1
|
Kula P, Barszczewska-Rybarek I, Mertas A, Chladek G. Effect of the Incorporation of an Innovative Monomer with a Quaternary Ammonium Group into a Temporary Soft Liner on Its Biological and Physicochemical Properties. Molecules 2025; 30:941. [PMID: 40005251 PMCID: PMC11857937 DOI: 10.3390/molecules30040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
The colonizing of temporary soft lining materials in the oral cavity by yeast-like fungi, particularly Candida albicans, poses a significant risk of complications during prosthetic treatment. Various experimental materials incorporating antimicrobial additives, such as drugs, natural oils, and inorganic particles, have been tested. However, these components are not chemically bonded to a polymer network, making them prone to being easily released into the surrounding environment. This study aimed to evaluate experimental soft lining materials containing liquid components with 2-(methacryloyloxy)ethyl-2-decylhydroxyethylmethylammonium bromide, a monomethacrylate monomer with a quaternary ammonium group, added at concentrations of 8.54%, 8.75%, and 14.90% by weight. The adherence of Candida albicans, cytotoxicity, glass transition temperature (Tg), sorption (WS), solubility (WSL), Shore A hardness (SHA), tensile strength (TS), and tensile bond strength (TBS) were tested. Two tested materials did not show cytotoxicity for the 2-day undiluted extracts. The Candida albicans adhesions were reduced for two materials. The SHA values compared to the control were varied but all decreased with time. WS and WSL increased compared to the control. The TBS values were at an acceptable level.
Collapse
Affiliation(s)
- Patrycja Kula
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland; (P.K.); (I.B.-R.)
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland; (P.K.); (I.B.-R.)
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland;
| | - Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Str., 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Chen H, Xu M, Zhang B, Yu S, Weir MD, Melo MAS, Masri RM, Tang Y, Xu HHK, Yang D. Novel strategy of S. mutans gcrR gene over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses biofilm acids and reduces dental caries in rats. Dent Mater 2024; 40:e41-e51. [PMID: 38942710 DOI: 10.1016/j.dental.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Mengmeng Xu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Bin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuang Yu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi M Masri
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Deqin Yang
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China.
| |
Collapse
|
3
|
Yu S, Xu M, Wang Z, Deng Y, Xu HHK, Weir MD, Homayounfar N, Fay GG, Chen H, Yang D. S. mutans Antisense vicK RNA Over-Expression Plus Antibacterial Dimethylaminohexadecyl Methacrylate Suppresses Oral Biofilms and Protects Enamel Hardness in Extracted Human Teeth. Pathogens 2024; 13:707. [PMID: 39204307 PMCID: PMC11356802 DOI: 10.3390/pathogens13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Streptococcus mutans (S. mutans) antisense vicK RNA (ASvicK) is a non-coding RNA that regulates cariogenic virulence and metabolic activity. Dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium methacrylate used in dental materials, has strong antibacterial activity. This study examined the effects of S. mutans ASvicK on DMAHDM susceptibility and their combined impact on inhibiting S. mutans biofilm formation and protecting enamel hardness. The parent S. mutans UA159 and ASvicK overexpressing S. mutans (ASvicK) were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations for planktonic bacteria (MBC-P) and biofilms (MBC-B) were measured. As the ASvicK MBC-B was 175 μg/mL, live/dead staining, metabolic activity (MTT), colony-forming units (CFUs), biofilm biomass, polysaccharide, and lactic acid production were investigated at 175 μg/mL and 87.5 μg/mL. The MIC, MBC-P, and MBC-B values for DMAHDM for the ASvicK strain were half those of the UA159 strain. In addition, combining S. mutans ASvicK with DMAHDM resulted in a significant 4-log CFU reduction (p < 0.05), with notable decreases in polysaccharide levels and lactic acid production. In the in vitro cariogenic model, the combination achieved the highest enamel hardness at 67.1% of sound enamel, while UA159 without DMAHDM had the lowest at 16.4% (p < 0.05). Thus, S. mutans ASvicK enhanced DMAHDM susceptibility, and their combination effectively inhibited biofilm formation and minimized enamel demineralization. The S. mutans ASvicK + DMAHDM combination shows great potential for anti-caries dental applications.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Zheng Wang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Yang Deng
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Guadalupe Garcia Fay
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| |
Collapse
|
4
|
Nowak J, Zalega M, Jakubowski W, Domarecka M, Sokołowski J, Bociong K. Enhancing the Antimicrobial Properties of Experimental Resin-Based Dental Composites through the Addition of Quaternary Ammonium Salts. J Funct Biomater 2024; 15:213. [PMID: 39194651 DOI: 10.3390/jfb15080213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Secondary caries is one of the main reasons for dental filling replacement. There is a need to obtain dental restorative material that is able to act against caries-inducing microorganisms. This study explores the antimicrobial properties of cetyltrimethylammonium bromide (CTAB) or dimethyldioctadecylammonium bromide (DODAB)-modified photo-cured experimental dental composites against Escherichia coli, Streptococcus mutans, and Candida albicans. The antimicrobial activity against Escherichia coli, Streptococcus mutans, and Candida albicans was assessed by using an Accuri C6 flow cytofluorimeter, and then analyzed using BD CSampler software (1.0.264). Bacterial/yeast surface colonization was carried out by using an GX71 inverted-optics fluorescence microscope equipped with a DP 73 digital camera. For bactericidal surface analysis of each sample type, simultaneous standardization was performed using a positive control (live cells) and a negative control (dead cells). A positive correlation between the increasing concentration of CTAB or DODAB and the dead cell ratio of Escherichia coli, Streptococcus mutans, and Candida albicans was revealed. In particular, CTAB at a 2.0 wt% concentration exhibits superior efficiency against pathogens (65.0% dead cells of Escherichia coli, 73.9% dead cells of Streptococcus mutans, and 23.9% dead cells of Candida albicans after 60 min). However, Candida albicans is more resistant to used salts than bacteria. A CTAB- or DODAB-modified experimental dental composite exhibits antimicrobial potential against Escherichia coli, Streptococcus mutans, and Candida albicans after 10 and 60 min of incubation, and the antimicrobial efficiency increases with the wt% of QAS in the tested material.
Collapse
Affiliation(s)
- Joanna Nowak
- University Laboratory of Materials Research, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Maja Zalega
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Witold Jakubowski
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Monika Domarecka
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Jerzy Sokołowski
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Kinga Bociong
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
5
|
Gao S, Deng J, Su Z, Liu M, Tang S, Hu T, Qi E, Fu C, Pan GY. Turning Polysaccharides into Injectable and Rapid Self-Healing Antibacterial Hydrogels for Antibacterial Treatment and Bacterial-Infected Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9082-9096. [PMID: 38619979 DOI: 10.1021/acs.langmuir.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Great efforts have been devoted to the development of novel and multifunctional wound dressing materials to meet the different needs of wound healing. Herein, we covalently grafted quaternary ammonium groups (QAGs) containing 12-carbon straight-chain alkanes to the dextran polymer skeleton. We then oxidized the resulting product into oxidized quaternized dextran (OQD). The obtained OQD polymer is rich in antibacterial QAGs and aldehyde groups. It can react with glycol chitosan (GC) via the Schiff-base reaction to form a multifunctional GC@OQD hydrogel with good self-healing behavior, hemostasis, injectability, inherent superior antibacterial activity, biocompatibility, and excellent promotion of healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. The biosafe and nontoxic GC@OQD hydrogel with a three-dimensional porous network structure possesses an excellent swelling rate and water retention capacity. It can be used for hemostasis and treating irregular wounds. The designed GC@OQD hydrogel with inherent antibacterial activity possesses good antibacterial efficacy on both S. aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria), as well as MRSA bacteria, with antibacterial activity greater than 99%. It can be used for the treatment of wounds infected by MRSA and significantly promotes the healing of wounds. Thus, the multifunctional antibacterial GC@OQD hydrogel has the potential to be applied in clinical practice as a wound dressing.
Collapse
Affiliation(s)
- Shiqi Gao
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Jianbin Deng
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Zhicheng Su
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Mengqi Liu
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Songyun Tang
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Tingting Hu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, P. R. China
| | - Enfeng Qi
- School of Mathematics and Statistics, Guangxi Normal University, Guilin 541000, P. R. China
| | - Can Fu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, P. R. China
- Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541100, P. R. China
| | - Guang-Yu Pan
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541100, China
| |
Collapse
|
6
|
Liang X, Yu B, Ye L, Lin D, Zhang W, Zhong HJ, He J. Recent Advances in Quaternary Ammonium Monomers for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:345. [PMID: 38255513 PMCID: PMC10820831 DOI: 10.3390/ma17020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Biao Yu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Liuqi Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Danlei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Wen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
He J, Lassila L, Garoushi S, Vallittu P. Tailoring the monomers to overcome the shortcomings of current dental resin composites - review. Biomater Investig Dent 2023; 10:2191621. [PMID: 37090482 PMCID: PMC10120559 DOI: 10.1080/26415275.2023.2191621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Dental resin composites (DRCs) have become the first choice among different restorative materials for direct anterior and posterior restorations in the clinic. Though the properties of DRCs have been improved greatly in recent years, they still have several shortcomings, such as volumetric shrinkage and shrinkage stress, biofilm development, lack of radio-opacity for some specific DRCs, and estrogenicity, which need to be overcome. The resin matrix, composed of different monomers, constitutes the continuous phase and determine the performance of DRCs. Thus, the chemical structure of the monomers plays an important role in modifying the properties of DRCs. Numerous researchers have taken to design and develop novel monomers with specific functions for the purpose of fulfilling the needs in dentistry. In this review, the development of monomers in DRCs were highlighted, especially focusing on strategies aimed at reducing volumetric shrinkage and shrinkage stress, endowing bacteriocidal and antibacterial adhesion activities as well as protein-repelling activity, increasing radio-opacity, and replacing Bis-GMA. The influences of these novel monomers on the properties of DRCs were also discussed.
Collapse
Affiliation(s)
- Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- CONTACT Jingwei He College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
9
|
Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. J Funct Biomater 2022; 13:jfb13040251. [PMID: 36412892 PMCID: PMC9680338 DOI: 10.3390/jfb13040251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
An oronasal fistula (ONF) is an abnormal structure between the oral and nasal cavities, which is a common complication of cleft palate repair due to the failure of wound healing. When some patients with ONF are unsuitable for secondary surgical repair, the obturator treatment becomes a potential method. The objectives of the obturator treatment should be summarized as filling the ONF comfortably and cosmetically restoring the dentition with partial function. The anatomy of patients with cleft palate is complex, which may lead to a more complex structure of the ONF. Thus, the manufacturing process of the obturator for these patients is more difficult. For performing the design and fabrication process rapidly and precisely, digital techniques can help, but limitations still exist. In this review, literature searches were conducted through Medline via PubMed, Wiley Online Library, Science Direct, and Web of Science, and 122 articles were selected. The purpose of this review was to introduce the development of the obturator for treating patients with ONF after cleft palate repair, from the initial achievement of the obstruction of the ONF to later problems such as fixation, velopharyngeal insufficiency, and infection, as well as the application of digital technologies in obturator manufacturing.
Collapse
|
10
|
He X, Ye L, He R, He J, Ouyang S, Zhang J. Antibacterial dental resin composites (DRCs) with synthesized bis-quaternary ammonium monomethacrylates as antibacterial agents. J Mech Behav Biomed Mater 2022; 135:105487. [PMID: 36179614 DOI: 10.1016/j.jmbbm.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Three bi-quaternary ammonium methacrylates (biQAMA-12, biQAMA-14, and biQAMA-16) with different alkyl chain length were synthesized with the purpose of endowing dental resin composites (DRCs) with antibacterial activity without sacrificing physicochemical properties of DRCs. All of biQAMAs were confirmed by 1H-NMR spectra and incorporated into Bis-GMA/TEGDMA (60 wt/40 wt) resin matrix with a mass fraction of 5 wt% as antibacterial agent. The obtained resin matrixes were mixed with commercial silaned glass fillers at a mass ratio of 30 wt/70 wt to prepare antibacterial DRCs. The double bond conversion (DC), antibacterial activity against S. mutans., surface charge density, water contact angle, water sorption (WS) and solubility (SL), mechanical properties, and cytotoxicity of biQAMAs containing DRCs were investigated. The DRC without biQAMAs was used as control. The results showed that all biQAMAs containing DRCs had antibacterial rate higher than 90%, and DRC with biQAMA-12 had the highest antibacterial rate due to its highest surface charge density. Adding 5 wt% of biQAMAs would not bring out negative effect on physicochemical properties of DRCs, except for increasing WS, but the resultant WS still met the ISO requirement on WS of restorative materials. Both biQAMA-14 and biQAMA-16 containing DRCs showed higher cytotoxicity than control, thus biQAMA-12 was considered as the optimal antibacterial agent in this research.
Collapse
Affiliation(s)
- Xiaoling He
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Linyan Ye
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Rouye He
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, China.
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China.
| |
Collapse
|
11
|
Sivaranjani M, McCarthy MC, Sniatynski MK, Wu L, Dillon JAR, Rubin JE, White AP. Biofilm Formation and Antimicrobial Susceptibility of E. coli Associated With Colibacillosis Outbreaks in Broiler Chickens From Saskatchewan. Front Microbiol 2022; 13:841516. [PMID: 35783405 PMCID: PMC9247541 DOI: 10.3389/fmicb.2022.841516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The global poultry industry has grown to the extent that the number of chickens now well exceeds the number of humans on Earth. Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. We obtained 94 E. coli isolates from 12 colibacillosis outbreaks on Saskatchewan farms and screened them for antimicrobial resistance and biofilm formation. Fifty-six isolates were from broilers with confirmed colibacillosis, and 38 isolates were from healthy broilers in the same flocks (cecal E. coli). Resistance to penicillins, tetracyclines, and aminoglycosides was common in isolates from all 12 outbreaks, while cephalosporin resistance varied by outbreak. Most E. coli were able to form biofilms in at least one of three growth media (1/2 TSB, M63, and BHI broth). There was an overall trend that disease-causing E. coli had more antibiotic resistance and were more likely to form biofilms in nutrient-rich media (BHI) as compared to cecal strains. However, on an individual strain basis, there was no correlation between antimicrobial resistance and biofilm formation. The 21 strongest biofilm forming strains consisted of both disease-causing and cecal isolates that were either drug resistant or susceptible. Draft whole genome sequencing indicated that many known antimicrobial resistance genes were present on plasmids, with disease-causing E. coli having more plasmids on average than their cecal counterparts. We tested four common disinfectants for their ability to kill 12 of the best biofilm forming strains. All disinfectants killed single cells effectively, but biofilm cells were more resistant, although the difference was less pronounced for the disinfectants that have multiple modes of action. Our results indicate that there is significant diversity and complexity in E. coli poultry isolates, with different lifestyle pressures affecting disease-causing and cecal isolates.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Madeline C. McCarthy
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle K. Sniatynski
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linzhi Wu
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Aaron P. White,
| |
Collapse
|
12
|
Wang S, Cong Z, Xu Z, Ban S, Song H. Fluorescent dyes with multiple quaternary ammonium centers for specific image discrimination and Gram-positive antibacterial activity. Org Biomol Chem 2022; 20:3980-3987. [PMID: 35502882 DOI: 10.1039/d2ob00399f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three quaternary ammonium compounds (QACs), TPQA, T2PQA, and T3PQA, were synthesized and employed in antimicrobial tests against E. coli and S. aureus. It was confirmed that they exhibit selective bacteriostasis against S. aureus. The antibacterial activities of the compounds were evaluated via determining their minimum inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) against S. aureus using the 2,3,5-triphenyltetrazolium chloride (TTC) coloration method. Notably, T2PQA exhibited far better properties than TPQA and T3PQA, with the activity found to be dependent on the structure of the QA and the exposed hydrophobic groups. All three compounds showed promising potential for killing Gram-positive bacteria, efficiently guided by fluorescence imaging.
Collapse
Affiliation(s)
- Siqi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| | - Zisong Cong
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| | - Zhiqin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| |
Collapse
|
13
|
Fu W, Liu Q, Wang L, Huang X, Su Z, Huang Z, He J. Synthesis of polymerizable quaternary thiazole salts and their application as antibacterial agents for dental resin. J Mech Behav Biomed Mater 2022; 130:105183. [DOI: 10.1016/j.jmbbm.2022.105183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/24/2022]
|
14
|
Jann J, Drevelle O, Chen XG, Auclair-Gilbert M, Soucy G, Faucheux N, Fortier LC. Rapid antibacterial activity of anodized aluminum-based materials impregnated with quaternary ammonium compounds for high-touch surfaces to limit transmission of pathogenic bacteria. RSC Adv 2021; 11:38172-38188. [PMID: 35498065 PMCID: PMC9044312 DOI: 10.1039/d1ra07159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 μm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.
Collapse
Affiliation(s)
- Jessica Jann
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada.,Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| | - Olivier Drevelle
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - X Grant Chen
- Department of Applied Science, University of Quebec in Chicoutimi Saguenay Quebec G7H 2B1 Canada
| | | | - Gervais Soucy
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| |
Collapse
|
15
|
Asif I, Gilani SR, Shahzadi P. Contrived approach to novel antibacterial poly(vinyl acetate-co-[2-(methacryloyloxy)ethyl]trimethylammonium chloride) and poly(vinyl acetate-co-[vinylbenzyl]trimethylammonium chloride) via RAFT polymerization with multi-characterization. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
17
|
Li H, Chen X, Lu W, Wang J, Xu Y, Guo Y. Application of Electrospinning in Antibacterial Field. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1822. [PMID: 34361208 PMCID: PMC8308247 DOI: 10.3390/nano11071822] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
In recent years, electrospun nanofibers have attracted extensive attention due to their large specific surface area, high porosity, and controllable shape. Among the many applications of electrospinning, electrospun nanofibers used in fields such as tissue engineering, food packaging, and air purification often require some antibacterial properties. This paper expounds the development potential of electrospinning in the antibacterial field from four aspects: fiber morphology, antibacterial materials, antibacterial mechanism, and application fields. The effects of fiber morphology and antibacterial materials on the antibacterial activity and characteristics are first presented, then followed by a discussion of the antibacterial mechanisms and influencing factors of these materials. Typical application examples of antibacterial nanofibers are presented, which show the good prospects of electrospinning in the antibacterial field.
Collapse
Affiliation(s)
- Honghai Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (X.C.)
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (X.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (X.C.)
| | - Jie Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yisheng Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanchuan Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Bhadila G, Menon D, Wang X, Vila T, Melo MAS, Montaner S, Arola DD, Weir MD, Sun J, Hockin H K, Xu. Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:886-905. [PMID: 33482702 DOI: 10.1080/09205063.2021.1878805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A low-shrinkage-stress (LSS), antibacterial and remineralizing nanocomposite was recently developed; however, validation of its long-term antibacterial potency in modulating human salivary-derived biofilm is an unmet need. This study aimed to evaluate the antibacterial effect of the bioactive LSS composite before and after aging in acidic solution for 90 days using a multi-species biofilm model, and to evaluate its cytotoxicity. The LSS composite consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), 3% dimethylaminohexadecyl methacrylate (DMAHDM) and 20% nanoparticles of amorphous calcium phosphate (NACP). Biofilm colony-forming units (CFU), lactic acid production, and confocal laser scanning microscopy (3D biofilm) were evaluated before and after three months of aging. Cytotoxicity was assessed against human gingival fibroblasts (HGF). The new LSS composite presented the lowest biofilm CFU, lactic acid and biofilm biomass, compared to controls (n = 6, p < 0.05). Importantly, the new composite exhibited no significant difference in antibacterial performance before and after 90-day-aging, demonstrating long-term antibacterial activity (p > 0.1). The LSS antibacterial and remineralizing composite presented a low cell viability at original extract that has increased with further dilutions. In conclusion, this study spotlighted that the new bioactive composite not only had a low shrinkage stress, but also down-regulated the growth of oral biofilms, reduced acid production, maintained antibacterial activity after the 90-day-aging, and did not compromise the cytocompatibility.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD, USA
| | - Taissa Vila
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dwayne D Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD, USA
| | | | - Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv Colloid Interface Sci 2020; 285:102280. [PMID: 33010575 DOI: 10.1016/j.cis.2020.102280] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.
Collapse
|
20
|
Application of Antimicrobial Polymers in the Development of Dental Resin Composite. Molecules 2020; 25:molecules25204738. [PMID: 33076515 PMCID: PMC7587579 DOI: 10.3390/molecules25204738] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental resin composites have been widely used in a variety of direct and indirect dental restorations due to their aesthetic properties compared to amalgams and similar metals. Despite the fact that dental resin composites can contribute similar mechanical properties, they are more likely to have microbial accumulations leading to secondary caries. Therefore, the effective and long-lasting antimicrobial properties of dental resin composites are of great significance to their clinical applications. The approaches of ascribing antimicrobial properties to the resin composites may be divided into two types: The filler-type and the resin-type. In this review, the resin-type approaches were highlighted. Focusing on the antimicrobial polymers used in dental resin composites, their chemical structures, mechanical properties, antimicrobial effectiveness, releasing profile, and biocompatibility were included, and challenges, as well as future perspectives, were also discussed.
Collapse
|
21
|
An S, Evans JL, Hamlet S, Love RM. Incorporation of antimicrobial agents in denture base resin: A systematic review. J Prosthet Dent 2020; 126:188-195. [PMID: 32800329 DOI: 10.1016/j.prosdent.2020.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
STATEMENT OF PROBLEM Denture base resins (DBRs), such as polymethyl methacrylate, are commonly used in the fabrication of removable dentures because of their physical, mechanical, and esthetic properties. However, the denture base acts as a substrate for microorganism adherence and biofilm formation, which may lead to denture stomatitis and be further complicated by fungal infections, of especial importance with geriatric and immunosuppressed patients. Therefore, methods to enhance the antimicrobial property of DBRs will be beneficial. PURPOSE The purpose of this systematic review was to evaluate the literature on the antimicrobial activity of DBRs incorporating antimicrobial agents or materials. MATERIAL AND METHODS A search of English peer-reviewed literature up to February 2019 reporting on antimicrobial activity of DBRs with respect to antimicrobial agents or materials, antimicrobial test effects and methods, and conclusion or knowledge gaps was conducted by using Embase, Google Scholar, PubMed, and Web of Science databases. Search terms included denture base resin and antibacterial, denture base resin and antifungal, and denture base resin and antimicrobial. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were applied for subsequent data analysis. RESULTS Of 2536 identified articles, 28 met the inclusion criteria for the systematic review. Antimicrobial materials were divided into 3 groups: antimicrobial monomer or copolymer, phytochemical or phytomedical components, and other compounds. Strategies on how to incorporate these substances into DBRs and their impact on the reduction and prevention of the growth of microorganisms were identified. CONCLUSIONS Although many efforts have been made to improve the antimicrobial ability of DBRs, this systematic review found that the effectiveness of incorporating of antimicrobial agents into DBRs has not been demonstrated conclusively.
Collapse
Affiliation(s)
- Steve An
- Lecturer, School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia.
| | - Jane L Evans
- Associate Professor, School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen Hamlet
- Senior Research Fellow, School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Robert M Love
- Professor, School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
22
|
Dressano D, Salvador MV, Oliveira MT, Marchi GM, Fronza BM, Hadis M, Palin WM, Lima AF. Chemistry of novel and contemporary resin-based dental adhesives. J Mech Behav Biomed Mater 2020; 110:103875. [PMID: 32957185 DOI: 10.1016/j.jmbbm.2020.103875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
The chemistry of resin-based dental adhesives is critical for its interaction with dental tissues and long-term bonding stability. Changes in dental adhesives composition influences the materials' key physical-chemical properties, such as rate and degree of conversion, water sorption, solubility, flexural strength and modulus, and cohesive strength and improves the biocompatibility to dental tissues. Maintaining a suitable reactivity between photoinitiators and monomers is important for optimal properties of adhesive systems, in order to enable adequate polymerisation and improved chemical, physical and biological properties. The aim of this article is to review the current state-of-the-art of dental adhesives, and their chemical composition and characteristics that influences the polymerisation reaction and subsequent materials properties and performance.
Collapse
Affiliation(s)
- Diogo Dressano
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av Limeira, 901 Mail Box 52, Piracicaba, Sao Paulo, 13414-903, Brazil.
| | - Marcos V Salvador
- Dental Research Division, Paulista University, Sao Paulo, Rua Doutor Bacelar, 1212, CEP: 04026-002, Brazil.
| | | | - Giselle Maria Marchi
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av Limeira, 901 Mail Box 52, Piracicaba, Sao Paulo, 13414-903, Brazil.
| | - Bruna M Fronza
- Department of Biomaterials and Oral Biology, University of São Paulo, 2227 Prof. Lineu Prestes Ave, 05508-000, São Paulo, SP, Brazil.
| | - Mohammed Hadis
- Dental Materials Science, Birmingham Dental School and Hospital, College of Medical and Dental Science, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - William M Palin
- Dental Materials Science, Birmingham Dental School and Hospital, College of Medical and Dental Science, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - Adriano Fonseca Lima
- Dental Research Division, Paulista University, Sao Paulo, Rua Doutor Bacelar, 1212, CEP: 04026-002, Brazil.
| |
Collapse
|
23
|
Koufakis E, Manouras T, Anastasiadis SH, Vamvakaki M. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3482-3493. [PMID: 32168453 DOI: 10.1021/acs.langmuir.9b03266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes bearing quaternary ammonium groups of different alkyl chain lengths (ACLs) were prepared and assessed as biocidal coatings. For the synthesis of the antimicrobial brushes, first well-defined PDMAEMA chains were grown by surface-initiated atom transfer radical polymerization on glass and silicon substrates. Next, the tertiary amine groups of the polymer brushes were modified via a quaternization reaction, using alkyl halides, to obtain the cationic polymers. The polymer films were characterized by Fourier-transform infrared spectroscopy, ellipsometry, atomic force microscopy, and water contact angle measurements. The effect of the ACL of the quaternary ammonium groups on the physicochemical properties of the films as well as the contact killing efficiency of the surfaces against representative Gram-positive and Gram-negative bacteria was investigated. A hydrophilic to hydrophobic transition of the surfaces and a significant decrease of the degree of quaternization of the DMAEMA moieties was found upon increasing the ACL of the quaternization agent above six carbon atoms, allowing the wettability, the thickness, and the pH-response of the brushes to be tuned via a facile postpolymerization, quaternization reaction. At the same time, antimicrobial tests revealed that the hydrophilic polymer brushes exhibited enhanced bactericidal activity against Escherichia coli and Bacillus cereus, whereas the hydrophobic surfaces showed a significant deterioration of the in vitro bactericidal performance. Our results elucidate the antimicrobial action of quaternized polymer brushes, dictating the appropriate choice of the ACL of the quaternization agent for the development of coatings that effectively inhibit biofilm formation on surfaces.
Collapse
Affiliation(s)
- Eleftherios Koufakis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Theodore Manouras
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
| | - Spiros H Anastasiadis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| |
Collapse
|
24
|
Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HH. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 2020; 93:103278. [DOI: 10.1016/j.jdent.2020.103278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
|
25
|
Li S, Yu X, Liu F, Deng F, He J. Synthesis of antibacterial dimethacrylate derived from niacin and its application in preparing antibacterial dental resin system. J Mech Behav Biomed Mater 2019; 102:103521. [PMID: 31877526 DOI: 10.1016/j.jmbbm.2019.103521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
In this research, a bio-based monomer 1,3-bis(methacryloyloxy)propyl-carbonyl- hexylpyridinium bromide (QANMA) that derived from niacin was synthesized and incorporated into Bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (50 wt/50 wt) with a series of mass fraction as antibacterial agent. The double bond conversion (DC), volumetric shrinkage (VS), mechanical properties, water sorption (WS) and solubility (SL) were investigated among groups with different QANMA concentrations. Antibacterial activity against S. mutans were conducted by bacteria colony counting and bacteria LIVE/DEAD staining. The results showed that QANMA had no influence on DC of dental resin (p > 0.05), but would lead to lower volumetric shrinkage (p < 0.05). Only dental resin with 10 wt% and 20 wt% of QANMA showed obviously antibacterial activity. Mechanical properties, WS and SL of dental resin could be impaired by incorporation QANMA, flexural strength and modulus were decreased with the increasing of QANMA concentration (p < 0.05), while WS and SL were increased with the increasing of QANMA concentration (p < 0.05). Dental resin with 10 wt% of QANMA seemed to be the optimal resin system in this research, for it showed significant antibacterial activity and its flexural strength was still met the requirement of ISO standard. This work suggested that bio-based monomer QANMA could be used as antibacterial agent in dental materials, but further optimization experiment and biocompatibility evaluation should be taken in future.
Collapse
Affiliation(s)
- Shuang Li
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Xiaolin Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
26
|
Wang Y, Yin M, Lin X, Li L, Li Z, Ren X, Sun Y. Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications. J Colloid Interface Sci 2018; 533:604-611. [PMID: 30193147 DOI: 10.1016/j.jcis.2018.08.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023]
Abstract
Antimicrobial mesoporous materials with polymer brushes on the surface were prepared, and their structure and antimicrobial performance investigated. Poly ((3-acrylamidopropyl) trimethylammonium chloride) (PAPTMAC) modified mesoporous silica was prepared by a polymer-brush-grafted method through treatment with the initiator 4,4'-azobis (4-cyanovaleric acid) (ACVA) and polymerized with (3-acrylamidopropyl) trimethylammonium chloride (APTMAC). A covalent bond was formed between mesoporous silica and N-halamine precursor; N-H bonds were successfully transformed to N-Cl bonds after chlorination. Morphology and structure of mesoporous silica were affected to some extent after modification. The surface area of the polymerized sample decreased, but was sufficient for further applications. Compare to the original sample, antimicrobial properties of the polymerized samples with quaternary ammonium groups (QAS) increased slightly. After exposure to dilute household bleach, the chlorinated samples showed excellent antimicrobial properties against 100% of S. aureus (ATCC 6538) (7.63 log) and E. coli O157:H7 (ATCC 43895) (7.52 log) within 10 min. The prepared mesoporous silicas with effective antimicrobial properties could be very useful for potential application in water filtration.
Collapse
Affiliation(s)
- Yingfeng Wang
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maoli Yin
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinghua Lin
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lin Li
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiguang Li
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yuyu Sun
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
27
|
Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dent Mater 2018; 34:851-867. [PMID: 29678327 DOI: 10.1016/j.dental.2018.03.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Quaternary ammonium compounds (QACs) represent one of the most effective classes of disinfectant agents in dental materials and resin nanocomposites. This reviews aims to give a wide overview on the research in the field of antibacterial QACs in dental materials and nanocomposites. METHOD An introduction to dental materials components as well as the microorganisms and methods of evaluation for the antimicrobial assays are presented. Then, the properties and synthesis route of QACs, as monomer and filler, are shown. Finally, antimicrobial monomers and fillers, specifically those contain quaternary ammonium salts (QASs), in dental materials are reviewed. RESULTS QACs have been used as monomer and micro/nanofiller in restorative dentistry. They possess one or more methacrylate functional groups to participate in polymerization reactions. QACs with multiple methacrylate groups can also be used as crosslinking agents. Furthermore, QACs with chain length from ∼12 to 16 have higher antimicrobial activity in cured dental resins. In general, increasing the chain length leads to a threshold value (critical point) and then it causes decrease in the antimicrobial activity. SIGNIFICANCE The current state of the art of dental materials and resin nanocomposites includes a wide variety of antimicrobial materials. Among them, QACs presents low cytotoxicity and excellent long-term antimicrobial activity without leaching out over time.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), Napels, Italy
| | - Mostafa Jabbari
- Swedish Centre for Resource Recovery, University of Borås, Borås SE-50190, Sweden
| | | | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
28
|
ZHANG Y, CHEN Y, HU Y, HUANG F, XIAO Y. Quaternary ammonium compounds in dental restorative materials. Dent Mater J 2018; 37:183-191. [DOI: 10.4012/dmj.2017-096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yu ZHANG
- The Affiliated Stomatological Hospital of Kunming Medical University
| | - Yinyan CHEN
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
- Kunming Municipal Stomatological Hospital
| | - Yuntong HU
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
| | - Fang HUANG
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
| | - Yuhong XIAO
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
- Center for Dental Research, School of Dentistry, Loma Linda University
| |
Collapse
|
29
|
Jiang YL, Qiu W, Zhou XD, Li H, Lu JZ, Xu HH, Peng X, Li MY, Feng MY, Cheng L, Ren B. Quaternary ammonium-induced multidrug tolerant Streptococcus mutans persisters elevate cariogenic virulence in vitro. Int J Oral Sci 2017; 9:e7. [PMID: 32987970 PMCID: PMC5750454 DOI: 10.1038/ijos.2017.46] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2017] [Indexed: 02/05/2023] Open
Abstract
Dental caries are the most prevalent chronic infections in the oral cavity, and Streptococcus mutans acts as the main cariogenic bacterial species. Antibacterial quaternary ammonium compounds (QAs) have been developed to preveFnt or treat dental caries. However, there is no report on the tolerance of S. mutans to QAs. In this study, we investigated the development of S. mutans persistence induced by a novel dental caries defensive agent, dimethylaminododecyl methacrylate (DMADDM), for the first time. Typical biphasic killing kinetics for persisters were observed in both S. mutans planktonic and biofilm cultures challenged by DMADDM at concentrations of 20 and 200 μg·mL-1, respectively. The persisters tolerated six other antibiotics with different antibacterial mechanisms, while only daptomycin and vancomycin could slightly reduce the persister numbers in planktonic cultures. The distribution of persisters in DMADDM-treated biofilms was similar to that in the untreated control, except that the total biomass and biofilm height were significantly reduced. A higher exopolysaccharides (EPS):bacteria ratio was observed in DMADDM-treated biofilms. Persisters in biofilms significantly upregulated gtf gene expression, indicating an increase in the bacteria's ability to produce EPS and an elevated capability of cariogenic virulence. Carbon source metabolism was significantly reduced, as related metabolic genes were all downregulated in persisters. Concentrations of 0.1 mM, 1 mM and 10 mM of extra glucose significantly reduced the number of persisters both in planktonic and biofilm conditions. The formation of non-inheritable and multidrug tolerant persisters induced by DMADDM suggested that drug tolerance and new persistent eradication strategies should be considered for oral antibacterial agents.
Collapse
Affiliation(s)
- Ya-Ling Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Wei Qiu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Hao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Jun-Zhuo Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Hockin Hk Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Ming-Yun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Ming-Ye Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Chengdu, China.
| |
Collapse
|
30
|
Mirizadeh A, Atai M, Ebrahimi S. Fabrication of denture base materials with antimicrobial properties. J Prosthet Dent 2017; 119:292-298. [PMID: 28552288 DOI: 10.1016/j.prosdent.2017.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023]
Abstract
STATEMENT OF PROBLEM Acrylic resin denture base resins are colonized by oral and nonoral bacteria and Candida species. This reservoir of microorganism causes denture stomatitis, which can be implicated in some life-threating infections in older denture wearers. PURPOSE The purpose of this in vitro study was to incorporate quaternized N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer into a denture base resin and investigate its antimicrobial and mechanical properties. MATERIAL AND METHODS Quaternized ammonium monomer (QAM) was synthesized through the reaction of octyl bromide and DMAEMA. The synthesized QAM was incorporated into a denture base resin system (8 to 12 wt%). The resulting material was characterized by Fourier transform infrared spectroscopy. The in vitro antimicrobial property was determined by direct contact test against Escherichia coli, Staphylococcus aureus, and Candida albicans. Release of the QAM was also tested by means of an agar diffusion test. Mechanical properties were measured with a 3-point bend test, and results were analyzed and compared using ANOVA and the Tukey post hoc test (α=.05). RESULTS Spectroscopy confirmed the formation of quaternized ammonium modified denture base (QAMDB). The decrease in number of viable cells of E coli, S aureus, and C albicans was more than 99% for 12%-QAMDB in comparison with that of the control groups. An overall decline was observed in the flexural strength and flexural modulus of the fabricated resins (P<.05), but no differences were observed for strain at break or fracture work of the specimens (P>.05). CONCLUSIONS Denture base resins containing immobilized QAM provided high antibacterial activity, but the flexural strength and flexural modulus of the denture base resins decreased.
Collapse
Affiliation(s)
- Aysan Mirizadeh
- Doctoral student, Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Atai
- Full Professor, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Sirous Ebrahimi
- Associate Professor, Faculty of Chemical Engineering, Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
31
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
32
|
Zhao L, Zhang H, Wang W, Wang G. Effects of sodium salicylate on didecyldimethylammonium formate properties and aggregation behaviors. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Melinte V, Buruiana T, Chibac A, Mares M, Aldea H, Buruiana EC. New acid BisGMA analogs for dental adhesive applications with antimicrobial activity. Dent Mater 2016; 32:e314-e326. [PMID: 27671467 DOI: 10.1016/j.dental.2016.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/08/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To achieve bisphenol A glycerolate dimethacrylate (BisGMA) analogs with reduced viscosity to be used in the formulation of dental adhesives containing biocidal components. METHODS A series of low-viscosity BisGMA derivatives (η: 39-12Pas) modified with 30, 60 and, respectively 80mol% carboxylic acid units were synthesized and characterized. Hydrogen bonding interactions in our monomers, the photopolymerization behavior and implicitly the conversion degree (DC) for some experimental adhesive formulations containing acid-modified BisGMA, commercial BisGMA (only in F1-F3), triethyleneglycol dimethacrylate and 2-hydroxyethyl methacrylate were examined by FTIR spectroscopy. The water effects on the photocrosslinked networks together with the flexural strength/modulus were also investigated. The adhesive penetration into the dentin surface was surveyed by SEM analysis, and the antimicrobial activity triggered by the incorporation of 0.5wt% AgNO3, 10wt% zinc methacrylate or 1wt% triclosan methacrylate in selected adhesive formulations on the growth of Streptococcus mutans and Candida albicans strains was evidenced. RESULTS The contribution of the hydrogen bonding interactions was found to be lower in BisGMA derivatives than in non-modified BisGMA, and the DC varied between 56.5 (F6) and 83.7% (F1) compared with a control formulation based on BisGMA:TEGDMA (DC=58.2%). The flexural strength and flexural modulus varied in the range 33.7MPa (F6)-54.4MPa (F8)MPa and 0.64 (F6)-1.43 (F8)GPa, respectively. SEM observation of adhesive-dentin interface revealed the formation of resin tags for the carboxyl-containing adhesive, while for the control adhesive they are hardly formed. Also, the microorganism development was inhibited, the proposed materials displaying antimicrobial activity. SIGNIFICANCE The experimental formulations based on carboxyl-functionalized BisGMA exhibit a similar or even improved behavior over control sample, suggesting their potential applicability as antimicrobial dental adhesives.
Collapse
Affiliation(s)
- Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Tinca Buruiana
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Andreea Chibac
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, "Ion Ionescu de la Brad" University, 8 Sadoveanu Alley, 700489 Iasi, Romania
| | - Horia Aldea
- Dental Office, 17 T. Vladimirescu Street, Iasi, Romania
| | - Emil C Buruiana
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
34
|
Chen X, Hu B, Xiang Q, Yong C, Liu Z, Xing X. Magnetic nanoparticles modified with quaternarized N-halamine based polymer and their antibacterial properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1187-99. [DOI: 10.1080/09205063.2016.1188471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiaoqin Chen
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Bojian Hu
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qian Xiang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chunyan Yong
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zuliang Liu
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaodong Xing
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
35
|
Physical and chemical properties of an antimicrobial Bis-GMA free dental resin with quaternary ammonium dimethacrylate monomer. J Mech Behav Biomed Mater 2016; 56:68-76. [DOI: 10.1016/j.jmbbm.2015.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/26/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022]
|
36
|
Cocco AR, de Oliveira da Rosa WL, da Silva AF, Lund RG, Piva E. A systematic review about antibacterial monomers used in dental adhesive systems: Current status and further prospects. Dent Mater 2015; 31:1345-62. [DOI: 10.1016/j.dental.2015.08.155] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
|
37
|
Luo W, Huang Q, Liu F, Lin Z, He J. Synthesis of antibacterial methacrylate monomer derived from thiazole and its application in dental resin. J Mech Behav Biomed Mater 2015; 49:61-8. [PMID: 25988792 DOI: 10.1016/j.jmbbm.2015.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
Abstract
A non-quaternary ammonium antibacterial methacrylate monomer MEMT derived from thiazole was synthesized and applied into UDMA/TEGDMA dental resin with a series of mass fraction (10 wt%, 20 wt%, and 30 wt%). Double bond conversion, polymerization shrinkage, water sorption, solubility, flexural strength and modulus, and antibacterial activity of MEMT containing resin formulations were investigated with UDMA/TEGDMA as control resin. The results showed that MEMT containing dental resin had higher double bond conversion than control resin. Compared with control polymer, all MEMT containing polymer had comparable or lower polymerization shrinkage, water sorption and solubility, except for the polymer with 30 wt% of MEMT which had higher water sorption and solubility than control polymer. The MEMT had no influence on flexural strength and modulus before water immersion, but all MEMT containing polymers had lower flexural strength and modulus than control polymer after water immersion. The MEMT could endow dental polymer with obvious antibacterial activity by immobilizing MEMT into the polymeric network.
Collapse
Affiliation(s)
- Weixun Luo
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qiting Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhengmei Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
38
|
Hamanaka I, Iwamoto M, Lassila LV, Vallittu PK, Shimizu H, Takahashi Y. The effect of cycling deflection on the injection-molded thermoplastic denture base resins. Acta Odontol Scand 2015; 74:67-72. [PMID: 25953322 DOI: 10.3109/00016357.2015.1042039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins. MATERIALS AND METHODS Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured. RESULTS Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials. CONCLUSION It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.
Collapse
Affiliation(s)
- Ippei Hamanaka
- a 1 Division of Removable Prosthodontics, Fukuoka Dental College , Fukuoka, Japan
- b 2 Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku , Turku, Finland
| | - Misa Iwamoto
- a 1 Division of Removable Prosthodontics, Fukuoka Dental College , Fukuoka, Japan
- b 2 Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku , Turku, Finland
| | - Lippo Vj Lassila
- b 2 Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku , Turku, Finland
| | - Pekka K Vallittu
- b 2 Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku , Turku, Finland
- c 3 City of Turku, Division for Welfare , Turku, Finland
| | - Hiroshi Shimizu
- d 4 Division of Biomaterials, Kyushu Dental University , Fukuoka, Japan
| | - Yutaka Takahashi
- a 1 Division of Removable Prosthodontics, Fukuoka Dental College , Fukuoka, Japan
| |
Collapse
|
39
|
Farrugia C, Camilleri J. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements—A literature review. Dent Mater 2015; 31:e89-99. [DOI: 10.1016/j.dental.2014.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 07/24/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023]
|
40
|
He J, Söderling E, Lassila LVJ, Vallittu PK. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dent Mater 2015; 31:575-82. [PMID: 25743040 DOI: 10.1016/j.dental.2015.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A new polymerizable quaternary ammonium monomer (IPhene) with iodine anion was synthesized and incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) to prepare antibacterial and radio-opaque dental resin. METHODS IPhene was synthesized through a 2-steps reaction route, and its structure was confirmed by FT-IR and (1)H-NMR spectra. IPhene was incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) with a series of mass fraction (from 10 wt.% to 40 wt.%). Degree of monomer conversion (DC) was determined by FT-IR analysis. Polymerization shrinkage was determined according to the variation of density before and after polymerization. The flexural strength, modulus of elasticity, and fracture energy were measured using a three-point bending set up. Radiograph was taken to evaluate the radio-opacity of the polymer. A single-species biofilm model with Streptococcus mutans (S. mutans) as the tests organism was used to evaluate the antibacterial activity of the polymer. Bis-GMA/TEGDMA resin system without IPhene was used as a control group. RESULTS FT-IR and (1)H-NMR spectra of IPhene revealed that IPhene was the same as the designed structure. ANOVA analysis showed that when mass fraction of IPhene was more than 10 wt.%, the obtained resin formulation had lower DC, polymerization shrinkage, FS, and FM than control resin (p<0.05). Polymers with 20 wt.% and 30 wt.% IPhene had higher fracture energies than control polymer (p<0.05). IPhene containing samples had higher radio-opacity than control group (p<0.05), and radio-opacity of IPhene containing sample increased with the increasing of IPhene mass fraction (p<0.05). Only polymers with 30 wt.% and 40 wt.% of IPhene showed antibacterial activity (p<0.05). SIGNIFICANCE IPhene could endow dental resin with both antibacterial and radio-opaque activity when IPhene reached 30 wt.% or more. Though sample with 30 wt.% of IPhene had lower FS and FM than control group, its lower volumetric shrinkage, higher fracture energy, higher radio-opacity, and antibacterial activity still made it having potential to be used in dentistry.
Collapse
Affiliation(s)
- Jingwei He
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Lemminkäisenkatu 2, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Itäinen Pitkäkatu 4 B, Turku FI-20520, Finland; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Lippo V J Lassila
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Lemminkäisenkatu 2, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Itäinen Pitkäkatu 4 B, Turku FI-20520, Finland; Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Lemminkäisenkatu 2, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Itäinen Pitkäkatu 4 B, Turku FI-20520, Finland; Institute of Dentistry, University of Turku, Turku 20520, Finland; City of Turku Welfare Division, Oral Health Care, Turku 20101, Finland
| |
Collapse
|
41
|
Beigi Burujeny S, Atai M, Yeganeh H. Assessments of antibacterial and physico-mechanical properties for dental materials with chemically anchored quaternary ammonium moieties: thiol-ene-methacrylate vs. conventional methacrylate system. Dent Mater 2015; 31:244-61. [PMID: 25605414 DOI: 10.1016/j.dental.2014.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/09/2014] [Accepted: 12/16/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Fabrication of low shrinkage stress and strain dental resins containing highly available immobilized bactericidal moieties has been reported. The goal of this study is producing dental restorative materials with long-last antibacterial activity and reduced secondary caries. It is anticipated that antibacterial properties of quaternary ammonium moieties chemically immobilized in the backbone of dental resins is directly depended on accessibility of these functions. In the present study the antibacterial effect of a series of antibacterial monomers polymerized in a ternary thiol-ene-methacrylate system were compared with corresponding classical methacrylate system against Streptococcus mutans (an oral bacteria Strain). Physical and mechanical properties of dental materials obtained from these two systems were also evaluated and compared. METHODS The viscosities of the resin matrixes were measured on a MCR 300 rheometer. Degree of conversion (DC%) of monomers was measured using FTIR spectroscopy. The shrinkage-strain of photocured resins was measured using the bonded-disk technique. A universal testing machine combined with a stress measurement device was utilized to measure the polymerization-induced shrinkage stress. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). Assessment of antibacterial properties was performed through agar diffusion test (AD) to confirm non-release behavior of chemically anchored moieties. Quantitative assay of antibacterial activity was evaluated through direct contact test (DCT) against S. mutans. Direct contact cytotoxicity assay with fibroblast cell line L-929 was also performed to find more insight regarding cytotoxicity of the antibacterial matrixes. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). RESULTS Neat methacrylate systems had significantly higher viscosity than thiol-ene-methacrylate analogous. The degree of conversion of methacrylate moieties in thiol-ene-methacrylate system was improved in comparison to conventional methacrylate system. Shrinkage stress and strain of thiol-ene-methacrylate system was lower than the neat methacrylate system. The thiol-ene-methacrylate systems show increased homogeneity and decreased glass transition temperature (Tg) and crosslink density (νc) in comparison to the neat methacrylate-based resins. The incorporated monofuctional quaternized monomer reduces degree of conversion, shrinkage stress and crosslink density of matrix. The results showed significant improvement in antibacterial activity and cytocompatibility of dental materials obtained from thiol-ene polymerization system. SIGNIFICANCE It was shown that with proper control of monomers molar ratio, significant improvement in antibacterial activity and cytocompatibility as well as acceptable mechanical properties can be attained for dental resins prepared through the application of thiol-ene polymerization methodology.
Collapse
Affiliation(s)
- Saeed Beigi Burujeny
- Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran 1497713115, Iran
| | - Mohammad Atai
- Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran 1497713115, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran 1497713115, Iran.
| |
Collapse
|
42
|
Qiu T, Zhang L, Xing XD. Synthesis and antibacterial activities of novel polymerizable Gemini quaternary ammonium monomers. Des Monomers Polym 2014. [DOI: 10.1080/15685551.2014.918010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ting Qiu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lu Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiao-Dong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
43
|
Liang X, Söderling E, Liu F, He J, Lassila LVJ, Vallittu PK. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1387-1393. [PMID: 24449028 DOI: 10.1007/s10856-014-5156-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
Four novel quaternary ammonium dimethacrylate monomers named IMQ (side alkyl chain length from 12 to 18) were synthesized with the aim to synthesize dental resin with antibacterial activity. All of IMQs were added into bis-GMA/TEGDMA dental resin system with a series of mass ratio (5, 10, and 20 wt%), double bond conversion (DC), flexural strength (FS), modulus of elasticity (FM) and biofilm formation inhibitory effect were studied. According to the results of DC, FS, FM, and the biofilm inhibitory effect, IMQ-16 containing polymer had the best comprehensive properties, and the optimal concentration of IMQ-16 in bis-GMA/TEGDMA dental resin would be in the range of 5-10 wt%.
Collapse
Affiliation(s)
- Xiaoxu Liang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | | | | | | | | | | |
Collapse
|
44
|
Buruiana T, Melinte V, Popa ID, Buruiana EC. New urethane oligodimethacrylates with quaternary alkylammonium for formulating dental composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1183-1194. [PMID: 24435527 DOI: 10.1007/s10856-014-5141-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to prepare urethane dimethacrylates containing quaternary alkyl (C16, C12) ammonium and polyethylene glycol short sequences (Mn, 400 g/mol) and to investigate their behaviour in some experimental formulations in order to evaluate their potential applicability in the dental composites field. The structure of urethane dimethacrylates has been confirmed by (1)H ((13)C) NMR and FTIR spectra, as well as by electrospray ionization tandem mass spectroscopy, and gel permeation chromatography measurements. The effects of the cationic macromers on the properties of the filled/non-filled composites were examined through FTIR, photoDSC, and specific measurements as volumetric polymerization shrinkage, water sorption/solubility, contact angle, mechanical parameters, and morphology. The monomer compositions based on cationic dimethacrylate (6.88-27.52 wt%), BisGMA-analogue (48.18-68.82 wt%) and TEGDMA (23.3 wt%) showed a good photoreactivity in terms of double bond conversion (DC, 50.07-68.81 %) and polymerization rate (Rp, 0.099-0.141 s(-1)) measured by photoDSC compared to a control sample (BisGMA-1/TEGDMA: DC, 45.91 %; Rp, 0.162 s(-1)), while the polymerization shrinkage increased in acceptable limits (5.37-7.74 vol%). The mechanical properties (compressive, flexural and diametral tensile strength) of the composite resin incorporating 70 wt% silanized zirconium silicate micro/nanopowder can be modulated by the initial co-monomer concentrations.
Collapse
Affiliation(s)
- Tinca Buruiana
- Department of Polyaddition and Photochemistry, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania,
| | | | | | | |
Collapse
|
45
|
He J, Söderling E, Vallittu PK, Lassila LVJ. Preparation and evaluation of dental resin with antibacterial and radio-opaque functions. Int J Mol Sci 2013; 14:5445-60. [PMID: 23470923 PMCID: PMC3634471 DOI: 10.3390/ijms14035445] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/16/2022] Open
Abstract
In order to prepare antibacterial and radio-opaque dental resin, a methacrylate monomer named 2-Dimethyl-2-dodecyl-1-methacryloxyethyl ammonium iodine (DDMAI) with both antibacterial and radio-opaque activities was added into a 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropyl)-phenyl]propane (Bis-GMA)/methyl methacrylate (MMA) dental resin system. Degree of conversion (DC), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (WSL), antibacterial activity, and radio-opacity (ROX) of the obtained dental resin system were investigated. Bis-GMA/MMA resin system without DDMAI was used as a control. The results showed that DDMAI could endow BIS-GMA/MMA resin system with good antibacterial (p < 0.05) and radio-opaque function without influencing the DC (p > 0.05). However, incorporating DDMAI into Bis-GMA/MMA resin could reduce mechanical properties (p < 0.05) and increase WS and WSL (p < 0.05), thus further work is needed in order to optimize the resin formulation.
Collapse
Affiliation(s)
- Jingwei He
- Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; E-Mails: (P.K.V.); (L.V.J.L.)
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Turku 20520, Finland; E-Mail:
| | - Pekka K. Vallittu
- Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; E-Mails: (P.K.V.); (L.V.J.L.)
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland
- Institute of Dentistry, University of Turku, Turku 20520, Finland; E-Mail:
| | - Lippo V. J. Lassila
- Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; E-Mails: (P.K.V.); (L.V.J.L.)
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland
- Institute of Dentistry, University of Turku, Turku 20520, Finland; E-Mail:
| |
Collapse
|