1
|
Barker T, Bulling M, Thomas V, Sweet M. The Effect of Pollen on Coral Health. BIOLOGY 2023; 12:1469. [PMID: 38132295 PMCID: PMC10740922 DOI: 10.3390/biology12121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Corals are facing a range of threats, including rises in sea surface temperature and ocean acidification. Some now argue that keeping corals ex situ (in aquaria), may be not only important but necessary to prevent local extinction, for example in the Florida Reef Tract. Such collections or are already becoming common place, especially in the Caribbean, and may act as an ark, preserving and growing rare or endangered species in years to come. However, corals housed in aquaria face their own unique set of threats. For example, hobbyists (who have housed corals for decades) have noticed seasonal mortality is commonplace, incidentally following months of peak pollen production. So, could corals suffer from hay fever? If so, what does the future hold? In short, the answer to the first question is simple, and it is no, corals cannot suffer from hay fever, primarily because corals lack an adaptive immune system, which is necessary for the diagnosis of such an allergy. However, the threat from pollen could still be real. In this review, we explore how such seasonal mortality could play out. We explore increases in reactive oxygen species, the role of additional nutrients and how the microbiome of the pollen may introduce disease or cause dysbiosis in the holobiont.
Collapse
Affiliation(s)
- Triona Barker
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Mark Bulling
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Vincent Thomas
- Coral Spawning Lab, Unit 6 Midas Metro Centre, 193 Garth Road, Morden SM4 4NE, UK
| | - Michael Sweet
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
- Coral Spawning Lab, Unit 6 Midas Metro Centre, 193 Garth Road, Morden SM4 4NE, UK
| |
Collapse
|
2
|
Yaldiz G, Camlica M, Erdonmez D. Investigation of some basil genotypes in terms of their effect on bacterial communication system, and antimicrobial activity. Microb Pathog 2023; 182:106247. [PMID: 37453480 DOI: 10.1016/j.micpath.2023.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The exponential growth of multiresistant bacterial strains creates the need to explore new or combined strategies to combat bacterial resistance. Medicinal plant-derived compounds against pathogenic bacteria may provide new, simple approaches to developing more environmentally friendly antimicrobial agents. Many researchers focus on exploring novel or combined strategies for combating bacterial resistance. Aromatic plants containing essential oils, such as basil, are often used as therapeutic agents in the pharmaceutical industry. Recent research has shown that basil is effective against certain harmful food phytopathogenic bacteria and has antimicrobial and anti-quorum sensing properties, which were investigated in this study. Our results have shown that the essential oil and ethanol extract of basil exhibits both antibacterial activity and anti-quorum sensing activity against some Gram-negative and Gram-positive bacterial species. It has also been found to have antifungal effects on C. albicans. Among the tested microorganisms, the genotypes of PI 531396, PI 296390, PI 414199, PI 253157, PI 296391, PI 652071, midnight, and Dino cultivars have been found to be more effective than other genotypes. The highest effect on quorum sensing system was found in Moonlight and Dino cultivars, PI 296391, PI 414199, PI 652070, PI 172997 and PI 190100 genotypes. Dendrogram analysis has shown that there is a relationship between different genotypes depending on microorganisms and anti-quorum sensing activity. Ames 29184, PI 207498, and PI 379412 genotypes were in the same group. Biplot analyses were performed to determine the relationship between the studied properties, and the results showed that more than 47% of the total variation was in all forms.
Collapse
Affiliation(s)
- Gulsum Yaldiz
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, 14280, Bolu, Türkiye.
| | - Mahmut Camlica
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, 14280, Bolu, Türkiye
| | - Demet Erdonmez
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Düzce University, Düzce, Türkiye
| |
Collapse
|
3
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
4
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
5
|
Loughran RM, Emsley SA, Jefferson T, Wasson BJ, Deadmond MC, Knauss TL, Pfannmuller KM, Lippert KJ, Miller G, Cline LC, Oline DK, Koyack MJ, Grant-Beurmann S, Gaylor MO, Saw JH, Ushijima B, Videau P. Vibrio tetraodonis subsp. pristinus subsp. nov., isolated from the coral Acropora cytherea at Palmyra Atoll, and creation and emended description of Vibrio tetraodonis subsp. tetraodonis subsp. nov. Antonie Van Leeuwenhoek 2022; 115:1215-1228. [PMID: 35920985 DOI: 10.1007/s10482-022-01766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Strain OCN044T was isolated from the homogenised tissue and mucus of an apparently healthy Acropora cytherea coral fragment collected from the western reef terrace of Palmyra Atoll in the Northern Line Islands and was taxonomically evaluated with a polyphasic approach. The morphological and chemotaxonomic properties are consistent with characteristics of the genus Vibrio: Gram-stain-negative rods, oxidase- and catalase-positive, and motile by means of a polar flagellum. Strain OCN044T can be differentiated as a novel subspecies based on 21 differences among chemotaxonomic features (e.g., fatty acids percentages for C12:0 and C18:1 ω7c), enzymatic activities (e.g., DNase and cystine arylamidase), and carbon sources utilized (e.g., L-xylose and D-melezitose) from its nearest genetic relative. Phylogenetic analysis and genomic comparisons show close evolutionary relatedness to Vibrio tetraodonis A511T but the overall genomic relatedness indices identify strain OCN044T as a distinct subspecies. Based on a polyphasic characterisation, differences in genomic and taxonomic data, strain OCN044T represents a novel subspecies of V. tetraodonis A511T, for which the name Vibrio tetraodonis subsp. pristinus subsp. nov. is proposed. The type strain is OCN044T (= LMG 31895T = DSM 111778T).
Collapse
Affiliation(s)
- Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR, USA.,Microbiology Graduate Program, University of Delaware, Newark, DE, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Tori Jefferson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | | | - Taylor L Knauss
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | | | - Katherine J Lippert
- Department of Biology, Southern Oregon University, Ashland, OR, USA.,Triplebar, Emeryville, CA, USA
| | - Gregory Miller
- Natural Sciences Department, Flagler College, St. Augustine, FL, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR, USA
| | - Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, D.C, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA. .,Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
6
|
Tian L, Yin Y, Bing W, Jin E. Antifouling Technology Trends in Marine Environmental Protection. JOURNAL OF BIONIC ENGINEERING 2021; 18:239-263. [PMID: 33815489 PMCID: PMC7997792 DOI: 10.1007/s42235-021-0017-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000-2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- Weihai Institute for Bionics-Jilin University, Weihai, 264207 China
| | - Yue Yin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 China
| | - E. Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| |
Collapse
|
7
|
El-Kurdi N, Abdulla H, Hanora A. Anti-quorum sensing activity of some marine bacteria isolated from different marine resources in Egypt. Biotechnol Lett 2020; 43:455-468. [PMID: 33034782 DOI: 10.1007/s10529-020-03020-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/01/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To screen for a variety of marine bacteria with anti-quorum sensing and anti-biofilm activities. RESULTS Among 188 bacterial isolates from water, sediment, and corals in the Red Sea region, approximately 35% (65 isolates) of the isolates displayed a significant degradation in the purple pigment of the bioreporter strain without affecting cell growth. The quorum quenching bacteria obtained from coral-associated bacteria were 66.2% out of the total isolates. The PCR amplification results revealed that the recorded Acyl Homoserine lactone (AHL) inhibition by 91% of the anti-QS marine bacteria was not due to lactonase activity. On the other hand, lactonase genes were recorded only in the remaining 9% (6 isolates) and those were belonging to genus Bacillus, Nocardiopsis, and Enterobacter based on 16S rRNA gene sequences. The results also showed that marine bacteria with anti-QS activity inhibited 67% of the biofilm formed by Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio alginolyticus. The computational profiling analysis confirmed the presence of the functional region in the detected genes. CONCLUSION Coral microbial communities are rich sources for pharmacologically important natural products with anti-quorum sensing and anti-biofilm activities.
Collapse
Affiliation(s)
- Najat El-Kurdi
- Department of Aquaculture Biotechnology, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt.
| | - Hesham Abdulla
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology & Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
The Rhodamine Isothiocyanate Analogue as a Quorum Sensing Inhibitor Has the Potential to Control Microbially-Induced Biofouling. Mar Drugs 2020; 18:md18090484. [PMID: 32971837 PMCID: PMC7551263 DOI: 10.3390/md18090484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Quorum sensing inhibitors (QSIs) have been proven to be an innovative approach to interfering with biofilm formation, since this process is regulated by QS signals. However, most studies have focused on single-species biofilm formation, whereas studies of the effects of signal interference on the development of multispecies biofilm, especially in the natural environment, are still lacking. Here we develop and evaluate the anti-biofilm capability of a new QSI (rhodamine isothiocyanate analogue, RIA) in natural seawater. During the experiment, biofilm characteristics, microbial communities/functions and network interactions were monitored at 36, 80, and 180 h, respectively. The results showed that the biomass and 3D structure of the biofilm were significantly different in the presence of the QSI. The expression of genes involved in extracellular polysaccharide synthesis was also downregulated in the QSI-treated group. Dramatic differences in microbial composition, β-diversity and functions between the RIA-treated group and the control group were also observed, especially in the early stage of biofilm development. Furthermore, co-occurrence model analysis showed that RIA reduced the complexity of the microbial network. This study demonstrates that rhodamine isothiocyanate analogue is an efficient QS inhibitor and has potential applications in controlling biofouling caused by multispecies biofilm, especially in the early stage of biofouling formation.
Collapse
|
9
|
Modolon F, Barno AR, Villela HDM, Peixoto RS. Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. J Appl Microbiol 2020; 129:1441-1457. [PMID: 32627318 DOI: 10.1111/jam.14766] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
Symbiotic relationships between corals and their associated micro-organisms are essential to maintain host homeostasis. Coral-associated bacteria (CAB) can have different beneficial roles in the coral metaorganism, such as metabolizing essential nutrients for the coral host and protecting the coral from pathogens. Many CAB exert these functions via secondary metabolites, which include antibacterial, antifouling, antitumour, antiparasitic and antiviral compounds. This review describes how analysis of CAB has led to the discovery of secondary metabolites with potential biotechnological applications. The most commonly found types of secondary metabolites, antimicrobial and antibiofilm compounds, are emphasized and described. Recently developed methods that can be applied to enhance the culturing of CAB from shallow-water reefs and the less-studied deep-sea coral reefs are also discussed. Last, we suggest how the combined use of meta-omics and innovative growth-diffusion techniques can vastly improve the discovery of novel compounds in coral environments.
Collapse
Affiliation(s)
- F Modolon
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - A R Barno
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - H D M Villela
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - R S Peixoto
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
11
|
Marine bacteria associated with shallow hydrothermal systems in the Gulf of California with the capacity to produce biofilm inhibiting compounds. Arch Microbiol 2020; 202:1477-1488. [DOI: 10.1007/s00203-020-01851-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
|
12
|
Reina JC, Pérez-Victoria I, Martín J, Llamas I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar Drugs 2019; 17:md17090494. [PMID: 31450549 PMCID: PMC6780304 DOI: 10.3390/md17090494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The cell density-dependent mechanism, quorum sensing (QS), regulates the expression of virulence factors. Its inhibition has been proposed as a promising new strategy to prevent bacterial pathogenicity. In this study, 827 strains from the microbiota of sea anemones and holothurians were screened for their ability to produce quorum-sensing inhibitor (QSI) compounds. The strain M3-10, identified as Vibrio alginolyticus by 16S rRNA gene sequencing, as well as ANIb and dDDH analyses, was selected for its high QSI activity. Bioassay-guided fractionation of the cell pellet extract from a fermentation broth of strain M3-10, followed by LC–MS and NMR analyses, revealed tyramine and N-acetyltyramine as the active compounds. The QS inhibitory activity of these molecules, which was confirmed using pure commercially available standards, was found to significantly inhibit Chromobacterium violaceum ATCC 12472 violacein production and virulence factors, such as pyoverdine production, as well as swarming and twitching motilities, produced by Pseudomonas aeruginosa PAO1. This constitutes the first study to screen QSI-producing strains in the microbiota of anemones and holothurians and provides an insight into the use of naturally produced QSI as a possible strategy to combat bacterial infections.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ignacio Pérez-Victoria
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain.
| | - Jesús Martín
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
13
|
Zhao J, Li X, Hou X, Quan C, Chen M. Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Mar Drugs 2019; 17:md17050275. [PMID: 31072008 PMCID: PMC6562741 DOI: 10.3390/md17050275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xinyun Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xiyan Hou
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116600, China.
| |
Collapse
|
14
|
Reina JC, Torres M, Llamas I. Stenotrophomonas maltophilia AHL-Degrading Strains Isolated from Marine Invertebrate Microbiota Attenuate the Virulence of Pectobacterium carotovorum and Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:276-290. [PMID: 30762152 DOI: 10.1007/s10126-019-09879-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Many Gram-negative aquacultural and agricultural pathogens control virulence factor expression through a quorum-sensing (QS) mechanism involving the production of N-acylhomoserine (AHL) signalling molecules. Thus, the interruption of QS systems by the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), has been proposed as a novel strategy to combat these infections. Given that the symbiotic bacteria of marine invertebrates are considered to be an important source of new bioactive molecules, this study explores the presence of AHL-degrading bacteria among 827 strains previously isolated from the microbiota of anemones and holothurians. Four of these strains (M3-1, M1-14, M3-13 and M9-54-2), belonging to the species Stenotrophomonas maltophilia, were selected on the basis of their ability to degrade a broad range of AHLs, and the enzymes involved in their activity were identified. Strain M9-54-2, which showed the strongest AHL-degrading activity, was selected for further study. High-performance liquid chromatography-mass-spectrometry confirmed that the QQ enzyme is not a lactonase. Strain M9-54-2 degraded AHL accumulation and reduced the production of enzymatic activity in Pectobacterium carotovorum CECT 225T and Vibrio coralliilyticus VibC-Oc-193 in in vitro co-cultivation experiments. The effect of AHL inactivation was confirmed by a reduction in potato tuber maceration and brine shrimp (Artemia salina) mortality caused by P. carotovorum and Vibrio coralliilyticus, respectively. This study strengthens the evidence of marine organisms as an underexplored and promising source of QQ enzymes, useful to prevent infections in aquaculture and agriculture. To our knowledge, this is the first time that anemones and holothurians have been studied for this purpose.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain
- Institute for Integrative Biology of the Cell, CEA, CNRS, University Paris-Sud, University Paris-Saclay, Gif sur Yvette, France
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain.
| |
Collapse
|
15
|
Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Mar Drugs 2019; 17:md17010072. [PMID: 30669697 PMCID: PMC6356914 DOI: 10.3390/md17010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
With 70% of the Earth's surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait. Based on the culture-dependent method, a total of 102 marine bacteria strains were isolated and the identities of selected strains were established based on their 16S rRNA gene sequences. About 5% of the marine bacterial organic extracts showed quorum sensing inhibitory (QSI) activity in a dose-dependent manner based on the Pseudomonas aeruginosa QS reporter system. In addition, the extracts were subjected to mass spectrometry-based molecular networking and the genome of selected strains were analysed for known as well as new biosynthetic gene clusters. This study revealed that using integrated techniques, coupled with biological assays, can provide an effective and rapid prioritization of marine bacterial strains for downstream large-scale culturing for the purpose of isolation and structural elucidation of novel bioactive compounds.
Collapse
|
16
|
Song Y, Cai Z, Lao Y, Jin H, Ying K, Lin G, Zhou J. Antibiofilm activity substances derived from coral symbiotic bacterial extract inhibit biofouling by the model strain Pseudomonas aeruginosa PAO1. Microb Biotechnol 2018; 11:1090-1105. [PMID: 30298548 PMCID: PMC6196393 DOI: 10.1111/1751-7915.13312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
The mitigation of biofouling has received significant research attention, with particular focus on non-toxic and sustainable strategies. Here, we investigated quorum sensing inhibitor (QSI) bacteria as a means of controlling biofouling in a laboratory-scale system. Approximately, 200 strains were isolated from coral (Pocillopora damicornis) and screened for their ability to inhibit quorum sensing (QS). Approximately, 15% of the isolates exhibited QSI activity, and a typical coral symbiotic bacterium, H12-Vibrio alginolyticus, was selected in order for us to investigate quorum sensing inhibitory activity further. Confocal microscopy revealed that V. alginolyticus extract inhibited biofilm formation from Pseudomonas aeruginosa PAO1. In addition, the secondary metabolites of V. alginolyticus inhibited PAO1 virulence phenotypes by downregulating motility ability, elastase activity and rhamnolipid production. NMR and MS spectrometry suggested that the potential bioactive compound involved was rhodamine isothiocyanate. Quantitative real-time PCR indicated that the bacterial extract induced a significant downregulation of QS regulatory genes (lasB, lasI, lasR, rhlI, rhlR) and virulence-related genes (pqsA, pqsR). The possible mechanism underlying the action of rhodamine isothiocyanate analogue involves the disruption of the las and/or rhl system of PAO1. Our results highlight coral microbes as a bioresource pool for developing QS inhibitors and identifying novel antifouling agents.
Collapse
Affiliation(s)
- Yu Song
- Department of Earth System ScienceTsinghua University of Education Key Laboratory for Earth System ModelingBeijing100084China
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Zhong‐Hua Cai
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Yong‐Min Lao
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Hui Jin
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Ke‐Zhen Ying
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Guang‐Hui Lin
- Department of Earth System ScienceTsinghua University of Education Key Laboratory for Earth System ModelingBeijing100084China
| | - Jin Zhou
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| |
Collapse
|
17
|
Maruthupandy M, Rajivgandhi G, Muneeswaran T, Song JM, Manoharan N. Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram negative bacteria. Microb Pathog 2018; 121:224-231. [DOI: 10.1016/j.micpath.2018.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/12/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|
18
|
Ma ZP, Song Y, Cai ZH, Lin ZJ, Lin GH, Wang Y, Zhou J. Anti-quorum Sensing Activities of Selected Coral Symbiotic Bacterial Extracts From the South China Sea. Front Cell Infect Microbiol 2018; 8:144. [PMID: 29868500 PMCID: PMC5951975 DOI: 10.3389/fcimb.2018.00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The worldwide increase in antibiotic-resistant pathogens means that identification of alternative antibacterial drug targets and the subsequent development of new treatment strategies are urgently required. One such new target is the quorum sensing (QS) system. Coral microbial consortia harbor an enormous diversity of microbes, and are thus rich sources for isolating novel bioactive and pharmacologically valuable natural products. However, to date, the versatility of their bioactive compounds has not been broadly explored. In this study, about two hundred bacterial colonies were isolated from a coral species (Pocillopora damicornis) and screened for their ability to inhibit QS using the bioreporter strain Chromobacterium violaceum ATCC 12472. Approximately 15% (30 isolates) exhibited anti-QS activity, against the indicator strain. Among them, a typical Gram-positive bacterium, D11 (Staphylococcus hominis) was identified and its anti-QS activity was investigated. Confocal microscopy observations showed that the bacterial extract inhibited the biofilm formation of clinical isolates of wild-type P. aeruginosa PAO1 in a dose-dependent pattern. Chromatographic separation led to the isolation of a potent QS inhibitor that was identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy as DL-homocysteine thiolactone. Gene expression analyses using RT-PCR showed that strain D11 led to a significant down-regulation of QS regulatory genes (lasI, lasR, rhlI, and rhlR), as well as a virulence-related gene (lasB). From the chemical structure, the target compound (DL-homocysteine thiolactone) is an analog of the acyl-homoserine lactones (AHLs), and we presume that DL-homocysteine thiolactone outcompetes AHL in occupying the receptor and thereby inhibiting QS. Whole-genome sequence analysis of S. hominis D11 revealed the presence of predicted genes involved in the biosynthesis of homocysteine thiolactone. This study indicates that coral microbes are a resource bank for developing QS inhibitors and they will facilitate the discovery of new biotechnologically relevant compounds that could be used instead of traditional antibiotics.
Collapse
Affiliation(s)
- Zhi-Ping Ma
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Beijing, China
| | - Yu Song
- The Department of Earth Science, Tsinghua University, Beijing, China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Beijing, China
| | - Zhi-Jun Lin
- The Department of Earth Science, Tsinghua University, Beijing, China
| | - Guang-Hui Lin
- The Department of Earth Science, Tsinghua University, Beijing, China
| | - Yan Wang
- Biology, Shenzhen Polytechnic, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
20
|
Muras A, López-Pérez M, Mayer C, Parga A, Amaro-Blanco J, Otero A. High Prevalence of Quorum-Sensing and Quorum-Quenching Activity among Cultivable Bacteria and Metagenomic Sequences in the Mediterranean Sea. Genes (Basel) 2018; 9:E100. [PMID: 29462892 PMCID: PMC5852596 DOI: 10.3390/genes9020100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence being accumulated regarding the importance of N-acyl homoserine lactones (AHL)-mediated quorum-sensing (QS) and quorum-quenching (QQ) processes in the marine environment, but in most cases, data has been obtained from specific microhabitats, and subsequently little is known regarding these activities in free-living marine bacteria. The QS and QQ activities among 605 bacterial isolates obtained at 90 and 2000 m depths in the Mediterranean Sea were analyzed. Additionally, putative QS and QQ sequences were searched in metagenomic data obtained at different depths (15-2000 m) at the same sampling site. The number of AHL producers was higher in the 90 m sample (37.66%) than in the 2000 m sample (4.01%). However, the presence of QQ enzymatic activity was 1.63-fold higher in the 2000 m sample. The analysis of putative QQ enzymes in the metagenomes supports the relevance of QQ processes in the deepest samples, found in cultivable bacteria. Despite the unavoidable biases in the cultivation methods and biosensor assays and the possible promiscuous activity of the QQ enzymes retrieved in the metagenomic analysis, the results indicate that AHL-related QS and QQ processes could be common activity in the marine environment.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan de Alicante 03202, Spain.
| | - Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jaime Amaro-Blanco
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
21
|
Chi W, Zheng L, He C, Han B, Zheng M, Gao W, Sun C, Zhou G, Gao X. Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Express 2017; 7:59. [PMID: 28281272 PMCID: PMC5344870 DOI: 10.1186/s13568-017-0357-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/10/2022] Open
Abstract
Quorum sensing (QS) systems play important roles in regulating many physiological functions of microorganisms, such as biofilm formation, bioluminescence, and antibiotic production. One marine algicidal bacterium, Ponticoccus sp. PD-2, was isolated from the microalga Prorocentrum donghaiense, and its N-acyl-homoserine lactone (AHL)-mediated QS system was verified. In this study, we analyzed the AHLs profile of strain PD-2. Two AHLs, 3-oxo-C8-HSL and 3-oxo-C10-HSL, were detected using a biosensor overlay assay and GC–MS methods. Two complete AHL-QS systems (designated zlaI/R and zlbI/R) were identified in the genome of strain PD-2. When expressed in Escherichia coli, both zlaI and zlbI genes could each produce 3-oxo-C8-HSL and 3-oxo-C10-HSL. Algicidal activity was investigated by evaluating the inhibitory rate (IR) of microalgae growth by measuring the fluorescence of viable cells. We found that the metabolites of strain PD-2 had algicidal activity against its host P. donghaiense (IR 84.81%) and two other red tide microalgae, Phaeocystis globosa (IR 78.91%) and Alexandrium tamarense (IR 67.14%). β-cyclodextrin which binds to AHLs and inhibits the QS system reduced the algicidal activity more than 50%. This indicates that inhibiting the QS system may affect the algicidal metabolites production of strain PD-2. Our study indicated that a QS-regulated algicidal system may play a potential role in the process of red tides disintegration. QS might be a potential way to control red tides.
Collapse
|
22
|
Ahila NK, Prakash S, Manikandan B, Ravindran J, Prabhu NM, Kannapiran E. Bio-prospecting of coral (Porites lutea) mucus associated bacteria, Palk Bay reefs, Southeast coast of India. Microb Pathog 2017; 113:113-123. [PMID: 29038057 DOI: 10.1016/j.micpath.2017.09.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Coral mucus is one of the key localization in the coral holobiont, as this serves as an energy rich substrate for a wide range of abundant, diverse and multifunctional microbiota. However, very little is known about the functional role of bacterial communities in their associations with corals. In the present study, a total of 48 isolates were obtained from Porites lutea wherein the genus of Bacillus sp. and Vibrio sp. were predominant. Bio-prospecting the coral mucus revealed the existence of (10.42%) antagonistic bacteria against the tested bacterial pathogens. Molecular taxonomy (16S rRNA) proved the identity of these antagonistic bacteria belong to Enterobacter cloacae (CM1), Bacillus subtilis (CM2), Bacillus sp. (CM11) and Bacillus marisflavi (CM12). The secondary screening emphasized that the ethyl acetate extract of B. subtilis showed strong antagonistic effect, followed by the chloroform extract of E. cloacae and ethyl acetate extract of B. marisflavi. The antagonistic activity was statistically confirmed by Principal Component Analysis and Hierarchical Cluster Analysis. The privileged coral mucus associated bacterial (CMAB) solvent extracts inhibited the bacterial pathogens at 100 μg/ml (MIC) and ceased the growth at 200 μg/ml (MBC). The hemolytic and brine shrimp lethality assays disclosed the non-toxic nature of solvent extracts of CMAB. Altogether, the present investigation brought out the diversity of bacteria associated with the mucus of P. lutea. In addition, bio-prospecting corroborated the CMAB as the potential source of pharmacologically important bioactive compounds against a wide range of bacterial pathogens.
Collapse
Affiliation(s)
- N K Ahila
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - S Prakash
- Department of Biotechnology, Sri Kaliswari College (Autonomous), Sivakasi, Virudhunagar, 626 123, Tamil Nadu, India
| | - B Manikandan
- CSIR-National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, India
| | - J Ravindran
- CSIR-Central Electrochemical Research Institute, Corrosion Testing Centre, Mandapam Camp, 623519, Tamil Nadu, India
| | - N M Prabhu
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - E Kannapiran
- Department of Zoology, Directorate of Distance Education, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
23
|
Chen L, Qian PY. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012. Mar Drugs 2017; 15:md15090264. [PMID: 28846624 PMCID: PMC5618403 DOI: 10.3390/md15090264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N-acyl homoserine lactone for quorum sensing and intracellular Ca2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
24
|
Sadiq FA, Flint S, Li Y, Liu T, Lei Y, Sakandar HA, He G. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. BIOFOULING 2017; 33:306-326. [PMID: 28347177 DOI: 10.1080/08927014.2017.1304541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
A biofilm is a complex assemblage of microbial communities adhered to a biotic or an abiotic surface which is embedded within a self-produced matrix of extracellular polymeric substances. Many transcriptional regulators play a role in triggering a motile-sessile switch and in consequently producing the biofilm matrix. This review is aimed at highlighting the role of two nucleotide signaling molecules (c-di-GMP and c-di-AMP), toxin antitoxin modules and a novel transcriptional regulator BolA in biofilm formation in various bacteria. In addition, it highlights the common themes that have appeared in recent research regarding the key regulatory components and signal transduction pathways that help Bacillus subtilis and Pseudomonas aeruginosa to acquire the biofilm mode of life.
Collapse
Affiliation(s)
- Faizan A Sadiq
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- b School of Food and Nutrition , Massey University , Palmerston North , New Zealand
| | - Yun Li
- c School of Life Sciences and Food Technology , Hanshan Normal University , Chaozhou , PR China
| | - TongJie Liu
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Yuan Lei
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | | | - GuoQing He
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
25
|
Abstract
Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.
Collapse
Affiliation(s)
- Laura R Hmelo
- School of Oceanography, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
26
|
Yaniv K, Golberg K, Kramarsky-Winter E, Marks R, Pushkarev A, Béjà O, Kushmaro A. Functional marine metagenomic screening for anti-quorum sensing and anti-biofilm activity. BIOFOULING 2017; 33:1-13. [PMID: 27882771 DOI: 10.1080/08927014.2016.1253684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.
Collapse
Affiliation(s)
- Karin Yaniv
- a Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Karina Golberg
- a Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Esti Kramarsky-Winter
- a Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Robert Marks
- a Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel
- b The Ilse Katz Center for Meso and Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Alina Pushkarev
- c Faculty of Biology , Technion-Israel Institute of Technology , Haifa , Israel
| | - Oded Béjà
- c Faculty of Biology , Technion-Israel Institute of Technology , Haifa , Israel
| | - Ariel Kushmaro
- a Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel
- b The Ilse Katz Center for Meso and Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
27
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
28
|
Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis. Arch Microbiol 2016; 199:145-153. [PMID: 27638396 DOI: 10.1007/s00203-016-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023]
Abstract
Escherichia coli lives in the gastrointestinal tract and elsewhere, where it coexists within a mixed population. Indole production enables E. coli to grow with other gram-negative bacteria as indole inhibits N-acyl-homoserine lactone (AHL) quorum regulation. We investigated whether E. coli indole production enhanced competition with gram-positive Enterococcus faecalis, wherein quorum signaling is mediated by small peptides. During planktonic co-culture with E. faecalis, the fitness and population density of E. coli tnaA mutants (unable to produce indole) equaled or surpassed that of E. coli wt. During biofilm growth, the fitness of both populations of E. coli stabilized around 100 %, whereas the fitness of E. faecalis declined over time to 85-90 %, suggesting that biofilm and planktonic populations have different competition strategies. Media supplementation with indole removed the competitive advantage of E. coli tnaA in planktonic populations but enhanced it in biofilm populations. E. coli wt and tnaA showed similar growth in Luria-Bertani (LB) broth. However, E. coli growth was inhibited in the presence of filter-sterilized spent LB from E. faecalis, with inhibition being enhanced by indole. Similarly, there was also an inhibition of E. faecalis growth by proteinaceous components (likely bacteriocins) from spent culture media from both E. coli strains. We conclude that E. coli indole production is not a universal competition strategy, but rather works against gram-negative, AHL-producing bacteria.
Collapse
|
29
|
Abstract
Bacterial biofilms are dense and often mixed-species surface-attached communities in which bacteria coexist and compete for limited space and nutrients. Here we present the different antagonistic interactions described in biofilm environments and their underlying molecular mechanisms, along with ecological and evolutionary insights as to how competitive interactions arise and are maintained within biofilms.
Collapse
|
30
|
Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M. Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME JOURNAL 2015; 10:1204-16. [PMID: 26495995 DOI: 10.1038/ismej.2015.184] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
Disruption of the microbiome often correlates with the appearance of disease symptoms in metaorganisms such as corals. In Black Band Disease (BBD), a polymicrobial disease consortium dominated by the filamentous cyanobacterium Roseofilum reptotaenium displaces members of the epibiotic microbiome. We examined both normal surface microbiomes and BBD consortia on Caribbean corals and found that the microbiomes of healthy corals were dominated by Gammaproteobacteria, in particular Halomonas spp., and were remarkably stable across spatial and temporal scales. In contrast, the microbial community structure in black band consortia was more variable and more diverse. Nevertheless, deep sequencing revealed that members of the disease consortium were present in every sampled surface microbiome of Montastraea, Orbicella and Pseudodiploria corals, regardless of the health status. Within the BBD consortium, we identified lyngbic acid, a cyanobacterial secondary metabolite. It strongly inhibited quorum sensing (QS) in the Vibrio harveyi QS reporters. The effects of lyngbic acid on the QS reporters depended on the presence of the CAI-1 receptor CqsS. Lyngbic acid inhibited luminescence in native coral Vibrio spp. that also possess the CAI-1-mediated QS. The effects of this naturally occurring QS inhibitor on bacterial regulatory networks potentially contribute to the structuring of the interactions within BBD consortia.
Collapse
Affiliation(s)
- Julie L Meyer
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| | | | - Raymond M Scott
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| | | | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA.,Smithsonian Marine Station, Ft Pierce, FL, USA
| |
Collapse
|
31
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
32
|
Padmavathi AR, Bakkiyaraj D, Thajuddin N, Pandian SK. Effect of 2, 4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. BIOFOULING 2015; 31:565-574. [PMID: 26299260 DOI: 10.1080/08927014.2015.1077383] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Candida albicans, an opportunistic pathogen, has been known to form hypoxic biofilms on medical devices which in turn confers resistance towards antifungals, resulting in subsequent therapeutic failures. Inclusion of anti-biofilm agents in the control of infections is a topic of current interest in developing potential anti-infectives. The in vitro anti-fungal and anti-biofilm efficacy of 2,4-di-tert-butyl phenol [DTBP] was evaluated in this study, which revealed the potential fungicidal action of DTBP at higher concentrations where fluconazole failed to act completely. DTBP also inhibited the production of hemolysins, phospholipases and secreted aspartyl proteinase which are the crucial virulence factors required for the invasion of C. albicans. Various anti-biofilm assays and morphological observations revealed the efficacy of DTBP in both inhibiting and disrupting biofilms of C. albicans. Inhibition of hyphal development, a key process that aids in initial adhesion of C. albicans, was observed, and this could be a mechanism for the anti-biofilm activity of DTBP.
Collapse
|
33
|
Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 2014; 12:5503-26. [PMID: 25415350 PMCID: PMC4245542 DOI: 10.3390/md12115503] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022] Open
Abstract
In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.
Collapse
|
34
|
Jiang J, Wu S, Wang J, Feng Y. AHL-type quorum sensing and its regulation on symplasmata formation inPantoea agglomeransYS19. J Basic Microbiol 2014; 55:607-16. [DOI: 10.1002/jobm.201400472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/30/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Jing Jiang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Suisui Wu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Jieru Wang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Yongjun Feng
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| |
Collapse
|
35
|
Padmavathi AR, Abinaya B, Pandian SK. Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. BIOFOULING 2014; 30:1111-22. [PMID: 25377484 DOI: 10.1080/08927014.2014.972386] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intercellular communication in bacteria (quorum sensing, QS) is an important phenomenon in disease dissemination and pathogenesis, which controls biofilm formation also. This study reports the anti-QS and anti-biofilm efficacy of seaweed Gracilaria gracilis associated Vibrio alginolyticus G16 against Serratia marcescens. Purification and mass spectrometric analysis revealed the active principle as phenol, 2,4-bis(1,1-dimethylethyl) [PD]. PD affected the QS regulated virulence factor production in S. marcescens and resulted in a significant (p < 0.05) reduction in biofilm (85%), protease (41.9%), haemolysin (69.9%), lipase (84.3%), prodigiosin (84.5%) and extracellular polysaccharide (84.62%) secretion without hampering growth, as evidenced by XTT [2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. qPCR analysis confirmed the down-regulation of the fimA, fimC, flhD and bsmA genes involved in biofilm formation. Apart from biofilm inhibition and disruption, PD increased the susceptibility of S. marcescens to gentamicin when administered synergistically, which opens another avenue for combinatorial therapy where PD can be used to enhance the efficacy of conventional antibiotics.
Collapse
|
36
|
Hidalgo-Romano B, Gollihar J, Brown SA, Whiteley M, Valenzuela E, Kaplan HB, Wood TK, McLean RJC. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. MICROBIOLOGY-SGM 2014; 160:2464-2473. [PMID: 25165125 DOI: 10.1099/mic.0.081729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria.
Collapse
Affiliation(s)
- Benjamin Hidalgo-Romano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jimmy Gollihar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Stacie A Brown
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernesto Valenzuela
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
37
|
Vega LM, Alvarez PJ, McLean RJC. Bacterial signaling ecology and potential applications during aquatic biofilm construction. MICROBIAL ECOLOGY 2014; 68:24-34. [PMID: 24276538 DOI: 10.1007/s00248-013-0321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
In their natural environment, bacteria and other microorganisms typically grow as surface-adherent biofilm communities. Cell signal processes, including quorum signaling, are now recognized as being intimately involved in the development and function of biofilms. In contrast to their planktonic (unattached) counterparts, bacteria within biofilms are notoriously resistant to many traditional antimicrobial agents and so represent a major challenge in industry and medicine. Although biofilms impact many human activities, they actually represent an ancient mode of bacterial growth as shown in the fossil record. Consequently, many aquatic organisms have evolved strategies involving signal manipulation to control or co-exist with biofilms. Here, we review the chemical ecology of biofilms and propose mechanisms whereby signal manipulation can be used to promote or control biofilms.
Collapse
Affiliation(s)
- Leticia M Vega
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | | | | |
Collapse
|
38
|
Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 2013; 105:289-305. [DOI: 10.1007/s10482-013-0082-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|
39
|
Abstract
Bacteria have the remarkable ability to communicate as a group in what has become known as quorum sensing (QS), and this trait has been associated with important bacterial phenotypes, such as virulence and biofilm formation. Bacteria also have an incredible ability to evolve resistance to all known antimicrobials. Hence, although inhibition of QS has been hailed as a means to reduce virulence in a manner that is impervious to bacterial resistance mechanisms, this approach is unlikely to be a panacea. Here we review the evidence that bacteria can evolve resistance to quorum-quenching compounds.
Collapse
|