Rada B, Moore JM. Myeloperoxidase and Other Markers of Neutrophil Activation Associate With Malaria and Malaria/HIV Coinfection in the Human Placenta. Front Immunol 2021; 12:682668. [PMID: 34737733 PMCID: PMC8562302 DOI: 10.3389/fimmu.2021.682668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction Placental malaria (PM) is characterized by accumulation of inflammatory leukocytes in the placenta, leading to poor pregnancy outcomes. Understanding of the underlying mechanisms remains incomplete. Neutrophils respond to malaria parasites by phagocytosis, generation of oxidants, and externalization of Neutrophil Extracellular Traps (NETs). NETs drive inflammation in malaria but evidence of NETosis in PM has not been reported. Neutrophil activity in the placenta has not been directly investigated in the context of PM and PM/HIV-co-infection. Methods Using peripheral and placental plasma samples and placental tissue collected from Kenyan women at risk for malaria and HIV infections, we assessed granulocyte levels across all gravidities and markers of neutrophil activation, including NET formation, in primi- and secundigravid women, by ELISA, western blot, immunohistochemistry and immunofluorescence. Results Reduced peripheral blood granulocyte numbers are observed with PM and PM/HIV co-infection in association with increasing parasite density and placental leukocyte hemozoin accumulation. In contrast, placental granulocyte levels are unchanged across infection groups, resulting in enhanced placental: peripheral count ratios with PM. Within individuals, PM- women have reduced granulocyte counts in placental relative to peripheral blood; in contrast, PM stabilizes these relative counts, with HIV coinfection tending to elevate placental counts relative to the periphery. In placental blood, indicators of neutrophil activation, myeloperoxidase (MPO) and proteinase 3 (PRTN3), are significantly elevated with PM and, more profoundly, with PM/HIV co-infection, in association with placental parasite density and hemozoin-bearing leukocyte accumulation. Another neutrophil marker, matrix metalloproteinase (MMP9), together with MPO and PRTN3, is elevated with self-reported fever. None of these factors, including the neutrophil chemoattractant, CXCL8, differs in relation to infant birth weight or gestational age. CXCL8 and MPO levels in the peripheral blood do not differ with infection status nor associate with birth outcomes. Indicators of NETosis in the placental plasma do not vary with infection, and while structures consistent with NETs are observed in placental tissue, the results do not support an association with PM. Conclusions Granulocyte levels are differentially regulated in the peripheral and placental blood in the presence and absence of PM. PM, both with and without pre-existing HIV infection, enhances neutrophil activation in the placenta. The impact of local neutrophil activation on placental function and maternal and fetal health remains unclear. Additional investigations exploring how neutrophil activation and NETosis participate in the pathogenesis of malaria in pregnant women are needed.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lilian J. Oliveira
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Brittany N. Russ
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Simon O. Owino
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Faculty of Science, Department of Zoology, Maseno University, Maseno, Kenya
| | - Joab D. Middii
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Kisumu Specialists Hospital Laboratory, Kisumu, Kenya
| | - Stephen Mwalimu
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Linda Ambasa
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- #1 Heartsaved Adult Family Care, Marysville, WA, United States
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - John Vulule
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
| |
Collapse
|