1
|
Tufail T, Ain HBU, Virk MS, Ashraf J, Ahmed Z, Khalil AA, Rasheed A, Xu B. GABA (γ-aminobutyric acid) enrichment and detection methods in cereals: Unlocking sustainable health benefits. Food Chem 2025; 464:141750. [PMID: 39504899 DOI: 10.1016/j.foodchem.2024.141750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Gamma-aminobutyric acid (GABA), a non-protein amino acid primarily biosynthesized in cereals, is vital to the human neurological system. As the primary neurotransmitter, it promotes relaxation, inhibits depression and sleeplessness, and regulates synaptic transmission and neuronal development. GABA also protects the liver, kidneys, and intestines, reduces blood pressure, and fights cancer and inflammation. Colorimetric and enzyme-based procedures, biosensors, and High-Performance Liquid Chromatography primarily detect GABA. GABA content is enriched by treatments, like germination and fermentation, suitable and economical methods on industrial scales. Moreover, ultrasonication, abiotic stress, heat, and relative humidity are also utilized for GABA enrichment. With advancing technology and knowledge of the nutrients concerning human health, target-specific nutrition utilizing sustainable ingredients needs exploration. Conclusively, the current article delves into the latest developments in GABA enrichment and detection techniques and GABA's potential health benefits. Further studies are required to understand and refine enrichment procedures to develop GABA-enriched foods with health-promoting qualities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School of Food and Biological Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China; University Institute of Diet and Nutritional Sciences, The University of Lahore, Pakistan
| | - Huma Bader Ul Ain
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Pakistan
| | - Muhammad Safiullah Virk
- School of Food and Biological Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jawad Ashraf
- School of Food and Biological Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zahoor Ahmed
- School of Food and Biological Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
3
|
Ahmad S, Fariduddin Q. "Deciphering the enigmatic role of gamma-aminobutyric acid (GABA) in plants: Synthesis, transport, regulation, signaling, and biological roles in interaction with growth regulators and abiotic stresses.". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108502. [PMID: 38492486 DOI: 10.1016/j.plaphy.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Gamma-aminobutyric acid (GABA) is an amino acid with a four-carbon structure, widely distributed in various organisms. It exists as a zwitterion, possessing both positive and negative charges, enabling it to interact with other molecules and participate in numerous physiological processes. GABA is widely distributed in various plant cell compartments such as cytoplasm mitochondria, vacuoles, peroxisomes, and plastids. GABA is primarily synthesized from glutamate using glutamate decarboxylase and participates in the GABA shunt within mitochondria, regulating carbon and nitrogen metabolism in plants The transport of GABA is regulated by several intracellular and intercellular transporters such as aluminium-activated malate transporters (ALMTs), GABA transporters (GATs), bidirectional amino acid transporters (BATs), and cationic amino acid transporters (CATs). GABA plays a vital role in cellular transformations, gene expression, cell wall modifications, and signal transduction in plants. Recent research has unveiled the role of GABA as a signaling molecule in plants, regulating stomatal movement and pollen tube growth. This review provides insights into multifaceted impact of GABA on physiological and biochemical traits in plants, including cellular communication, pH regulation, Krebs cycle circumvention, and carbon and nitrogen equilibrium. The review highlights involvement of GABA in improving the antioxidant defense system of plants, mitigating levels of reactive oxygen species under normal and stressed conditions. Moreover, the interplay of GABA with other plant growth regulators (PGRs) have also been explored.
Collapse
Affiliation(s)
- Saif Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Yin Y, Xue J, Hu J, Yang Z, Fang W. Exogenous methyl jasmonate combined with Ca 2+ promote resveratrol biosynthesis and stabilize sprout growth for the production of resveratrol-rich peanut sprouts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107988. [PMID: 37672960 DOI: 10.1016/j.plaphy.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Promoting resveratrol accumulation in plants and utilizing resveratrol-rich plants as raw materials for the development of functional foods is a promising development direction. The effects of methyl jasmonate (MeJA), in combination with CaCl2 and Ca2+ inhibitors, on physiological metabolism and resveratrol enrichment of peanut sprouts were investigated. MeJA combined with CaCl2 increased Ca2+ content, calmodulin content, and Ca2+- adenosine triphosphatase activity, as well as upregulated calcium-binding proteinase expression levels. Treatment with MeJA plus CaCl2 significantly increased peroxidase and superoxide dismutase activities and antioxidant capacities, significantly decreased the content of malondialdehyde and hydrogen peroxide, which resulted in a significantly increased in sprout length and fresh weight, and alleviated the inhibition of sprout growth. MeJA plus CaCl2 significantly increased the activities of phenylalanine ammonia-lyase and 4-coumarate coenzyme A ligase and upregulated the expression levels of phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, and resveratrol synthase, thus significantly increasing resveratrol content. However, MeJA combined with Ca2+ antagonists reversed these effects. These results indicate that MeJA interacts with Ca2+ to promote resveratrol synthesis in peanut sprouts and to improve sprout stress tolerances.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiyuan Xue
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jingjing Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
5
|
Solouki A, Zare Mehrjerdi M, Azimi R, Aliniaeifard S. Improving basil (Ocimum basilicum L.) essential oil yield following down-regulation of photosynthetic functionality by short-term application of abiotic elicitors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Elbaloula MF, Hassan AB. Effect of different salt concentrations on the gamma-aminobutyric-acid content and glutamate decarboxylase activity in germinated sorghum ( Sorghum bicolor L. Moench) grain. Food Sci Nutr 2022; 10:2050-2056. [PMID: 35702284 PMCID: PMC9179167 DOI: 10.1002/fsn3.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to estimate the γ-aminobutyric acid (GABA) content and glutamate decarboxylase activity (GAD) in germinated sorghum grain as affected by different concentrations of NaCl, pyridoxal 5-phosphate (PLP), and CaCl2. In general, the obtained results revealed that the addition of low doses of NaCl (40 mmol/L), PLP (90 mmol/L), and CaCl2 (0.5 mmol/L) to the germination culture significantly (p < .05) enhanced the GABA content and subsequently improved the GAD activity in sorghum grains. Moreover, CaCl2 played a dominant role in the extent of enzymolysis, followed by NaCl and PLP. Regarding the GABA content, the optimal concentration of the NaCl, PLP, and CaCl2 was estimated as 41.07 mmol/L, 82.62 μmol/L, and 0.40 mmol/L, respectively. Under this optimal culture medium, the maximum GABA content was 0.336 mg/g. In conclusion, the findings of this work would provide a scientific basis for the industrialized production of GABA-enriched sorghum foods.
Collapse
Affiliation(s)
- Maha F. Elbaloula
- Department of Food Science and TechnologyCollege of Agricultural StudiesSudan University of Science and TechnologyKhartoumSudan
| | - Amro B. Hassan
- Department of Food Science and NutritionFaculty of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Environment and Natural Resource Desertification Research Institute (ENDRI)National Center for ResearchKhartoumSudan
| |
Collapse
|
7
|
New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022; 14:nu14081541. [PMID: 35458103 PMCID: PMC9025908 DOI: 10.3390/nu14081541] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Faba beans are emerging as sustainable quality plant protein sources, with the potential to help meet the growing global demand for more nutritious and healthy foods. The faba bean, in addition to its high protein content and well-balanced amino acid profile, contains bioactive constituents with health-enhancing properties, including bioactive peptides, phenolic compounds, GABA, and L-DOPA. Faba bean peptides released after gastrointestinal digestion have shown antioxidant, antidiabetic, antihypertensive, cholesterol-lowering, and anti-inflammatory effects, indicating a strong potential for this legume crop to be used as a functional food to help face the increasing incidences of non-communicable diseases. This paper provides a comprehensive review of the current body of knowledge on the nutritional and biofunctional qualities of faba beans, with a particular focus on protein-derived bioactive peptides and how they are affected by food processing. It further covers the adverse health effects of faba beans associated with the presence of anti-nutrients and potential allergens, and it outlines research gaps and needs.
Collapse
|
9
|
Del-Saz NF, Douthe C, Carriquí M, Ortíz J, Sanhueza C, Rivas-Medina A, McDonald A, Fernie AR, Ribas-Carbo M, Gago J, Florez-Sarasa I, Flexas J. Different Metabolic Roles for Alternative Oxidase in Leaves of Palustrine and Terrestrial Species. FRONTIERS IN PLANT SCIENCE 2021; 12:752795. [PMID: 34804092 PMCID: PMC8600120 DOI: 10.3389/fpls.2021.752795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.
Collapse
Affiliation(s)
- Nestor Fernandez Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jose Ortíz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Alicia Rivas-Medina
- Departamento de Ingeniería Topográfica y Cartografía, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
| | - Allison McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Miquel Ribas-Carbo
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jorge Gago
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Barcelona, Spain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| |
Collapse
|
10
|
Xie T, Ji J, Chen W, Yue J, Du C, Sun J, Chen L, Jiang Z, Shi S. GABA negatively regulates adventitious root development in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1459-1474. [PMID: 31740934 DOI: 10.1093/jxb/erz520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
γ-Aminobutyric acid (GABA) influences plant growth, but little is known about how this metabolite regulates adventitious root (AR) development. Here, we investigate the effects of GABA on ARs using poplar lines overexpressing glutamate decarboxilase 2 (GAD2) and by treating poplar stem cuttings with exogenous GABA or vigabatrin (VGB; a specific GABA transaminase inhibitor). Endogenous GABA accumulation not only inhibited AR growth, but it also suppressed or delayed AR formation. Anatomical observations revealed that the GABA and VGB treatments resulted in a 1 d delay in the formation of AR primordia and the appearance of ARs. This delay coincided with changes in primary metabolism, including transient increases in hexose and amino acid levels. GABA-dependent changes in the expression of genes related to hormone synthesis and signalling, as well as analysis of hormone levels revealed that ethylene-dependent pathways were decreased at the earliest stage of AR formation. In contrast, auxin and abscisic acid were increased at 1-5 d as well as GA4 over a 5 d period of AR formation. These results demonstrate that GABA plays a crucial role in AR development. Evidence is presented demonstrating that GABA can interact with hormone-related pathways as well as carbon/nitrogen metabolism. These findings also elucidate the functions of GABA in plant development.
Collapse
Affiliation(s)
- Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jiacheng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Zeping Jiang
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
11
|
He W, Wang Y, Dai Z, Liu C, Xiao Y, Wei Q, Song J, Li D. Effect of UV-B radiation and a supplement of CaCl2 on carotenoid biosynthesis in germinated corn kernels. Food Chem 2019; 278:509-514. [DOI: 10.1016/j.foodchem.2018.11.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 11/28/2022]
|
12
|
Li QF, Wang JD, Xiong M, Wei K, Zhou P, Huang LC, Zhang CQ, Fan XL, Liu QQ. iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination. Int J Mol Sci 2018; 19:ijms19113460. [PMID: 30400353 PMCID: PMC6274883 DOI: 10.3390/ijms19113460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 11/23/2022] Open
Abstract
Seed germination, a pivotal process in higher plants, is precisely regulated by various external and internal stimuli, including brassinosteroid (BR) and gibberellin (GA) phytohormones. The molecular mechanisms of crosstalk between BRs and GAs in regulating plant growth are well established. However, whether BRs interact with GAs to coordinate seed germination remains unknown, as do their common downstream targets. In the present study, 45 differentially expressed proteins responding to both BR and GA deficiency were identified using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis during seed germination. The results indicate that crosstalk between BRs and GAs participates in seed germination, at least in part, by modulating the same set of responsive proteins. Moreover, most targets exhibited concordant changes in response to BR and GA deficiency, and gene ontology (GO) indicated that most possess catalytic activity and are involved in various metabolic processes. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis was used to construct a regulatory network of downstream proteins mediating BR- and GA-regulated seed germination. The mutation of GRP, one representative target, notably suppressed seed germination. Our findings not only provide critical clues for validating BR–GA crosstalk during rice seed germination, but also help to optimise molecular regulatory networks.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Jin-Dong Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Min Xiong
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Ke Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Peng Zhou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Li-Chun Huang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Xiao-Lei Fan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Ji J, Yue J, Xie T, Chen W, Du C, Chang E, Chen L, Jiang Z, Shi S. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: involving in abscisic acid and ethylene-signalling pathways. PLANTA 2018; 248:675-690. [PMID: 29948123 DOI: 10.1007/s00425-018-2915-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
γ-Aminobutyric acid (GABA) affected ABA and ethylene metabolic genes and signal components in salt-treated poplar, indicating its potential role in signal pathways of ABA and ethylene during salt stress. GABA is a small signalling molecule that accumulates rapidly in plants exposed to various stresses. However, the relationship between GABA and other signalling molecules, such as hormones, remains unclear. Here, in the poplar woody plant under 200-mM NaCl conditions, the application of low (0.25 mM) and high (10 mM) exogenous GABA, compared to 0 mM, affected the accumulation of hydrogen peroxide and hormones, including ABA and ethylene, in different manners. Transcriptomic analysis demonstrated that 1025 differentially expressed genes (DEGs; |log2Ratio| ≥ 1.5) were widely affected by exogenous GABA under salt stress. A clustering analysis revealed that GABA could rescue or promote the effects of salt stress on gene expression. Among them, 146 genes involved in six hormone-signalling pathways were enriched, including 22 ABA- and 50 ethylene-related genes. Quantitative expression of selected genes involved in hormone-related pathways showed that ABA metabolic genes (ABAG, ABAH2, and ABAH4), ethylene biosynthetic genes (ACO1, ACO2, ACO5, ACOH1, ACS1, and ACS7) and receptor genes (PYL1, PYL2, PYL4, and PYL6) were regulated by exogenous GABA, even at a 0.1 mM level. The production of ABA was negatively correlated with ABAH expression levels at different GABA concentrations. The increase of endogenous GABA, resulting from inhibitor (succinyl phosphonate) of α-ketoglutarate dehydrogenase, affected the PYLs levels. Thus, GABA may be involved in ABA- and ethylene-signalling pathways. Our data provide a better understanding of GABA's roles in the plant responses to environmental stresses.
Collapse
Affiliation(s)
- Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China.
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China.
| |
Collapse
|
14
|
Hui Q, Wang M, Wang P, Ma Y, Gu Z, Yang R. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:644-651. [PMID: 28664974 DOI: 10.1002/jsfa.8509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. RESULTS The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. CONCLUSION The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianru Hui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ya Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Nikmaram N, Dar BN, Roohinejad S, Koubaa M, Barba FJ, Greiner R, Johnson SK. Recent advances in γ-aminobutyric acid (GABA) properties in pulses: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2681-2689. [PMID: 28230263 DOI: 10.1002/jsfa.8283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Beans, peas, and lentils are all types of pulses that are extensively used as foods around the world due to their beneficial effects on human health including their low glycaemic index, cholesterol lowering effects, ability to decrease the risk of heart diseases and their protective effects against some cancers. These health benefits are a result of their components such as bioactive proteins, dietary fibre, slowly digested starches, minerals and vitamins, and bioactive compounds. Among these bioactive compounds, γ-aminobutyric acid (GABA), a non-proteinogenic amino acid with numerous reported health benefits (e.g. anti-diabetic and hypotensive effects, depression and anxiety reduction) is of particular interest. GABA is primarily synthesised in plant tissues by the decarboxylation of l-glutamic acid in the presence of glutamate decarboxylase (GAD). It is widely reported that during various processes including enzymatic treatment, gaseous treatment (e.g. with carbon dioxide), and fermentation (with lactic acid bacteria), GABA content increases in the plant matrix. The objective of this review paper is to highlight the current state of knowledge on the occurrence of GABA in pulses with special focus on mechanisms by which GABA levels are increased and the analytical extraction and estimation methods for this bioactive phytochemical. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nooshin Nikmaram
- Young Researchers and Elite Club, Islamic Azad University, Sabzevar, Iran
| | - B N Dar
- Department of Food Technology, IUST, Awantipora, Jammu and Kashmir, India
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamed Koubaa
- Département de Génie des Procédés Industriels, Laboratoire Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, France
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Burjassot, València, Spain
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Stuart K Johnson
- School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
16
|
Ji J, Zheng L, Yue J, Yao X, Chang E, Xie T, Deng N, Chen L, Huang Y, Jiang Z, Shi S. Identification of two CiGADs from Caragana intermedia and their transcriptional responses to abiotic stresses and exogenous abscisic acid. PeerJ 2017. [PMID: 28626614 PMCID: PMC5473354 DOI: 10.7717/peerj.3439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glutamate decarboxylase (GAD), as a key enzyme in the γ -aminobutyric acid (GABA) shunt, catalyzes the decarboxylation of L-glutamate to form GABA. This pathway has attracted much interest because of its roles in carbon and nitrogen metabolism, stress responses, and signaling in higher plants. The aim of this study was to isolate and characterize genes encoding GADs from Caragana intermedia, an important nitrogen-fixing leguminous shrub. METHODS Two full-length cDNAs encoding GADs (designated as CiGAD1 and CiGAD2) were isolated and characterized. Multiple alignment and phylogenetic analyses were conducted to evaluate their structures and identities to each other and to homologs in other plants. Tissue expression analyses were conducted to evaluate their transcriptional responses to stress (NaCl, ZnSO4, CdCl2, high/low temperature, and dehydration) and exogenous abscisic acid. RESULTS The CiGADs contained the conserved PLP domain and calmodulin (CaM)-binding domain in the C-terminal region. The phylogenetic analysis showed that they were more closely related to the GADs of soybean, another legume, than to GADs of other model plants. According to Southern blotting analysis, CiGAD1 had one copy and CiGAD2-related genes were present as two copies in C. intermedia. In the tissue expression analyses, there were much higher transcript levels of CiGAD2 than CiGAD1 in bark, suggesting that CiGAD2 might play a role in secondary growth of woody plants. Several stress treatments (NaCl, ZnSO4, CdCl2, high/low temperature, and dehydration) significantly increased the transcript levels of both CiGADs, except for CiGAD2 under Cd stress. The CiGAD1 transcript levels strongly increased in response to Zn stress (74.3-fold increase in roots) and heat stress (218.1-fold increase in leaves). The transcript levels of both CiGADs significantly increased as GABA accumulated during a 24-h salt treatment. Abscisic acid was involved in regulating the expression of these two CiGADs under salt stress. DISCUSSION This study showed that two CiGADs cloned from C. intermedia are closely related to homologs in another legume, soybean. CiGAD2 expression was much higher than that of CiGAD1 in bark, indicating that CiGAD2 might participate in the process of secondary growth in woody plants. Multiple stresses, interestingly, showed that Zn and heat stresses had the strongest effects on CiGAD1 expression, suggesting that CiGAD1 plays important roles in the responses to Zn and heat stresses. Additionally, these two genes might be involved in ABA dependent pathway during stress. This result provides important information about the role of GADs in woody plants' responses to environmental stresses.
Collapse
Affiliation(s)
- Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Lingyu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China.,Chongqing University of Technology, Chongqing, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Xiamei Yao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Yuwen Huang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| |
Collapse
|
17
|
Hui Q, Yang R, Shen C, Zhou Y, Gu Z. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5564-73. [PMID: 27324823 DOI: 10.1021/acs.jafc.6b01598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.
Collapse
Affiliation(s)
- Qianru Hui
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Chang Shen
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Yulin Zhou
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|