1
|
Lambaren K, Trac N, Fehrenbach D, Madhur M, Chung EJ. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjug Chem 2025; 36:332-346. [PMID: 39979082 DOI: 10.1021/acs.bioconjchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Karla Lambaren
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Trac
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Daniel Fehrenbach
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Meena Madhur
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Eun Ji Chung
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Agrawal SS, Baliga V, Londhe VY. Liposomal Formulations: A Recent Update. Pharmaceutics 2024; 17:36. [PMID: 39861685 PMCID: PMC11769406 DOI: 10.3390/pharmaceutics17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/27/2025] Open
Abstract
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use. Scientists have developed new liposomal carrier medication release control and encapsulation methods to address these limits. Drug encapsulation can be optimized by creating lipid compositions that match a drug's charge and hydrophobicity. By selecting lipids and adding co-solvents or surfactants, scientists have increased drug loading in liposomal formulations while maintaining stability. Nanotechnology has also created multifunctional liposomes with triggered release and personalized drug delivery. Surface modification methods like PEGylation and ligand conjugation can direct liposomes to disease regions, improving therapeutic efficacy and reducing off-target effects. In addition to drug loading, researchers have focused on spatiotemporal modulation of liposomal carrier medication release. Stimuli-responsive liposomes release drugs in response to bodily signals. Liposomes can be pH- or temperature-sensitive. To improve therapeutic efficacy and reduce systemic toxicity, researchers added stimuli-responsive components to liposomal membranes to precisely control drug release kinetics. Advanced drug delivery technologies like magnetic targeting and ultrasound. Pro Drug, RNA Liposomes approach may improve liposomal medication administration. Magnetic targeting helps liposomes aggregate at illness sites and improves drug delivery, whereas ultrasound-mediated drug release facilitates on-demand release of encapsulated medicines. This review also covers recent preclinical and clinical research showing the therapeutic promise of next-generation liposomal formulations for cancer, infectious diseases, neurological disorders and inflammatory disorders. The transfer of these innovative liposomal formulations from lab to clinical practice involves key difficulties such scalability, manufacturing difficulty, and regulatory limits.
Collapse
Affiliation(s)
- Surendra S. Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (M), Wardha 442001, Maharashtra, India;
| | - Vrinda Baliga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Vaishali Y. Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
3
|
Tiwari S, Chaturvedi S, Kaul A, Choudhary V, Barthélémy P, Mishra AK. Development of amphiphilic self-assembled nucleolipid as BBB targeting probe based on SPECT. DISCOVER NANO 2024; 19:210. [PMID: 39690348 DOI: 10.1186/s11671-024-04129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
Several approaches have been utilised to deliver therapeutic nanoparticles inside the brain but rendered by certain limitation such as active efflux, non-stability, toxicity of the nanocarrier, transport, physicochemical properties and many more. In this context use of biocompatible nano carriers is currently investigated. We herein present the hypothesis that the nucleoside-lipid based conjugates (nucleolipids) which are biocompatible in nature and have molecular recognition can be tuned for improved permeation across blood-brain barrier (BBB). In this work, a di-C15-palmitoyl-ketal nucleolipid nanoparticle bearing an acyclic chelator has been formulated, radiolabeled with 99mTc and evaluated for in vivo fate using SPECT imaging. The mean particle size of particles was 113 nm and found to be nontoxic as depticted through haemolytic assay (2.33% erythrocyte destruction) and 75 ± 0.3% HEK(Human Embryonic Kidney) cells survived at 72 h as depicted in SRB (Sulforhodamine B) toxicity assay. The encapsulation efficiency (68 ± 2.75%) and drug loading capacity (22 ± 1.8%.) was calculated for nanoparticles using Methotrexate as model anti-cancer drug. The mathematical models indicate fickian release with a release constant KH = 20.70. With 98 ± 0.75% radiolabelling efficiency and established in vitro stability, nanoparticles showed brain uptake in normal mice as 0.91 times in comparison to BBB compromised mice (1.6% ± 0.03 ID/g)indicating higher brain uptake with rapid clearance as depicted through blood kinetics.
Collapse
Affiliation(s)
- Swastika Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
- NOMATEN Center of Excellence, National Center for Nuclear Research, Ul. Andrzeja Soltana 7, 05-400, Otwock, Poland.
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Vishakha Choudhary
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Philippe Barthélémy
- Université de Bordeaux, INSERM, U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle Et Artificielle, ChemBioPharm, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - A K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
| |
Collapse
|
4
|
Pande S. Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:334-344. [PMID: 38833335 DOI: 10.1080/21691401.2024.2360634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, MA, USA
| |
Collapse
|
5
|
Sabet FS, Dabirmanesh B, Sabet HS, Zarei P, Hosseini M, Fathollahi Y, Khajeh K. The electro-responsive nanoliposome as an on-demand drug delivery platform for epilepsy treatment. Int J Pharm 2024; 664:124610. [PMID: 39168285 DOI: 10.1016/j.ijpharm.2024.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Nano-based drug delivery systems are regarded as a promising tool for efficient epilepsy treatment and seizure medication with the least general side effects and socioeconomic challenges. In the current study, we have designed a smart nanoscale drug delivery platform and applied it in the kindling model of epilepsy that is triggered rapidly by epileptic discharges and releases anticonvulsant drugs in situ, such as carbamazepine (CBZ). The CBZ-loaded electroactive ferrocene nanoliposomes had an average diameter of 100.6 nm, a surface charge of -7.08 mV, and high drug encapsulation efficiency (85.4 %). A significant increase in liposome size was observed in response to direct current (50-500 μA) application. This liposome-based drug delivery system can release CBZ at a fast rate in response to both direct current and pulsatile electrical stimulation in vitro. The CBZ-liposome can release the anticonvulsant drug upon epileptiform activity in the kindled rat model and can decline electrographic and behavioral seizure activity in response to electrical stimulation of the hippocampus with an initially subconvulsive current. With satisfactory biosafety results, this "smart" nanocarrier has promising potential as an effective and safe drug delivery system to improve the therapeutic index of antiepileptic drugs.
Collapse
Affiliation(s)
- Fereshte Sadat Sabet
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Hoorie Sadat Sabet
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Parisa Zarei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Amenta A, Comi S, Kravicz M, Sesana S, Antoniou A, Passarella D, Seneci P, Pellegrino S, Re F. A novel, glutathione-activated prodrug of pimasertib loaded in liposomes for targeted cancer therapy. RSC Med Chem 2024; 16:d4md00517a. [PMID: 39430954 PMCID: PMC11485093 DOI: 10.1039/d4md00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Pimasertib, a potent antiproliferative drug, has been extensively studied for treating cancers characterized by dysregulation in the ERK/MAPK signaling pathway, such as melanoma. However, its therapeutic efficacy would greatly benefit from an increased selectivity for tumour cells and a longer half-life. Such improvements may be achieved by combining the rational design of a prodrug with its encapsulation in a potential nanodelivery system. For this reason, we synthesized a glutathione (GSH)-responsive putative prodrug of pimasertib (PROPIMA), which contains a redox-sensitive disulphide linker that can be processed by GSH to activate pimasertib. The synthesis of PROPIMA and its in vitro biological activity on a human melanoma cell line as a model are described. The results showed that PROPIMA, either free or embedded in liposomes, selectively inhibits cell proliferation and cell viability, reducing by about 5-fold the levels of pERK. Additionally, PROPIMA shows stronger inhibition of the cancer cell migration than the parent drug.
Collapse
Affiliation(s)
- Arianna Amenta
- Department of Chemistry, University of Milan Milan Italy
| | - Susanna Comi
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Marcelo Kravicz
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Antonia Antoniou
- Department of Pharmaceutical Sciences, University of Milan Milan Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan Milan Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| |
Collapse
|
7
|
Atila D, Dalgic AD, Krzemińska A, Pietrasik J, Gendaszewska-Darmach E, Bociaga D, Lipinska M, Laoutid F, Passion J, Kumaravel V. Injectable Liposome-Loaded Hydrogel Formulations with Controlled Release of Curcumin and α-Tocopherol for Dental Tissue Engineering. Adv Healthc Mater 2024; 13:e2400966. [PMID: 38847504 DOI: 10.1002/adhm.202400966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Indexed: 06/19/2024]
Abstract
An injectable hydrogel formulation is developed utilizing low- and high-molecular-weight chitosan (LCH and HCH) incorporated with curcumin and α-tocopherol-loaded liposomes (Lip/Cur+Toc). Cur and Toc releases are delayed within the hydrogels. The injectability of hydrogels is proved via rheological analyses. In vitro studies are conducted using human dental pulp stem cells (hDPSCs) and human gingival fibroblasts (hGFs) to examine the biological performance of the hydrogels toward endodontics and periodontics, respectively. The viability of hDPSCs treated with the hydrogels with Lip/Cur+Toc is the highest till day 14, compared to the neat hydrogels. During odontogenic differentiation tests, alkaline phosphatase (ALP) enzyme activity of hDPSCs is induced in the Cur-containing groups. Biomineralization is enhanced mostly with Lip/Cur+Toc incorporation. The viability of hGFs is the highest in HCH combined with Lip/Cur+Toc while wound healing occurs almost 100% in both (Lip/Cur+Toc@LCH and Lip/Cur+Toc@HCH) after 2 days. Antioxidant activity of Lip/Cur+Toc@LCH on hGFs is significantly the highest among the groups. Antimicrobial tests demonstrate that Lip/Cur+Toc@LCH is more effective against Escherichia coli whereas so is Lip/Cur+Toc@HCH against Staphylococcus aureus. The antimicrobial mechanism of the hydrogels is investigated for the first time through various computational models. LCH and HCH loaded with Lip/Cur+Toc are promising candidates with multi-functional features for endodontics and periodontics.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Ali Deniz Dalgic
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, 34060, Turkey
| | - Agnieszka Krzemińska
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, 90-924, Poland
| | - Dorota Bociaga
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, 90-924, Poland
| | - Magdalena Lipinska
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Fouad Laoutid
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Julie Passion
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| |
Collapse
|
8
|
Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:428-440. [PMID: 37594208 DOI: 10.1080/21691401.2023.2247036] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Liposomes are considered among the most versatile and advanced nanoparticle delivery systems used to target drugs to specific cells and tissues. Structurally, liposomes are sphere-like vesicles of phospholipid molecules that are surrounded by equal number of aqueous compartments. The spherical shell encapsulates an aqueous interior which contains substances such as peptides and proteins, hormones, enzymes, antibiotics, antifungal and anticancer agents. This structural property of liposomes makes it an important nano-carrier for drug delivery. Extrusion is one of the most frequently used technique for preparing monodisperse uni-lamellar liposomes as the technique is used to control vesicle size. The process involves passage of lipid suspension through polycarbonate membrane with a fixed pore size to produce vesicles with a diameter near the pore size of the membrane used in preparing them. An advantage of this technique is that there is no need to remove the organic solvent or detergent from the final preparation. This review focuses on composition of liposome formulation with special emphasis on factors affecting drug release and drug-loading.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, Lexington, MA, USA
| |
Collapse
|
9
|
Bordon G, Ramakrishna SN, Edalat SG, Eugster R, Arcifa A, Vermathen M, Aleandri S, Bertoncelj MF, Furrer J, Vermathen P, Isa L, Crockett R, Distler O, Luciani P. Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction. J Colloid Interface Sci 2023; 650:1659-1670. [PMID: 37494862 DOI: 10.1016/j.jcis.2023.07.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrea Arcifa
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University & Inselspital Bern, sitem-insel AG, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Rowena Crockett
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
10
|
Sandal P, Patel P, Singh D, Gupta GD, Kurmi BD. α-Tocopherol Polyethylene Glycol 1000 Succinate-Based Cationic Liposome for the Intracellular Delivery of Doxorubicin in MDA-MB-231 Triple-Negative Breast Cancer Cell Line. Assay Drug Dev Technol 2023; 21:345-356. [PMID: 38010987 DOI: 10.1089/adt.2023.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO+-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore, in vitro, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO+-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.
Collapse
Affiliation(s)
- Pallavi Sandal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
11
|
Wang J, Wang X, Feng S, Liu X, Wang Z. Effect of Trastuzumab on the thermodynamic behavior and roughness of fluid membrane using unsaturated phospholipid/cholesterol mixed monolayer model. Arch Biochem Biophys 2023; 742:109641. [PMID: 37209765 DOI: 10.1016/j.abb.2023.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
The microenvironment near the receptor on biological membrane plays an important role in regulating drug-receptor interaction, and the interaction between drugs and lipids on membrane can also affect the microenvironment of membrane, which may affect drugs' efficacy or cause the drug resistance. Trastuzumab (Tmab) is a monoclonal antibody, used to treat early breast cancer associated with the overexpression of Human Epidermal growth factor Receptor 2 (HER2). But its effectiveness is limited due to its tendency to make tumor cells resistant to the drug. In this work, the monolayer mixed by unsaturated phospholipids (DOPC, DOPE and DOPS) and cholesterol were used as a model to simulate the fluid membrane region on biological membrane. The phospholipid/cholesterol mixed monolayers in molar ratio 7:3 and 1:1, were respectively used to simulate the one layer of simplified normal cell membrane and tumor cell membrane. The influence of this drug on the phase behavior, elastic modulus, intermolecular force, relaxation and the surface roughness of the unsaturated phospholipid/cholesterol monolayer was investigated. The results show that at 30 mN/m the increase or decrease of the elastic modulus and surface roughness of the mixed monolayer caused by Tamb depends on the type of phospholipid, but the intensity of the effect depends on the content of cholesterol, and the intensity of influence is more significant at the presence of 50% cholesterol. However, the effect of Tmab on the ordering of the DOPC/cholesterol or DOPS/cholesterol mixed monolayer is stronger when the content of cholesterol is 30%, but it was stronger for the DOPE/cholesterol mixed monolayer when the content of cholesterol is 50%. This study is helpful to understand the effects of anticancer drugs on microenvironment of cell membrane, and it has a certain reference value for the design of drug delivery system and drug target identification.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China; Xi'an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation School of Computer Science, Xijing University, Xi'an, 710123, PR China.
| | - Xinzhong Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China
| | - Shun Feng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China
| | - Xiaoqin Liu
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China
| | - Zhen Wang
- Xi'an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation School of Computer Science, Xijing University, Xi'an, 710123, PR China.
| |
Collapse
|
12
|
Zhang X, Zhao F, Feng J, Chen C, He Z, Sun M, Sun J. Transforming a Toxic Non-Ionizable Drug into an Efficacious Liposome via Ionizable Prodrug and Remote Loading Strategies against Malignant Breast Tumors. Mol Pharm 2023; 20:2642-2649. [PMID: 37043673 DOI: 10.1021/acs.molpharmaceut.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Liposomes (lipos), one of the most successful nanotherapeutics in the clinic, have made a rapid advance over the past few years. However, still, several challenges exist for lipos for clinical practice, such as low drug loading and premature drug leakage during in vivo circulation. Paclitaxel (PTX), a commonly used first-line drug for cancer chemotherapy, was chosen as the model drug. Due to its non-ionizable and water-insoluble characteristics, the drug-loading efficiency of the marketable PTX lipos, Lipusu, is only 6.76%. Herein, we designed an ionizable PTX prodrug (PTXP) by modifying phenylboronic acid on the C2' hydroxyl group of PTX for the remote loading of liposomal formulations through the pH gradient method. Compared with Lipusu, PTXP lipos displayed a 34% higher loading efficiency and an encapsulation efficiency of approximately 95%. A series of in vitro/vivo experiments indicated that PTXP lipos possess colloidal stability, prolonged blood circulation, high tumor site accumulation, potent anti-tumor effects, and safety. A combination of ionizable prodrugs and remote loading has proved to be an effective and simple strategy to achieve high liposomal encapsulation efficiency of poorly soluble non-ionizable drugs for clinical application.
Collapse
Affiliation(s)
- Ximing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Fangxue Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
- Department of Pharmacy, Dalian Municipal Central Hospital, Dalian 116033, Liaoning, China
| | - Jing Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Cong Chen
- Asia Australia Business College, Liaoning University, Shenyang 110136, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
13
|
Ferguson LT, Ma X, Myerson JW, Wu J, Glassman PM, Zamora ME, Hood ED, Zaleski M, Shen M, Essien EO, Shuvaev VV, Brenner JS. Mechanisms by Which Liposomes Improve Inhaled Drug Delivery for Alveolar Diseases. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200106. [PMID: 37266328 PMCID: PMC10231510 DOI: 10.1002/anbr.202200106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/23/2022] [Indexed: 01/29/2023] Open
Abstract
Diseases of the pulmonary alveolus, such as pulmonary fibrosis, are leading causes of morbidity and mortality, but exceedingly few drugs are developed for them. A major reason for this gap is that after inhalation, drugs are quickly whisked away from alveoli due to their high perfusion. To solve this problem, the mechanisms by which nano-scale drug carriers dramatically improve lung pharmacokinetics using an inhalable liposome formulation containing nintedanib, an antifibrotic for pulmonary fibrosis, are studied. Direct instillation of liposomes in murine lung increases nintedanib's total lung delivery over time by 8000-fold and lung half life by tenfold, compared to oral nintedanib. Counterintuitively, it is shown that pulmonary surfactant neither lyses nor aggregates the liposomes. Instead, each lung compartment (alveolar fluid, alveolar leukocytes, and parenchyma) elutes liposomes over 24 h, likely serving as "drug depots." After deposition in the surfactant layer, liposomes are transferred over 3-6 h to alveolar leukocytes (which take up a surprisingly minor 1-5% of total lung dose instilled) in a nonsaturable fashion. Further, all cell layers of the lung parenchyma take up liposomes. These and other mechanisms elucidated here should guide engineering of future inhaled nanomedicine for alveolar diseases.
Collapse
Affiliation(s)
- Laura T. Ferguson
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaonan Ma
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jacob W. Myerson
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jichuan Wu
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Patrick M. Glassman
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Marco E. Zamora
- School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Elizabeth D. Hood
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Michael Zaleski
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Mengwen Shen
- Emergency Medicine DepartmentYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine200437ShanghaiChina
- Department of MicrobiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Eno-Obong Essien
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jacob S. Brenner
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Penn-CHOP Lung Biology InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
14
|
Formulation Development of Doxycycline-Loaded Lipid Nanocarriers using Microfluidics by QbD Approach. J Pharm Sci 2023; 112:740-750. [PMID: 36170906 DOI: 10.1016/j.xphs.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Liposomes have been used to improve therapeutic efficacy of drugs by increasing their bioavailability and altering biodistribution. The loading capacity of small molecules in liposomes remains a critical issue. Besides, the manufacturing process of liposomes requires multi-step procedures which hinders the clinical development. In this study, we developed a promising lipid-based nanocarriers (LN) delivery system for hydrophilic charged compounds using doxycycline (Doxy) as a model drug. This Doxy-loaded lipid nanocarrier (LN-Doxy) was fabricated by microfluidic technology. Design of experiments (DoE) was constructed to outline the interactions among the critical attributes of formulation, the parameters of microfluidic systems and excipient compositions. Response surface methodology (RSM) was furthered used for the optimization of LN-Doxy formulation. The LN-Doxy developed in this study showed high drug to lipid ratio and uniform distribution of particle size. Compared to Doxy solution, this LN-Doxy has reduced in vitro cellular toxicity and significant therapeutic efficacy which was verified in a peritonitis animal model. These results show the feasibility of using microfluidic technology combined with QbD approach to develop the LN formulation with high loading efficiency for ionizable hydrophilic drugs.
Collapse
|
15
|
Development and Optimisation of Inhalable EGCG Nano-Liposomes as a Potential Treatment for Pulmonary Arterial Hypertension by Implementation of the Design of Experiments Approach. Pharmaceutics 2023; 15:pharmaceutics15020539. [PMID: 36839861 PMCID: PMC9965461 DOI: 10.3390/pharmaceutics15020539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Epigallocatechin gallate (EGCG), the main ingredient in green tea, holds promise as a potential treatment for pulmonary arterial hypertension (PAH). However, EGCG has many drawbacks, including stability issues, low bioavailability, and a short half-life. Therefore, the purpose of this research was to develop and optimize an inhalable EGCG nano-liposome formulation aiming to overcome EGCG's drawbacks by applying a design of experiments strategy. The aerodynamic behaviour of the optimum formulation was determined using the next-generation impactor (NGI), and its effects on the TGF-β pathway were determined using a cell-based reporter assay. The newly formulated inhalable EGCG liposome had an average liposome size of 105 nm, a polydispersity index (PDI) of 0.18, a zeta potential of -25.5 mV, an encapsulation efficiency of 90.5%, and a PDI after one month of 0.19. These results are in complete agreement with the predicted values of the model. Its aerodynamic properties were as follows: the mass median aerodynamic diameter (MMAD) was 4.41 µm, the fine particle fraction (FPF) was 53.46%, and the percentage of particles equal to or less than 3 µm was 34.3%. This demonstrates that the novel EGCG liposome has all the properties required to be inhalable, and it is expected to be deposited deeply in the lung. The TGFβ pathway is activated in PAH lungs, and the optimum EGCG nano-liposome inhibits TGFβ signalling in cell-based studies and thus holds promise as a potential treatment for PAH.
Collapse
|
16
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
17
|
Naziris N, Sekowski S, Olchowik-Grabarek E, Buczkowski A, Balcerzak Ł, Chrysostomou V, Pispas S, Małecka M, Bryszewska M, Ionov M. Biophysical interactions of mixed lipid-polymer nanoparticles incorporating curcumin: Potential as antibacterial agent. BIOMATERIALS ADVANCES 2022; 144:213200. [PMID: 36442451 DOI: 10.1016/j.bioadv.2022.213200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The technology of lipid nanoparticles has a long history in drug delivery, which begins with the discovery of liposomes by Alec D Bangham in the 1960s. Since then, numerous studies have been conducted on these systems, and several nanomedicinal products that utilize them have entered the market, with the latest being the COVID-19 vaccines. Despite their success, many aspects of their biophysical behavior are still under investigation. At the same time, their combination with other classes of biomaterials to create more advanced platforms is a promising endeavor. Herein, we developed mixed lipid-polymer nanoparticles with incorporated curcumin as a drug delivery system for therapy, and we studied its interactions with various biosystems. Initially, the nanoparticle physicochemical properties were investigated, where their size, size distribution, surface charge, morphology, drug incorporation and stability were assessed. The incorporation of the drug molecule was approximately 99.8 % for a formulated amount of 10 % by weight of the total membrane components and stable in due time. The association of the nanoparticles with human serum albumin and the effect that this brings upon their properties was studied by several biophysical techniques, including light scattering, thermal analysis and circular dichroism. As a biocompatibility assessment, interactions with erythrocyte membranes and hemolysis induced by the nanoparticles were also studied, with empty nanoparticles being more toxic than drug-loaded ones at high concentrations. Finally, interactions with bacterial membrane proteins of Staphylococcus aureus and the antibacterial effect of the nanoparticles were evaluated, where the effect of curcumin was improved when incorporated inside the nanoparticles. Overall, the developed mixed nanoparticles are promising candidates for the delivery of curcumin to infectious and other types of diseases.
Collapse
Affiliation(s)
- Nikolaos Naziris
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Szymon Sekowski
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski Street 1J, 15-245 Białystok, Poland
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski Street 1J, 15-245 Białystok, Poland
| | - Adam Buczkowski
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Łucja Balcerzak
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Magdalena Małecka
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
18
|
Amino acid coordination complex mediates cisplatin entrapment within PEGylated liposome: An implication in colorectal cancer therapy. Int J Pharm 2022; 623:121946. [PMID: 35750277 DOI: 10.1016/j.ijpharm.2022.121946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Cis-Diaminedichloroplatinum (cisplatin, CDDP) remained among the most widely used anti-cancer agents; however, management of the dose-limiting side effects is still a great hurdle to its therapeutic potential. In the framework of this investigation, novel approach was developed for CDDP encasement within liposome based on the formation of a coordination bond between the platinum (II) atom and a carboxylic group in aspartic acid (AA) and glutamic acid (GA). We have also compared two methods of preparation based on equilibration and conventional lipid film hydration. For this, first FTIR spectra of the conjugates confirmed coordination bond between Pt and the carboxylate moieties. The PEGylated liposomes composed of HSPC, cholesterol and DPPG had a size of 134 to 197 nm and negative zeta potential (-14.20 to -20.90 mv). Cytotoxicity study revealed IC50 values of <7 µg/ml for liposomes. In vivo plasma retention following iv administration indicated the potential of liposome in maintaining cisplatin levels within the circulation, while free cisplatin and cisplatin conjugates were promptly eliminated. Anti-tumor efficacy studies following iv injections at 3 mg/kg cisplatin weekly for three weeks in C26 tumor bearing BALB/c mice demonstrated the potential of the cisplatin liposomes in tumor growth inhibition. Pt-complexes were not as effective as liposomal formulations showing the crucial role of liposomes in maintaining cisplatin levels within blood circulation. Overall, the developed cisplatin liposome seems to be a promising therapeutic approach for targeting solid tumors.
Collapse
|
19
|
Zeng L, Shi W, Wang H, Cheng X, Chen T, Wang LL, Lan J, Sun W, Liu M, Zhang X, Zhang J, Chen J. Codelivery of π-π Stacked Dual Anticancer Drugs Based on Aloe-Derived Nanovesicles for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27686-27702. [PMID: 35675505 DOI: 10.1021/acsami.2c06546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To overcome the low efficacy of conventional monotherapeutic approaches that use a single drug, functional nanocarriers loaded with an amalgamation of anticancer drugs have been promising in cancer therapy. Herein, aloe-derived nanovesicles (gADNVs) are modified with an active integrin-targeted peptide (Arg-Gly-Asp, RGD) by the postinsertion technique to deliver indocyanine green (ICG) and doxorubicin (DOX) for efficient breast cancer therapy. We presented for the first time that the π-π stacking interaction can turn the "competitive" relationship of ICG and DOX inside gADNVs into a "cooperative" relationship and enhance their loading efficiency. The dual-drug codelivery nanosystem, denoted as DIARs, was well stable and leakproof, exhibiting high tumor-targeting capability both in vitro and in vivo. Meanwhile, this nanosystem showed significant inhibition of cell growth and migration and induced cell apoptosis with the combination of phototherapy and chemotherapy. Intravenous administration of DIARs exhibited high therapeutic efficacy in a 4T1 tumor-bearing mouse model and exhibited no obvious damage to other organs. Overall, our DIAR nanosystem constitutively integrated the natural and economical gADNVs, π-π stacking interaction based on efficient drug loading, and tumor-targeted RGD modification to achieve an effective combination therapy for breast cancer.
Collapse
Affiliation(s)
- Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Wanhua Shi
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Huaying Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Xin Cheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Liang Liang Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Meicen Liu
- Longyan First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Longyan, Fujian 364000, P. R. China
| | - Xi Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| |
Collapse
|
20
|
Folate-Targeted Liposomal Formulations Improve Effects of Methotrexate in Murine Collagen-Induced Arthritis. Biomedicines 2022; 10:biomedicines10020229. [PMID: 35203442 PMCID: PMC8869739 DOI: 10.3390/biomedicines10020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Methotrexate (MTX) is first-line therapy for the treatment of rheumatoid arthritis (RA), however, its use may be limited by side effects notably post-injection malaise. When patients are intolerant or become unresponsive, second-line or antibody therapy may be indicated. A folate-targeted liposomal formulation of MTX (FL-MTX) is tropic to arthritic paws and prevents the onset of collagen-induced arthritis (CIA) in the mouse. We optimized the drug-to-lipid molar ratio to 0.15 and demonstrated the therapeutic efficacy of this form at 2 mg/kg MTX intraperitoneal (i.p.) twice a week. These improved liposomes were present in inflamed joints in proportion to the degree of swelling of the paw and bone remodeling activity. FL-MTX had lower hepatic and renal elimination of MTX than the free substance. FL-MTX provided equivalent results when given i.p. or subcutaneous (s.c.) and FL-MTX 2 mg/kg (drug/lipid 0.15), twice weekly, was similar to or more effective than 35 mg/kg MTX (same route and schedule) in reducing the incidence and swelling in the murine CIA model. These results suggest that FL-MTX is a more potent nanotherapeutic formulation than free MTX treatment. Its potential benefits for patients may include reduced frequency of treatment and lower overall doses for a given response.
Collapse
|
21
|
Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep 2021; 11:22818. [PMID: 34819568 PMCID: PMC8613273 DOI: 10.1038/s41598-021-02241-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Recent studies showed that plant-derived nanoparticles (NPs) can be easily produced in high yields and have potential applications as therapeutic agents or delivery carriers for bioactive molecules. In this study, we selected corn as it is inexpensive to grow and mass-produced globally. Super sweet corn was homogenized in water to obtain corn juice, which was then centrifuged, filtered through a 0.45-μm-pore size syringe filter, and ultracentrifuged to obtain NPs derived from corn, or corn-derived NPs (cNPs). cNPs obtained were approximately 80 nm in diameter and negatively charged (- 17 mV). cNPs were taken up by various types of cells, including colon26 tumor cells and RAW264.7 macrophage-like cells, with selective reduction of the proliferation of colon26 cells. Moreover, cNPs induced tumor necrosis factor-α release from RAW264.7 cells. cNPs and RAW264.7 in combination significantly suppressed the proliferation of colon26/fluc cells. Daily intratumoral injections of cNPs significantly suppressed the growth of subcutaneous colon26 tumors in mice, with no significant body weight loss. These results indicate excellent anti-tumor activity of cNPs.
Collapse
Affiliation(s)
- Daisuke Sasaki
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Kosuke Kusamori
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Yukiya Takayama
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Shoko Itakura
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Hiroaki Todo
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
22
|
Kasiram MZ, Hapidin H, Abdullah H, Hashim NM, Azlina A, Sulong S. Tannic acid enhances cisplatin effect on cell proliferation and apoptosis of human osteosarcoma cell line (U2OS). Pharmacol Rep 2021; 74:175-188. [PMID: 34652600 DOI: 10.1007/s43440-021-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The increase in cases of chemoresistance of cisplatin for osteosarcoma treatment has called for the need to establish a new treatment regime. Tannic acid (TA) possesses a potent antiproliferative effect against various cancers. Therefore, this study investigated the effect of TA combined with cisplatin on human osteosarcoma cell lines (U2OS). METHODS MTT assay was used to determine the half-maximal inhibitory concentration (IC50), while the combination index (CI) value was utilized to analyze the interaction within each combination. The antiproliferative effect of the treatment was evaluated by trypan blue exclusion assay. The morphological changes of cells were observed under a phase-contrast inverted microscope. The nuclear morphology and percentage of apoptosis cells were evaluated by using the Hoechst 33258 staining and annexin V/PI assay, respectively. RESULTS The U2OS cells showed cytotoxic effect when treated with TA and cisplatin, with IC50 at 4.47 µg/mL and 16.25 µg/mL, respectively. The TA demonstrated no significant inhibition effect on the normal human fetal osteoblast cells (hFOB 1.19); yet, interestingly, a potent proliferative effect was indicated. Synergistic interaction was triggered when TA was combined with cisplatin at percentage ratios of 90:10 and 85:15. Meanwhile, antagonistic interaction was induced in the combination at percentage ratios of 75:25 and 50:50. On the other hand, a significant antiproliferative effect with prominent morphological alteration was detected in the cells treated with a combination of TA and cisplatin at the percentage ratio of 90:10. Additionally, combination-treated cells demonstrated the highest percentage of apoptosis cells, with distinct chromosomal condensation, nuclear fragmentation, reduction of nuclear volume, and notable apoptotic body. CONCLUSION Therefore, there is a high potential for the inclusion of TA in the cisplatin-based chemotherapeutic regimen of osteosarcoma.
Collapse
Affiliation(s)
- Mohamad Zahid Kasiram
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hermizi Hapidin
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Hasmah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nor Munira Hashim
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
23
|
Ibrahim SS, Abo Elseoud OG, Mohamedy MH, Amer MM, Mohamed YY, Elmansy SA, Kadry MM, Attia AA, Fanous RA, Kamel MS, Solyman YA, Shehata MS, George MY. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology 2021; 197:108738. [PMID: 34339751 DOI: 10.1016/j.neuropharm.2021.108738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Many cancer survivors suffer from chemotherapy-induced cognitive impairment known as 'Chemobrain'. Doxorubicin -topoisomerase II inhibitor- is widely used in breast cancer, hematological cancers and other neoplasms. However, it is reported to precipitate cognitive impairment in cancer patients via inducing oxidative stress and inflammatory response. Chrysin -5,7 dihydroxyflavone- has promising antioxidant, anti-inflammatory and anticancer properties, but suffers low bioavailability owing to its poor solubility and extensive metabolism. In the present study, chrysin was successfully formulated as transfersomal lipid vesicles and chitosan composite vesicles (CCV) exhibiting a nanometric size range, high drug entrapment efficiency, and controlled release over a 72h period. Intranasal administration of optimized chrysin formulations at a reduced dose of 0.5 mg/kg improved doxorubicin-induced memory impairment in rats evidenced by behavioral testing, inhibition of acetylcholinesterase activity and oxidative stress markers; catalase, reduced glutathione, lipid peroxidation and hydrogen peroxide. This could reduce caspase-3 expression inhibiting apoptosis. Moreover, chrysin formulations were able to inhibit doxorubicin-induced Tol-like receptor 4 (TLR4) and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) protein expression which in turn, reduced procaspase-1, Cysteinyl Aspartate Protease-1 (caspase-1) and Interleukin-1β (IL-1β) protein expression via inhibiting Nod-like receptor pyrin containing 3 (NLRP3) inflammasome. Collectively, our findings suggest the enhanced therapeutic potential of chrysin when formulated as transfersomes and CCV against chemotherapy-induced chemobrain via hindering acetylcholinesterase, oxidative stress and TLR4-NF-kB(p65)-NLRP3 pathways.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Omar G Abo Elseoud
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Mohamedy
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Amer
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Youssef Y Mohamed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shehab A Elmansy
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kadry
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed A Attia
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ragy A Fanous
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mahmoud S Kamel
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Youssef A Solyman
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mazen S Shehata
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
24
|
Application of Asymmetrical Flow Field-Flow Fractionation for Characterizing the Size and Drug Release Kinetics of Theranostic Lipid Nanovesicles. Int J Mol Sci 2021; 22:ijms221910456. [PMID: 34638795 PMCID: PMC8508677 DOI: 10.3390/ijms221910456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Liposome size and in vitro release of the active substance belong to critical quality attributes of liposomal carriers. Here, we apply asymmetric flow field-flow fractionation (AF4) to characterize theranostic liposomes prepared by thin lipid film hydration/extrusion or microfluidics. The vesicles' size was derived from multi-angle laser light scattering following fractionation (AF4) and compared to sizes derived from dynamic light scattering measurements. Additionally, we adapted a previously developed AF4 method to study zinc phthalocyanine (ZnPc) release/transfer from theranostic liposomes. To this end, theranostic liposomes were incubated with large acceptor liposomes serving as a sink (mimicking biological sinks) and were subsequently separated by AF4. During incubation, ZnPc was transferred from donor to acceptor fraction until reaching equilibrium. The process followed first-order kinetics with half-lives between 119.5-277.3 min, depending on the formulation. The release mechanism was postulated to represent a combination of Fickian diffusion and liposome relaxation. The rate constant of the transfer was proportional to the liposome size and inversely proportional to the ZnPc/POPC molar ratio. Our results confirm the usefulness of AF4 based method to study in vitro release/transfer of lipophilic payload, which may be useful to estimate the unwanted loss of drug from the liposomal carrier in vivo.
Collapse
|
25
|
Yu X, Pan J, Shen N, Zhang H, Zou L, Miao H, Xing L. Development of Saikosaponin D Liposome Nanocarrier with Increased Hepatoprotective Effect Against Alcoholic Hepatitis Mice. J Biomed Nanotechnol 2021; 17:627-639. [PMID: 35057889 DOI: 10.1166/jbn.2021.3054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mortality rate of ethanol induced liver disease has substantially raised to alert level with an increasing use of alcohol, but development of definite hepatoprotective drug is still challenging. The efficacy of Saikosaponin D, one of the natural herbal medicine has been studied
in different diseases. Nonetheless, its clinical application is restricted by poor bioavailability, stability and solubility. This study sought to develop a Saikosaponin D loaded liposome via thin film hydration method. The surface morphology, encapsulation efficiency and drug loading capacity
were detected with transmission electron microscopy and HPLC, in vitro dissolution was via dialysis method, but efficacy and safety evaluation was through pharmacokinetics, while the assessment of hepatoprotective activity on alcohol induced acute hepatitis mice models was conducted.
The optimized liposomes showed significant greater therapeutic effect on liver, through decreased serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), total cholesterol (TC) and triglyceride (TG)
in liver homogenate. In contrast, levels of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) were increased significantly. Pathological study exhibited remarkable alteration of hepatitis liver architecture to almost normal state after administration of Saikosaponin D
liposome. The increased hepatoprotective effect of Saikosaponin D liposome was observed during the attenuation of alcoholic hepatitis in mice, which might be ascribable to the anti-oxidative and anti-inflammatory properties of the drug. This study provides a theoretical basis for developing
advanced system of Saikosaponin D delivery for the promotion of the therapeutic effects of the liposome against various kinds of diseases.
Collapse
Affiliation(s)
- Xiao Yu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jielu Pan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nan Shen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haiyan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lu Zou
- Experiment Center for Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongyu Miao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lianjun Xing
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
26
|
Kurmi BD, Paliwal SR. Development and Optimization of TPGS based Stealth Liposome of Doxorubicin Using Box-Behnken Design: Characterization, Hemocompatibility and Cytotoxicity Evaluation in Breast Cancer Cells. J Liposome Res 2021; 32:129-145. [PMID: 33724151 DOI: 10.1080/08982104.2021.1903034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present work reports the development of doxorubicin (DOX) encapsulated α-Tocopherol polyethylene glycol 1000 succinate (TPGS) coated liposomal system (DOX-LIPO-TPGS) by quality by design (QbD) approach and evaluated for its anticancer and hemocompatibility potential. The screening and optimization of formulation variables were performed by the systematic design of experiments (DoE), using Taguchi and Box-Behnken Design (BBD) for their desired quality attributes. The QbD optimized DOX-LIPO (DOX encapsulated uncoated liposome) and DOX-LIPO-TPGS formulation showed nano-metric vesicle size (98.2 ± 3.1 &117.6 ± 3.5 nm) with favorable development parameters, i.e. PDI (0.262 ± 0.008 & 0.123 ± 0.005); ZP (-38.7 ± 0.5 &-36.4 ± 0.7 mV) and % EE (66.8 ± 3.3 & 73.5 ± 3.5%) respectively. The release kinetics parameters suggested, sustained release behavior of developed liposomal formulations (83.6 ± 2.8 & 69.8 ± 2.2% releases in 72 h respectively). Cytotoxicity (MTT assay) on the MCF-7 breast cancer cell line and Hemolysis assay on RBCs stipulates comparatively higher anticancer potential and better hemocompatibility of DOX-LIPO-TPGS with respect to DOX-LIPO and the plain DOX solution. The study concluded that the QbD based three levels by three factors BBD optimization could be utilized for obtaining liposomal formulations with desired quality attributes. TPGS could be set out as a vital additive to improve the various quality parameters including stealthing character, stability, kinetic release, cytotoxicity, and hemocompatibility of liposomal formulations. This may serve as a focal paradigm for using TPGS coated liposomes as anticancer drug delivery vehicle in normal and MDR carcinoma.
Collapse
Affiliation(s)
- Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
| |
Collapse
|
27
|
Regenold M, Steigenberger J, Siniscalchi E, Dunne M, Casettari L, Heerklotz H, Allen C. Determining critical parameters that influence in vitro performance characteristics of a thermosensitive liposome formulation of vinorelbine. J Control Release 2020; 328:551-561. [DOI: 10.1016/j.jconrel.2020.08.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
|
28
|
Haggag Y, Abu Ras B, El-Tanani Y, Tambuwala MM, McCarron P, Isreb M, El-Tanani M. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv 2020; 17:1655-1669. [PMID: 32841584 DOI: 10.1080/17425247.2020.1813714] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multidrug resistance (MDR) limits the beneficial outcomes of conventional breast cancer chemotherapy. Ras-related nuclear protein (Ran-GTP) plays a key role in these resistance mechanisms, assisting cancer cells to repair damage to DNA. Herein, we investigate the co-delivery of Ran-RCC1 inhibitory peptide (RAN-IP) and doxorubicin (DOX) to breast cancer cells using liposomal nanocarriers. RESEARCH DESIGN A liposomal delivery system, co-encapsulating DOX, and RAN-IP, was prepared using a thin-film rehydration technique. Dual-loaded liposomes were optimized by systematic modification of formulation variables. Real-Time-Polymerase Chain Reaction was used to determine Ran-GTP mRNA expression. In vitro cell lines were used to evaluate the effect of loaded liposomes on the viability of breast and lung cancer cell lines. In vivo testing was performed on a murine Solid Ehrlich Carcinoma model. RESULTS RAN-IP reversed the Ran-expression-mediated MDR by inhibiting the Ran DNA damage repair function. Co-administration of RAN-IP enhanced sensitivity of DOX in breast cancer cell lines. Finally, liposome-mediated co-delivery with RAN-IP improved the anti-tumor effect of DOX in tumor-bearing mice when compared to single therapy. CONCLUSIONS This study is the first to show the simultaneous delivery of RAN-IP and DOX using liposomes can be synergistic with DOX and lead to tumor regression in vitro and in vivo.
Collapse
Affiliation(s)
- Yusuf Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University , Tanta, Egypt
| | - Bayan Abu Ras
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | - Yahia El-Tanani
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | | | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University , UK
| | - Mohammed Isreb
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University , Amman, Jordan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford , Bradford, UK
| |
Collapse
|
29
|
Skupin-Mrugalska P, Minko T. Development of Liposomal Vesicles for Osimertinib Delivery to EGFR Mutation-Positive Lung Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100939. [PMID: 33008019 PMCID: PMC7599969 DOI: 10.3390/pharmaceutics12100939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Osimertinib (OSI, AZD9291), is a third-generation, irreversible tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR) that selectively inhibits both EGFR-TKI–sensitizing and EGFR T790M resistance mutations. OSI has been approved as a first-line treatment of EGFR-mutant lung cancer and for metastatic EGFR T790M-mutant non-small cell lung cancer. Liposome-based delivery of OSI can provide a new formulation of the drug that can be administered via alternative delivery routes (intravenous, inhalation). In this manuscript, we report for the first time development and characterization of liposomal OSI formulations with diameters of ca. 115 nm. Vesicles were composed of phosphatidylcholines with various saturation and carbon chain lengths, cholesterol and pegylated phosphoethanolamine. Liposomes were loaded with OSI passively, resulting in a drug being dissolved in the phospholipid matrix or actively via remote-loading leading to the formation of OSI precipitate in the liposomal core. Remotely loaded liposomes were characterized by nearly 100% entrapment efficacy and represent a depot of OSI. Passively-loaded vesicles released OSI following the Peppas-Sahlin model, in a mechanism combining drug diffusion and liposome relaxation. OSI-loaded liposomes composed of l-α-phosphatidylcholine (egg-PC) demonstrated a higher toxicity in non-small lung cancer cells with EGFR T790M resistance mutation (H-1975) when compared with free OSI. Developed OSI formulations did not show antiproliferative activity in vitro in healthy lung epithelial cells (MRC-5) without the EGFR mutation.
Collapse
Affiliation(s)
- Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
- Correspondence: ; Tel.: +48-61-854-6699
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers: The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute, Rutgers, the State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, the State University of New Jersey, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Ruiz A, Ma G, Seitsonen J, Pereira SGT, Ruokolainen J, Al-Jamal WT. Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. J Control Release 2020; 328:665-678. [PMID: 32961247 DOI: 10.1016/j.jconrel.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX)-loaded lysolipid temperature-sensitive liposomes (LTSLs) are a promising stimuli-responsive drug delivery system that rapidly releases DOX in response to mild hyperthermia (HT). This study investigates the influence of loaded DOX crystals on the thermosensitivity of LTSLs and their therapeutic efficacy in vitro and in vivo. The properties of DOX crystals were manipulated using different remote loading methods (namely (NH4)2SO4, NH4-EDTA and MnSO4) and varying the lipid:DOX weight ratio during the loading step. Our results demonstrated that (NH4)2SO4 or NH4-EDTA remote loading methods had a comparable encapsulation efficiency (EE%) into LTSLs in contrast to the low DOX EE% obtained using the metal complexation method. Cryogenic transmission electron microscopy (cryo-TEM) revealed key differences in the nature of DOX crystals formed inside LTSLs based on the loading buffer or/and the lipid:DOX ratio used, resulting in different DOX release profiles in response to mild HT. The in vitro assessment of DOX release/uptake in CT26 and PC-3 cells revealed that the use of a high lipid:DOX ratio exhibited a fast and controlled release profile in combination with mild HT, which correlated well with their cytotoxicity studies. Similarly, in vivo DOX release, tumour growth inhibition and mice survival rates were influenced by the physicochemical properties of LTSLs payload. This study demonstrates, for the first time, that the characteristics of DOX crystals loaded into LTSLs, and their conformational rearrangement during HT, are important factors that impact the TSLs performance in vivo.
Collapse
Affiliation(s)
- Amalia Ruiz
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Guanglong Ma
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Sara G T Pereira
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
31
|
Marwah M, Narain Srivastava P, Mishra S, Nagarsenker M. Functionally engineered 'hepato-liposomes': Combating liver-stage malaria in a single prophylactic dose. Int J Pharm 2020; 587:119710. [PMID: 32739383 DOI: 10.1016/j.ijpharm.2020.119710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Abstract
Primaquine continues to remain the gold standard molecule with an incumbent toxicity profile, as far as radical treatment of malaria is concerned. Better molecules are available at experimental level but their targeted delivery is a challenge. The present work identifies 'Decoquinate (DQN)' as a repurposed, safer drug molecule with a potential to function as an appealing replacement for primaquine active against liver-stage malaria. The work focuses on delivering the highly lipophilic DQN (log P ~ 5) in a liposomal carrier system to 'sporozoite infested hepatocytes' using two different in-house synthesized hepatotropic ligands. Functionally engineered 'hepato-liposomes' exhibit differences in their DQN loading capacities but no significant change in morphology or particle size and are also not affected by freeze drying. Two ligands, targeting different receptors on hepatocytes, have been compared for their in vitro and in vivo drug delivery efficiency in liver stage malaria. The studies reveal superior antimalarial efficacy of differently designed DQN loaded liposomes and demonstrate antimalarial efficacy at a low dose of 0.5 mg/kg for a repurposed molecule like DQN. The in vivo studies successfully discriminate the functional efficiency of the carriers and establish the importance of design in liposomal drug delivery for malarial prophylaxis.
Collapse
Affiliation(s)
- Megha Marwah
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai, India
| | - Pratik Narain Srivastava
- Division Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Mangal Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai, India.
| |
Collapse
|
32
|
Chang MC, Luo TY, Huang CY, Peng CL, Chen KY, Yeh LK. The new ophthalmic formulation for infection control by combining collagen/gelatin/alginate biomaterial with liposomal chloramphenicol. Biomed Phys Eng Express 2020; 6:045017. [DOI: 10.1088/2057-1976/ab97a2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
The lipid composition affects Trastuzumab adsorption at monolayers at the air-water interface. Chem Phys Lipids 2020; 227:104875. [DOI: 10.1016/j.chemphyslip.2020.104875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
|
34
|
Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, Cullis PR, Li SD. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Mol Pharm 2019; 16:3957-3967. [PMID: 31381352 DOI: 10.1021/acs.molpharmaceut.9b00583] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Curcumin exhibits potent anticancer activity via various mechanisms, but its in vivo efficacy has been hampered by poor solubility. Nanotechnology has been employed to deliver curcumin, but most of the reported systems suffered from low drug loading capacity and poor stability. Here, we report the development and optimization of a liposomal formulation for curcumin (Lipo-Cur) using an automated microfluidic technology. Lipo-Cur exhibited a mean diameter of 120 nm with a low polydispersity index (<0.2) and superior loading capacity (17 wt %) compared to other reported liposomal systems. Lipo-Cur increased the water solubility of curcumin by 700-fold, leading to 8-20-fold increased systemic exposure compared to the standard curcumin suspension formulation. When coadministered with cisplatin to tumor-bearing mice, Lipo-Cur augmented the antitumor efficacy of cisplatin in multiple mouse tumor models and decreased the nephrotoxicity. This is the first report demonstrating the dual effects of curcumin enabled by a nanoformulation in enhancing the efficacy and reducing the toxicity of a chemo-drug in animal models under a single and low dose administration.
Collapse
Affiliation(s)
| | | | | | | | | | - Shell Ip
- Precision NanoSystems Inc , Vancouver , British Columbia V6P 6T7 , Canada
| | | | | |
Collapse
|
35
|
Sadeghi N, Kok RJ, Bos C, Zandvliet M, Geerts WJC, Storm G, Moonen CTW, Lammers T, Deckers R. Hyperthermia-triggered release of hypoxic cell radiosensitizers from temperature-sensitive liposomes improves radiotherapy efficacy in vitro. NANOTECHNOLOGY 2019; 30:264001. [PMID: 30836341 DOI: 10.1088/1361-6528/ab0ce6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypoxia is a characteristic feature of solid tumors and an important cause of resistance to radiotherapy. Hypoxic cell radiosensitizers have been shown to increase radiotherapy efficacy, but dose-limiting side effects prevent their widespread use in the clinic. We propose the encapsulation of hypoxic cell radiosensitizers in temperature-sensitive liposomes (TSL) to target the radiosensitizers specifically to tumors and to avoid unwanted accumulation in healthy tissues. The main objective of the present study is to develop and characterize TSL loaded with the radiosensitizer pimonidazole (PMZ) and to evaluate the in vitro efficacy of free PMZ and PMZ encapsulated in TSL in combination with hyperthermia and radiotherapy. PMZ was actively loaded into TSL at different drug/lipid ratios, and the physicochemical characteristics and the stability of the resulting TSL-PMZ were evaluated. PMZ release was determined at 37 °C and 42 °C in HEPES buffer saline and fetal bovine serum. The concentration-dependent radiosensitizing effect of PMZ was investigated by exposing FaDu cells to different PMZ concentrations under hypoxic conditions followed by exposure to ionizing irradiation. The efficacy of TSL-PMZ in combination with hyperthermia and radiotherapy was determined in vitro, assessing cell survival and DNA damage by means of the clonogenic assay and histone H2AX phosphorylation, respectively. All TSL-PMZ formulations showed high encapsulation efficiencies and were stable for 30 d upon storage at 4 °C and 20 °C. Fast PMZ release was observed at 42 °C, regardless of the drug/lipid ratio. Increasing the PMZ concentration significantly enhanced the effect of ionizing irradiation. Pre-heated TSL-PMZ in combination with radiotherapy caused a 14.3-fold increase in cell death as compared to radiotherapy treatment alone. In conclusion, our results indicate that TSL-PMZ in combination with hyperthermia can assist in improving the efficacy of radiotherapy under hypoxic conditions.
Collapse
Affiliation(s)
- Negar Sadeghi
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands. Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands. Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sarkar N, Bose S. Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17184-17192. [PMID: 30924639 PMCID: PMC8791785 DOI: 10.1021/acsami.9b01218] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Curcumin, the active constituent for turmeric, is known for its antioxidant, anti-inflammatory, anticancer, and osteogenic activities. However, it shows extremely poor bioavailability, rapid metabolism, and rapid systemic elimination. In this study, we have increased the bioavailability of curcumin by encapsulating it in a liposome, followed by the incorporation onto 3D printed (3DP) calcium phosphate (CaP) scaffolds with designed porosity. 3DP scaffolds with a designed shape and interconnected porosity allow for the fabrication of patient-specific implants, providing new tissue ingrowth by mechanical interlocking between the surrounding host tissue and the scaffold. Upon successful encapsulation of curcumin into the liposomes, we have investigated the effect of liposomal curcumin released from the 3DP scaffolds on both human fetal osteoblast cells (hFOB) and human osteosarcoma (MG-63) cells. Interestingly, liposomal curcumin released from the 3DP scaffold showed significant cytotoxicity toward in vitro osteosarcoma (bone cancer) cells, whereas it promoted osteoblast (healthy bone cell) cell viability and proliferation. These results reveal a novel approach toward the fabrication of tissue engineering scaffolds, which couples the advanced additive manufacturing technology with the wisdom of alternative medicine. These bifunctional scaffolds eradicate the osteosarcoma cells and also promote osteoblast proliferation, offering new opportunities to treat bone defects after tumor resection.
Collapse
|
37
|
Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics 2019; 11:pharmaceutics11040185. [PMID: 30995762 PMCID: PMC6523737 DOI: 10.3390/pharmaceutics11040185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol and β-sitosterol obtained from canola oil deodorizer distillate, along with alpha, gamma and delta tocopherol. Three approaches; thin film hydration-homogenization, thin film hydration-ultrasonication and Mozafari method were used for formulation. Validated liquid chromatographic tandem mass spectrometry (LC-MS/MS) was utilized to determine the entrapment efficiency of bioactives. Stability studies of liposomal formulations were conducted before and after pasteurization using high temperature short time (HTST) technique for a month. Vesicle size after homogenization and ultrasonication (<200 nm) was significantly lower than by Mozafari method (>200 nm). However, zeta potential (-9 to -14 mV) was comparable which was adequate for colloidal stability. Entrapment efficiencies were greater than 89% for all the phytosterols and tocopherols formulated by all three methods. Liposomes with optimum particle size and zeta potential were incorporated in model orange juice, showing adequate stability after pasteurization (72 °C for 15 s) for a month. Liposomes containing phytosterols obtained from canola waste along with tocopherols were developed and successfully applied as a food additive using model orange juice.
Collapse
|
38
|
Shah VM, Nguyen DX, Al Fatease A, Patel P, Cote B, Woo Y, Gheewala R, Pham Y, Huynh MG, Gannett C, Rao DA, Alani AWG. Liposomal formulation of hypoxia activated prodrug for the treatment of ovarian cancer. J Control Release 2018; 291:169-183. [PMID: 30339904 DOI: 10.1016/j.jconrel.2018.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
In this work, a new sphingomyelin-cholesterol liposomal formulation (CPD100Li) for the delivery of a hypoxia activated prodrug of vinblastine, mon-N-oxide (CPD100), is developed. The optimized liposomal formulation uses an ionophore (A23187) mediated pH-gradient method. Optimized CPD100Li is characterized for size, drug loading, and stability. The in vitro toxicity of CPD100Li is assessed on different aspects of cell proliferation and apoptosis of ES2 ovarian cancer under normoxic and hypoxic conditions. The pharmacokinetics of CPD100Li in mice as well as the influence of A23187 on the retention of CPD100 are assessed. The dose limiting toxicity (DLT) and maximum tolerated dose (MTD) for CPD100Li are evaluated in nude mice. CPD100 is loaded in the liposome at 5.5 mg/mL. The sizes of CPD100Li using DLS, qNano and cryo-TEM techniques are 155.4 ± 4.2 nm, 132 nm, and 112.6 ± 19.8 nm, respectively. There is no difference between the in vitro characterization of CPD100Li with and without ionophore. Freshly prepared CPD100Li with ionophore are stable for 48 h at 4 °C, while the freeze-dried formulation is stable for 3 months under argon at 4 °C. The hypoxic cytotoxicity ratios (HCR) of CPD100 and CPD100Li are 0.16 and 0.11, respectively. CPD100Li under hypoxic conditions has a 9.2-fold lower IC50 value as compared to CPD100Li under normoxic conditions, confirming the hypoxia dependent activation of CPD100. CPD100Li treated ES2 cells show a time dependent enhanced cell death, along with caspase production and an increase in the number of cells in G0/G1 and higher cell arrest. The blood concentration profile of CPD100Li in mice without A23187 has a 12.6-fold lower area under the curve (AUC) and 1.6-fold lower circulation time compared to the CPD100Li with A23187. The DLT for both CPD100 and CPD100Li is 45 mg/kg and the MTD is 40 mg/kg in nude mice. Based on the preliminary data obtained, we clearly show that the presence of ionophore affects the in vivo stability of CPD100. CPD100Li presents a unique opportunity to develop a first-in-kind chemotherapy product based on achieving selective drug activation through the hypoxic physiologic microenvironment of solid tumors.
Collapse
Affiliation(s)
- Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA
| | - Duc X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA
| | - Adel Al Fatease
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA
| | | | - Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA
| | - Yeonhee Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA
| | | | - Yvonne Pham
- Portland State University, Portland, OR, USA
| | | | - Christen Gannett
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA
| | - Deepa A Rao
- School of Pharmacy, Pacific University, Hillsboro, OR, USA
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, USA.
| |
Collapse
|