1
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Zhai Z, Cui T, Chen J, Mao X, Zhang T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J Transl Med 2023; 21:895. [PMID: 38071321 PMCID: PMC10709966 DOI: 10.1186/s12967-023-04729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.
Collapse
Affiliation(s)
- Zhengyao Zhai
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tairong Cui
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jialiang Chen
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xulong Mao
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
de Barros NR, Darabi MA, Ma X, Diltemiz SE, Ermis M, Hassani Najafabasi A, Nadine S, Banton EA, Mandal K, Abbasgholizadeh R, Falcone N, Mano JF, Nasiri R, Herculano RD, Zhu Y, Ostrovidov S, Lee J, Kim HJ, Hosseini V, Dokmeci MR, Ahadian S, Khademhosseini A. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles. Macromol Biosci 2023; 23:e2300276. [PMID: 37534566 PMCID: PMC10837326 DOI: 10.1002/mabi.202300276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Several microfabrication technologies have been used to engineer native-like skeletal muscle tissues. However, the successful development of muscle remains a significant challenge in the tissue engineering field. Muscle tissue engineering aims to combine muscle precursor cells aligned within a highly organized 3D structure and biological factors crucial to support cell differentiation and maturation into functional myotubes and myofibers. In this study, the use of 3D bioprinting is proposed for the fabrication of muscle tissues using gelatin methacryloyl (GelMA) incorporating sustained insulin-like growth factor-1 (IGF-1)-releasing microparticles and myoblast cells. This study hypothesizes that functional and mature myotubes will be obtained more efficiently using a bioink that can release IGF-1 sustainably for in vitro muscle engineering. Synthesized microfluidic-assisted polymeric microparticles demonstrate successful adsorption of IGF-1 and sustained release of IGF-1 at physiological pH for at least 21 days. Incorporating the IGF-1-releasing microparticles in the GelMA bioink assisted in promoting the alignment of myoblasts and differentiation into myotubes. Furthermore, the myotubes show spontaneous contraction in the muscle constructs bioprinted with IGF-1-releasing bioink. The proposed bioprinting strategy aims to improve the development of new therapies applied to the regeneration and maturation of muscle tissues.
Collapse
Affiliation(s)
| | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Xin Ma
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Sibel Emir Diltemiz
- Department of Chemistry, Eskisehir Technical University, Eskisehir, 26470, Turkey
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ethan A. Banton
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - João F. Mano
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Mehmet R. Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Martínez-Blanco Á, Noé S, Carreras-Vidal L, Otero J, Gavara N. Cryosectioning of Hydrogels as a Reliable Approach to Increase Yield and Further Tune Mechanical Properties. Gels 2023; 9:834. [PMID: 37888407 PMCID: PMC10606893 DOI: 10.3390/gels9100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Decellularized extracellular matrix (dECM) hydrogels have emerged as promising materials in tissue engineering. The steps to produce dECM hydrogels containing the bioactive epitopes found in the native matrix are often laborious, including the initial harvesting and decellularization of the animal organ. Furthermore, resulting hydrogels often exhibit weak mechanical properties that require the use of additional crosslinkers such as genipin to truly simulate the mechanical properties of the desired study tissue. In this work, we have developed a protocol to readily obtain tens of thin dECM hydrogel cryosections attached to a glass slide as support, to serve as scaffolds for two-dimensional (2D) or three-dimensional (3D) cell culture. Following extensive atomic force microscopy (AFM)-based mechanical characterization of dECM hydrogels crosslinked with increasing genipin concentrations (5 mM, 10 mM, and 20 mM), we provide detailed protocol recommendations for achieving dECM hydrogels of any biologically relevant stiffness. Given that our protocol requires hydrogel freezing, we also confirm that the approach taken can be further used to increase the mechanical properties of the scaffold in a controlled manner exhibiting twice the stiffness in highly crosslinked arrays. Finally, we explored the effect of ethanol-based short- and long-term sterilization on dECM hydrogels, showing that in some situations it may give rise to significant changes in hydrogel mechanical properties that need to be taken into account in experimental design. The hydrogel cryosections produced were shown to be biocompatible and support cell attachment and spreading for at least 72 h in culture. In brief, our proposed method may provide several advantages for tissue engineering: (1) easy availability and reduction in preparation time, (2) increase in the total hydrogel volume eventually used for experiments being able to obtain 15-22 slides from a 250 µL hydrogel) with a (3) reduction in scaffold variability (only a 17.5 ± 9.5% intraslide variability provided by the method), and (4) compatibility with live-cell imaging techniques or further cell characterization of cells.
Collapse
Affiliation(s)
- África Martínez-Blanco
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (Á.M.-B.); (S.N.); (L.C.-V.); (J.O.)
| | - Sergio Noé
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (Á.M.-B.); (S.N.); (L.C.-V.); (J.O.)
| | - Lourdes Carreras-Vidal
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (Á.M.-B.); (S.N.); (L.C.-V.); (J.O.)
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (Á.M.-B.); (S.N.); (L.C.-V.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (Á.M.-B.); (S.N.); (L.C.-V.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
5
|
Mays EA, Ellis EB, Hussain Z, Parajuli P, Sundararaghavan HG. Enzyme-Mediated Nerve Growth Factor Release from Nanofibers Using Gelatin Microspheres. Tissue Eng Part A 2023; 29:333-343. [PMID: 37016821 DOI: 10.1089/ten.tea.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Spinal cord injury is a complex environment, with many conflicting growth factors present at different times throughout the injury timeline. Delivery of multiple growth factors has received mixed results, highlighting a need to consider the timing of delivery for possibly antagonistic growth factors. Cell-mediated degradation of delivery vehicles for delayed release of growth factors offers an attractive way to exploit the highly active immune response in the spinal cord injury environment. In this study, growth factor-loaded gelatin microspheres (GMS) combined with methacrylated hyaluronic acid (MeHA) were electrospun to create GMS fibers (GMSF) for delayed release of growth factors (GFs). GMS were successfully combined with MeHA while electrospinning, with an average fiber diameter of 365 ± 10 nm and 44% ± 8% fiber alignment. GMSF with nerve growth factor (NGF) was tested on dissociated chick dorsal root ganglia cells. We further tested the effect of M1 macrophage-conditioned media (M1CM) to simulate macrophage invasion after spinal cord injury for cell-mediated degradation. We hypothesized that neurons grown on GMSF with loaded NGF would exhibit longer neurites in M1CM, showing a release of functional NGF, as compared with controls. GMSF in M1CM was significantly different from MeHA in serum-free media (SFM) and M0-conditioned media (M0CM), as well as GMSF in M0CM (p < 0.05). Moreover, GMSF + NGF in all media conditions were significantly different from MeHA in SFM and M0CM (p < 0.05). The goal of this study was to develop a biomaterial system where drug delivery is triggered by immune response, allowing for more control and longer exposure to encapsulated drugs. The spinal cord injury microenvironment is known to have a robust immune response, making this immune-medicated drug release system particularly significant for directed repair.
Collapse
Affiliation(s)
- Elizabeth A Mays
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Eric B Ellis
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, USA
| | - Zahin Hussain
- School of Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Prahlad Parajuli
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
6
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
de Silva L, Bernal PN, Rosenberg A, Malda J, Levato R, Gawlitta D. Biofabricating the vascular tree in engineered bone tissue. Acta Biomater 2023; 156:250-268. [PMID: 36041651 DOI: 10.1016/j.actbio.2022.08.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm3) is the limited supply of nutrients, including oxygen to the core of the construct. Therefore, strategies to support vascularization are pivotal for the development of tissue engineered bone constructs. Creating a functional bone construct integrated with a vascular network, capable of delivering the necessary nutrients for optimal tissue development is imperative for translation into the clinics. The vascular system is composed of a complex network that runs throughout the body in a tree-like hierarchical branching fashion. A significant challenge for tissue engineering approaches lies in mimicking the intricate, multi-scale structures consisting of larger vessels (macro-vessels) which interconnect with multiple sprouting vessels (microvessels) in a closed network. The advent of biofabrication has enabled complex, out of plane channels to be generated and has laid the groundwork for the creation of multi-scale vasculature in recent years. This review highlights the key state-of-the-art achievements for the development of vascular networks of varying scales in the field of biofabrication with a particular focus for its application in developing a functional tissue engineered bone construct. STATEMENT OF SIGNIFICANCE: There is a growing need for bone substitutes to overcome the limited supply of patient-derived bone. Bone tissue engineering aims to overcome this by combining stem cells with scaffolds to restore missing bone. The current bottleneck in upscaling is the lack of an integrated vascular network, required for the delivery of nutrients to cells. 3D bioprinting techniques has enabled the creation of complex hollow structures of varying dimensions that resemble native blood vessels. The convergence of multiple materials, cell types and fabrication approaches, opens the possibility of developing clinically-relevant sized vascularized bone constructs. This review provides an up-to-date insight of the technologies currently available for the generation of complex vascular networks, with a focus on their application in bone tissue engineering.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| | - Paulina N Bernal
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands
| | - Ajw Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, the Netherlands
| | - Riccardo Levato
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, the Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
8
|
Shakeel A, Corridon PR. Mitigating challenges and expanding the future of vascular tissue engineering-are we there yet? Front Physiol 2023; 13:1079421. [PMID: 36685187 PMCID: PMC9846051 DOI: 10.3389/fphys.2022.1079421] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
10
|
Baca-Gonzalez L, Serrano Zamora R, Rancan L, González Fernández-Tresguerres F, Fernández-Tresguerres I, López-Pintor RM, López-Quiles J, Leco I, Torres J. Plasma rich in growth factors (PRGF) and leukocyte-platelet rich fibrin (L-PRF): comparative release of growth factors and biological effect on osteoblasts. Int J Implant Dent 2022; 8:39. [PMID: 36184700 PMCID: PMC9527267 DOI: 10.1186/s40729-022-00440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the release of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-I) and interleukin 1β (IL-1β) of plasma rich in growth factors (PRGF) and leucocyte platelet-rich fibrin (L-PRF) and to evaluate their biological implication in osteoblasts. METHODS Blood from 3 healthy volunteers was processed into PRGF, immediate L-PRF (L-PRF 0') and L-PRF 30 min after collection (L-PRF-30') and a control group. Growth factors release were analyzed at 7 times by ELISA. Cell proliferation, collagen-I synthesis and alkaline phosphatase activity were assessed in primary cultures of human osteoblasts. RESULTS A slower controlled release of IGF-I, VEGF and PDGF was observed in the PRGF group at day 14. A higher synthesis of type I collagen was also quantified in PRGF. L-PRF released significantly higher amounts of IL-1β, that was almost absent in the PRGF. CONCLUSIONS The addition of leukocytes dramatically increases the secretion of proinflammatory cytokines, which are likely to negatively influence the synthesis of type I collagen and alkaline phosphatase (ALP) by osteoblasts.
Collapse
Affiliation(s)
- Laura Baca-Gonzalez
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain.
| | - Rebeca Serrano Zamora
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology. Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Isabel Fernández-Tresguerres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Rosa M López-Pintor
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Juan López-Quiles
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Isabel Leco
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Jesús Torres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| |
Collapse
|
11
|
Patrick MD, Annamalai RT. Licensing microgels prolong the immunomodulatory phenotype of mesenchymal stromal cells. Front Immunol 2022; 13:987032. [PMID: 36059508 PMCID: PMC9433901 DOI: 10.3389/fimmu.2022.987032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are sensors of inflammation, and they exert immunomodulatory properties through the secretion of cytokines and exosomes and direct cell-cell interactions. MSC are routinely used in clinical trials and effectively resolve inflammatory conditions. Nevertheless, inconsistent clinical outcomes necessitate the need for more robust therapeutic phenotypes. The immunomodulatory properties of MSC can be enhanced and protracted by priming (aka licensing) them with IFNγ and TNFα. Yet these enhanced properties rapidly diminish, and prolonged stimulation could tolerize their response. Hence a balanced approach is needed to enhance the therapeutic potential of the MSC for consistent clinical performance. Here, we investigated the concentration-dependent effects of IFNγ and TNFα and developed gelatin-based microgels to sustain a licensed MSC phenotype. We show that IFNγ treatment is more beneficial than TNFα in promoting an immunomodulatory MSC phenotype. We also show that the microgels possess integrin-binding sites to support adipose tissue-derived MSC (AD-MSC) attachment and a net positive charge to sequester the licensing cytokines electrostatically. Microgels are enzymatically degradable, and the rate is dependent on the enzyme concentration and matrix density. Our studies show that one milligram of microgels by dry mass can sequester up to 641 ± 81 ng of IFNγ. Upon enzymatic degradation, microgels exhibited a sustained release of IFNγ that linearly correlated with their degradation rate. The AD-MSC cultured on the IFNγ sequestered microgels displayed efficient licensing potential comparable to or exceeding the effects of bolus IFNγ treatment. When cultured with proinflammatory M1-like macrophages, the AD-MSC-seeded on licensing microgel showed an enhanced immunomodulatory potential compared to untreated AD-MSC and AD-MSC treated with bolus IFNγ treatment. Specifically, the AD-MSC seeded on licensing microgels significantly upregulated Arg1, Mrc1, and Igf1, and downregulated Tnfα in M1-like macrophages compared to other treatment conditions. These licensing microgels are a potent immunomodulatory approach that shows substantial promise in elevating the efficacy of current MSC therapies and may find utility in treating chronic inflammatory conditions.
Collapse
|
12
|
Legrand JMD, Martino MM. Growth Factor and Cytokine Delivery Systems for Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041234. [PMID: 35667794 PMCID: PMC9341469 DOI: 10.1101/cshperspect.a041234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin wound healing is a highly coordinated process involving multiple tissue-resident and recruited cell types. Cells within the wound microenvironment respond to key secreted factors such as pro-proliferative growth factors and immunomodulatory cytokines to repair the skin and promptly restore its essential barrier role. Therefore, recombinant growth factors and cytokines are promising therapeutics for skin wounds, in particular for large acute wounds such as burns, or wounds associated with underlying pathologies such as nonhealing chronic and diabetic wounds. However, translation of growth factors and cytokines into clinically effective treatments has been limited. Short half-life, poor stability, rapid diffusion, uncontrolled signaling, and systemic side effects are currently the key challenges to developing efficient growth factor- and cytokine-based therapies. To overcome these limitations, novel delivery systems have been developed to improve the regenerative potential of recombinant growth factors and cytokines. In this review, we discuss biomaterial and protein engineering strategies used to optimize the delivery of growth factor and cytokine therapeutics for skin wound treatment.
Collapse
Affiliation(s)
- Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Utami Nike D, Md Fadilah NI, Sallehuddin N, Nor Azlan AYH, Imran FH, Maarof M, Fauzi MB. Genipin-Crosslinking Effects on Biomatrix Development for Cutaneous Wound Healing: A Concise Review. Front Bioeng Biotechnol 2022; 10:865014. [PMID: 35677301 PMCID: PMC9169157 DOI: 10.3389/fbioe.2022.865014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Split skin graft (SSG), a standard gold treatment for wound healing, has numerous limitations such as lack of fresh skin to be applied, tedious process, severe scarring, and keloid formation followed by higher risks of infection. Thus, there is a gap in producing polymeric scaffolds as an alternative for wound care management. Bioscaffold is the main component in tissue engineering technology that provides porous three-dimensional (3D) microarchitecture for cells to survive. Upon skin tissue reconstruction, the 3D-porous structure ensures sufficient nutrients and gaseous diffusion and cell penetration that improves cell proliferation and vascularization for tissue regeneration. Hence, it is highly considered a promising candidate for various skin wound healing applications. To date, natural-based crosslinking agents have been extensively used to tailor the physicochemical and mechanical properties of the skin biomatrix. Genipin (GNP) is preferable to other plant-based crosslinkers due to its biological activities, such as antiinflammatory and antioxidant, which are key players to boost skin wound healing. In addition, it has shown a noncytotoxic effect and is biocompatible with human skin cells. This review validated the effects of GNP in biomatrix fabrication for skin wound healing from the last 7 years of established research articles and stipulated the biomaterial development-scale point of view. Lastly, the possible role of GNP in the skin wound healing cascade is also discussed. Through the literature output, it can be concluded that GNP has the capability to increase the stability of biomatrix and maintain the skin cells viability, which will contribute in accelerating wound healing.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nusaibah Sallehuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yasser Hamdi Nor Azlan
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Farrah Hani Imran
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mh Busra Fauzi,
| |
Collapse
|
15
|
Shi M, Gao Y, Lee L, Song T, Zhou J, Yan L, Li Y. Adaptive Gelatin Microspheres Enhanced Stem Cell Delivery and Integration With Diabetic Wounds to Activate Skin Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:813805. [PMID: 35433645 PMCID: PMC9011108 DOI: 10.3389/fbioe.2022.813805] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
The delayed and complicated diabetic wound healing raises clinical and social concerns. The application of stem cells along with hydrogels is an attractive therapeutic approach. However, low cell retention and integration hindered the performance. Herein, gelatin microspheres were fabricated for local delivery of adipose-derived stem cells (from rats, rADSCs), and the effect of rADSCs with microspheres on diabetic wound healing was examined. Uniform, well-dispersed microspheres were fabricated using the microfluidic technique. Due to geometry differences, the proteinase degradation rate for microspheres was four times that of the bulk hydrogel. The obtained gelatin microspheres supported cell's adhesion and proliferation and provided a suitable microenvironment for rADSC survival. For in vivo animal tests, rADSCs were labeled with CM-Dil for tracking purposes. Microspheres were well embedded in the regenerated tissue and demonstrated good biocompatibility and an adaptive biodegradation rate. Histological examination revealed rADSC-loaded gelatin microspheres that significantly accelerated wound healing via promoting M2 macrophage polarization, collagen deposition, angiogenesis associated with peripheral nerve recovery, and hair follicle formation. Notably, the relative fluorescence intensity around the hair follicle was 17-fold higher than that of the blank group, indicating rADSC participated in the healing process via exosomes. Taken together, the rADSC-laden gelatin microspheres provided a promising strategy for local stem cell delivery to improve diabetic wound healing.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- Department of Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yunfen Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Lim Lee
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Ling Yan
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Li,
| |
Collapse
|
16
|
Teimouri S, Kasapis S, Dokouhaki M. Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Nweke CE, Stegemann JP. Fabrication and characterization of osteogenic function of progenitor cell-laden gelatin microcarriers. J Biomed Mater Res B Appl Biomater 2021; 110:1265-1278. [PMID: 34918466 DOI: 10.1002/jbm.b.34998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/11/2022]
Abstract
Biomaterial-based bone regeneration strategies often include a cellular component to accelerate healing. Modular approaches have the potential for minimally-invasive delivery and the ability to conformally fill complex defects. In this study, spherical gelatin microparticles were fabricated via water-in-oil emulsification and were subsequently crosslinked with genipin. Microparticle diameter depended on impeller geometry, and increased stirring rates consistently produced smaller particles with narrower size distributions. Increasing the concentration of gelatin resulted in larger particles with a broader size distribution. Viscoelastic characterization showed that increased gelatin concentration produced stiffer matrices, though the mechanical properties at lower gelatin concentration were more stable across strain rate. Microparticles of 6.0% wt/vol gelatin were then applied as microcarriers for packed-bed culture of human mesenchymal stromal cells (MSC) at seeding densities of 5.0 × 103 , 2.5 × 104 , or 5.0 × 104 cells/cm2 of surface area, in either control or osteogenic medium. Cell viability was uniformly high (>90%) across seeding densities over 22 days in culture. MSC number stayed approximately constant in the 5.0 × 103 and 2.5 × 104 cells/cm2 samples, while it dropped over time at 5.0 × 104 cells/cm2 . Alkaline phosphatase activity was significantly upregulated in osteogenic conditions relative to controls at day 15, and absolute calcium deposition was strongly induced by days 15 and 22. However, calcium deposition per cell was highest in the lowest cell density, suggesting an inhibitory effect of high cell numbers. These results show that genipin-crosslinked gelatin microcarriers can be reproducibly fabricated and used as microcarriers for progenitor cells, which may have utility in treating large and complex bone defects.
Collapse
Affiliation(s)
- Chukwuma E Nweke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Walters B, Turner PA, Rolauffs B, Hart ML, Stegemann JP. Controlled Growth Factor Delivery and Cyclic Stretch Induces a Smooth Muscle Cell-like Phenotype in Adipose-Derived Stem Cells. Cells 2021; 10:cells10113123. [PMID: 34831345 PMCID: PMC8624888 DOI: 10.3390/cells10113123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are an abundant and easily accessible multipotent stem cell source with potential application in smooth muscle regeneration strategies. In 3D collagen hydrogels, we investigated whether sustained release of growth factors (GF) PDGF-AB and TGF-β1 from GF-loaded microspheres could induce a smooth muscle cell (SMC) phenotype in ASCs, and if the addition of uniaxial cyclic stretch could enhance the differentiation level. This study demonstrated that the combination of cyclic stretch and GF release over time from loaded microspheres potentiated the differentiation of ASCs, as quantified by protein expression of early to late SMC differentiation markers (SMA, TGLN and smooth muscle MHC). The delivery of GFs via microspheres produced large ASCs with a spindle-shaped, elongated SMC-like morphology. Cyclic strain produced the largest, longest, and most spindle-shaped cells regardless of the presence or absence of growth factors or the growth factor delivery method. Protein expression and cell morphology data confirmed that the sustained release of GFs from GF-loaded microspheres can be used to promote the differentiation of ASCs into SMCs and that the addition of uniaxial cyclic stretch significantly enhances the differentiation level, as quantified by intermediate and late SMC markers and a SMC-like elongated cell morphology.
Collapse
Affiliation(s)
- Brandan Walters
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
| | - Paul A. Turner
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany;
| | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany;
- Correspondence: (M.L.H.); (J.P.S.); Tel.: +49-(761)-270-26102 (M.L.H.); +001-(734)-764-8313 (J.P.S.)
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
- Correspondence: (M.L.H.); (J.P.S.); Tel.: +49-(761)-270-26102 (M.L.H.); +001-(734)-764-8313 (J.P.S.)
| |
Collapse
|
19
|
Berry-Kilgour C, Cabral J, Wise L. Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Adv Wound Care (New Rochelle) 2021; 10:596-622. [PMID: 33086946 PMCID: PMC8392095 DOI: 10.1089/wound.2020.1183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Significance: Wound healing involves the phasic production of growth factors (GFs) and cytokines to progress an acute wound to a resolved scar. Dysregulation of these proteins contributes to both wound chronicity and excessive scarring. Direct supplementation of GFs and cytokines for treatment of healing and scarring complications has, however, been disappointing. Failings likely relate to an inability to deliver recombinant proteins at physiologically relevant levels to an environment conducive to healing. Recent Advances: Inspired by the extracellular matrix, natural biomaterials have been developed that resemble human skin, and are capable of delivering bioactives. Hybrid biomaterials made using multiple polymers, fabrication methods, and proteins are proving efficacious in animal models of acute and impaired wound healing. Critical Issues: For clinical translation, these delivery systems must be tailored for specific wound indications and the correct phase of healing. GFs and cytokines must be delivered in a controlled manner that will target specific healing or scarring impairments. Preclinical assessment in clinically relevant animal models of impaired or excessive healing is critical. Future Directions: Clinical success will likely depend on the GF or cytokine selected, their compatibility with the chosen biomaterial(s), degradation rate of the fabricated system, and the degree of control over release kinetics. Further testing is essential to assess which wound indications are most suited to specific delivery systems and to prove whether they provide superior efficacy over direct protein therapies.
Collapse
Affiliation(s)
- Caitlin Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences; Dunedin, New Zealand
| | - Jaydee Cabral
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences; Dunedin, New Zealand
| |
Collapse
|
20
|
Li Q, Zhang H, Pan J, Teng B, Zeng Z, Chen Y, Hei Y, Zhang S, Wei S, Sun Y. Tripeptide-based macroporous hydrogel improves the osteogenic microenvironment of stem cells. J Mater Chem B 2021; 9:6056-6067. [PMID: 34278393 DOI: 10.1039/d1tb01175h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the ability to combine multiple osteogenic induction "cues" at the same time, hydrogels are widely used in the three-dimensional (3D) culture of human mesenchymal stem cells (hMSCs) and osteoinduction. However, the survival and proliferation of stem cells in a 3D culture system are limited, which reduces their osteogenic differentiation efficiency. In addition, the cells inside the hydrogel are prone to apoptosis due to hypoxia, which is a serious challenge for tissue engineering based on stem cells. In this study, a tripeptide-based macroporous alginate hydrogel was prepared to improve the osteogenic microenvironment of stem cells. The arginine-glycine-aspartate (RGD) peptide promoted the adhesion and proliferation of stem cells, and the degradation of gelatin microspheres (GMs) produced a macroporous structure to enhance further the migration and aggregation of stem cells. Mesoporous silica nanoparticles (MSNs) sustained-release bone-forming peptide-1 (BFP-1) induced osteogenic differentiation, and the sustained release of the QK peptide from the GMs promoted angiogenesis. In vitro experiments have shown that this functionalized hydrogel stimulates the proliferation of hMSCs, encourages larger cell cluster formation, and enhances the osteogenic differentiation efficiency. The released QK facilitates the proliferation and migration of endothelial cells. In vivo experiments have also verified that this system has a better osteogenic effect, and more blood vessels were observed inside the hydrogel, than in other systems. In general, this research has led to the development of a tripeptide macroporous hydrogel that can simultaneously promote osteogenesis and angiogenesis, showing great promise for applications of 3D cultures and stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China and Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - He Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Binhong Teng
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Ziqian Zeng
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Hei
- College of Engineering, Peking University, Beijing 100871, China
| | - Siqi Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China and Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yuhua Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China and Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
21
|
Lee HJ, Min SK, Park YH, Park JB. Application of Bone Morphogenetic Protein 7 Enhanced the Osteogenic Differentiation and Mineralization of Bone Marrow-Derived Stem Cells Cultured on Deproteinized Bovine Bone. COATINGS 2021; 11:642. [DOI: 10.3390/coatings11060642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
The growth of bone morphogenetic protein 7 (BMP-7) has been applied for tissue regeneration due to its osteoinductive properties. The aim of this research is to analyze the enhancing effects of BMP-7 on the osteogenic differentiation and mineralization of human bone marrow-derived stem cells cultured on the bovine bone particle. After the stem cells were loaded onto the bone graft material, their morphology was observed on day 7. Viability assays based on the application of fluorescent stains were used for qualitative analyses. Alkaline phosphatase activity assays and Alizarin red staining were used for the assessment of osteogenic differentiation on days 7 and 14. Next-generation mRNA sequencing was applied to evaluate global gene expression. Gene ontology and pathway analysis was used to propose the underlying mechanism. Fibroblast-like morphology was attained with the stem cells. The cells were shown to be firmly attached to the bone particle. Most of the stem cells produced an intense green fluorescence. The relative cellular viability assay values for BMP-7 groups at 0, 10, and 100 ng/mL on day 7 were 0.295 ± 0.003, 0.250 ± 0.002, and 0.240 ± 0.003, respectively (p < 0.05). Alkaline phosphatase activity was significantly higher in BMP-7 groups at concentration of 100 ng/mL compared to the control on days 7 and 14 (p < 0.05). The results of the mineralization assay showed significantly higher values for BMP-7 groups at 100 ng/mL concentration when compared with the control (p < 0.05). The expression of RUNX2 was increased with application of BMP-7 and mitogen-activated protein kinase pathway was associated with the target genes. Overall, this study shows that in vitro application of BMP-7 increases alkaline phosphorylase activity and mineralization of stem cells culture on deproteinized bovine bone mineral. The study suggests that combining stem cells with osteoinductive growth factors with scaffolds can have synergy effects on osteogenic differentiation.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Periodontics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Sae-Kyung Min
- Department of Periodontics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Yoon-Hee Park
- Ebiogen, #405, Sungsu A1 Center, 48 Ttukseom-ro 17-ga-gil, Seongdong-gu, Seoul 04784, Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
22
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
23
|
Eskens O, Amin S. Challenges and effective routes for formulating and delivery of epidermal growth factors in skin care. Int J Cosmet Sci 2021; 43:123-130. [PMID: 33354795 DOI: 10.1111/ics.12685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023]
Abstract
Epidermal growth factors are important morphogenetic proteins that instruct cell behaviour. They have many inferred applications within regenerative medicine and have shown promising results in skincare treatments. Many growth factors are known to have skin anti-ageing benefits along with further potential in resolving scarring, acne and other skin disorders. Incorporation of these biologics into skincare formulations has been greatly hindered by low transdermal delivery efficacy, intricate material interactions and protein instability - especially within common cosmetic emulsions. This review explores the cosmeceutical capability of growth factors in skin care, current understandings of constituent interactions and advantageous delivery approaches for more effective topical delivery. The first section highlights the influences growth factor product formulation has on stability and synergy. Current understandings of growth factor formulating techniques in cosmetic products is limited, and the performance of other protein structures is an adequate point of reference. The second section examines emerging drug delivery systems to overcome the challenges of topical growth factor treatment. It is important to consider the coaction and durability of all components in a formulation simultaneously: active ingredients, product format and delivery vehicle, in order to engineer an optimal cosmeceutical product.
Collapse
Affiliation(s)
- Olivia Eskens
- Chemical Engineering Department, Manhattan College, Riverdale, NY, USA
| | - Samiul Amin
- Chemical Engineering Department, Manhattan College, Riverdale, NY, USA
| |
Collapse
|
24
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
25
|
Shaw GS, Dash RA, Samavedi S. Evaluating the protective role of carrier microparticles in preserving protein secondary structure within electrospun meshes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Ricky A. Dash
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Satyavrata Samavedi
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| |
Collapse
|
26
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
27
|
Buie T, McCune J, Cosgriff-Hernandez E. Gelatin Matrices for Growth Factor Sequestration. Trends Biotechnol 2020; 38:546-557. [PMID: 31954527 PMCID: PMC11577444 DOI: 10.1016/j.tibtech.2019.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
Abstract
Gelatin is used in a broad range of tissue engineering applications because of its bioactivity, mild processing conditions, and ease of modification, which have increased interest in its use as a growth factor delivery vehicle. Traditional methods to control growth factor sequestration and delivery have relied on controlling hydrogel mesh size via chemical crosslinking with corollary changes to the physical properties of the hydrogel. To decouple growth factor release from scaffold properties, affinity sequestration modalities have been developed to preserve the bioactivity of the growth factor through interactions with the modified gelatin. This review provides a summary of these mechanisms, highlights current gelatin growth factor delivery systems, and addresses the future perspective of gelatin matrices for growth factor delivery in tissue engineering.
Collapse
Affiliation(s)
- Taneidra Buie
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Joshua McCune
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
28
|
Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J Control Release 2020; 320:265-282. [DOI: 10.1016/j.jconrel.2020.01.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
|
29
|
Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P. Angiogenesis in Tissue Engineering: As Nature Intended? Front Bioeng Biotechnol 2020; 8:188. [PMID: 32266227 PMCID: PMC7099606 DOI: 10.3389/fbioe.2020.00188] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the steady increase in the number of studies focusing on the development of tissue engineered constructs, solutions delivered to the clinic are still limited. Specifically, the lack of mature and functional vasculature greatly limits the size and complexity of vascular scaffold models. If tissue engineering aims to replace large portions of tissue with the intention of repairing significant defects, a more thorough understanding of the mechanisms and players regulating the angiogenic process is required in the field. This review will present the current material and technological advancements addressing the imperfect formation of mature blood vessels within tissue engineered structures.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - William Cathery
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Paola Campagnolo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
30
|
Tao K, Bai X, Zhang D, Liu M, Zhang Y, Han F, Yang X, Han J, Hu D. Encapsulation of troglitazone and AVE0991 by gelation microspheres promotes epithelial transformation of adipose-derived stem cells. Mol Cell Probes 2020; 51:101543. [PMID: 32105703 DOI: 10.1016/j.mcp.2020.101543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/23/2020] [Indexed: 11/26/2022]
Abstract
Deformities in human soft tissue caused by trauma or burn present a difficult problem in plastic surgery. In this study, we encapsulated troglitazone and angiotensin 1-7 mimetic AVE0991 in gelation microspheres with the goal of inducing epithelial transformation for potential applications in tissue reconstruction. After troglitazone or AVE0991 were encapsulated to gelation microspheres, their release kinetics and bioactivity were examined. Surface morphology and diameter of the gelation microspheres were evaluated using light microscopy. The release of the drugs was assessed in the presence of human adipose-derived stem cells (ADSCs). Treatment with troglitazone microspheres increased cell viability and activated the β-catenin in ADSCs. Moreover, the AVE0991 microspheres also increased cell viability and C-myc expression of ADSCs. These results showed that troglitazone and AVE0991 microspheres promoted the activity of ADSCs. Furthermore, ADSCs were co-treated with troglitazone and AVE0991 microspheres. Western blot and immunofluorescent staining showed that co-treatment with troglitazone and AVE0991 microspheres elevated the expression of epithelialization associated protein CK14 in ADSCs. In conclusion, our findings indicate that microspheres with troglitazone and AVE0991 can significantly improve the viability and epithelialization of ADSCs, which provides a new approach for the construction of tissue-engineered skin.
Collapse
Affiliation(s)
- Ke Tao
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Xiaozhi Bai
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Dongliang Zhang
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Mengdong Liu
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Yue Zhang
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Fu Han
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Xuekang Yang
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Juntao Han
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Dahai Hu
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China.
| |
Collapse
|
31
|
Newsom JP, Payne KA, Krebs MD. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater 2019; 88:32-41. [PMID: 30769137 PMCID: PMC6441611 DOI: 10.1016/j.actbio.2019.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Biopolymer microgels are emerging as a versatile tool for aiding in the regeneration of damaged tissues due to their biocompatible nature, tunable microporous structure, ability to encapsulate bioactive factors, and tailorable properties such as stiffness and composition. These properties of microgels, along with their injectability, have allowed for their utilization in a multitude of different tissue engineering applications. Controlled release of growth factors, antibodies, and other bioactive factors from microgels have demonstrated their capabilities as transporters for essential bioactive molecules necessary for guiding tissue reconstruction. Additionally, recent in vitro studies of cellular interaction and proliferation within microgel structures have laid the initial groundwork for regenerative tissue engineering using these materials. Microgels have even been crosslinked together in various ways or 3D printed to form three-dimensional scaffolds to support cell growth. In vivo studies of microgels have pioneered the clinical relevance of these novel and innovative materials for regenerative tissue engineering. This review will cover recent developments and research of microgels as they pertain to bioactive factor release, cellular interaction and proliferation in vitro, and tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: This review is focused on state-of-the-art microgel technology and innovations within the tissue engineering field, focusing on the use of microgels in bioactive factor delivery and as cell-interactive scaffolds, both in vitro and in vivo. Microgels are hydrogel microparticles that can be tuned based on the biopolymer from which they are derived, the crosslinking chemistry used, and the fabrication method. The emergence of microgels for tissue regeneration applications in recent years illuminates their versatility and applicability in clinical settings.
Collapse
Affiliation(s)
- Jake P Newsom
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States
| | - Karin A Payne
- Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa D Krebs
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States.
| |
Collapse
|
32
|
Martins CR, Custódio CA, Mano JF. Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohydr Polym 2018; 202:91-98. [PMID: 30287047 PMCID: PMC6443035 DOI: 10.1016/j.carbpol.2018.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Microfabrication technologies have been widely explored to produce microgels that can be assembled in functional constructs for tissue engineering and regenerative medicine applications. Here, we propose microfluidics coupled to a source of UV light to produce multifunctional methacrylated laminarin microparticles with narrow distribution of sizes using photopolymerization. The multifunctional microparticles were loaded with platelet lysates and further conjugated with an adhesive peptide. The adhesive peptides dictated cell adhesiveness to the laminarin microparticles, the incorporation of platelet lysates have resulted in improved cell expansion compared to clear microparticles. Overall, our findings demonstrate that multifunctional methacrylated laminarin microparticles provide an effective support for cell attachment and expansion. Moreover, expanded cells provide the link for microparticles aggregation resulting in robust 3D structures. This suggest the potential for using the methacrylated laminarin microplatforms capable to be assembled by the action of cells to rapidly produce large tissue engineered constructs.
Collapse
Affiliation(s)
- C R Martins
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C A Custódio
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 2018; 22:27. [PMID: 30275970 PMCID: PMC6158836 DOI: 10.1186/s40824-018-0138-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. MAIN BODY In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, π-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. CONCLUSION Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Jin Hyun Lee
- Polymer Technology Institute, Sungkyunkwan University, Suwon, Gyeonggi-Do 16419 Republic of Korea
- Department of Polymer Science & Engineering, Inha University, Incheon, 22212 Republic of Korea
| |
Collapse
|
34
|
Beldengrün Y, Aragon J, Prazeres SF, Montalvo G, Miras J, Esquena J. Gelatin/Maltodextrin Water-in-Water (W/W) Emulsions for the Preparation of Cross-Linked Enzyme-Loaded Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9731-9743. [PMID: 29954182 DOI: 10.1021/acs.langmuir.8b01599] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cross-linked gelatin microgels were formed in gelatin-in-maltodextrin water-in-water (W/W) emulsions and evaluated as carriers of the enzyme β-galactosidase (β-Gal). The phase behavior of aqueous gelatin/maltodextrin mixtures was studied in detail, focusing on the multiphase region of the phase diagram that is constituted by three equilibrium phases: two immiscible aqueous phases plus one solid phase. The solid phase was analyzed by Raman spectroscopy, and water-in-water emulsions were formed within the multiphase region. Gelation of the dispersed gelatin droplets was induced by cooling and cross-linking with genipin, which is a natural cross-linking reagent of low toxicity, leading to the formation of gelatin microgel particles. These microgels were studied as delivery vehicles for the enzyme lactase, used as a model active component. Various incorporation methods of the enzyme were tested, to achieve highest encapsulation yield and activity recovery. Microgel particles, loaded with the enzyme, can be freeze-dried, and the enzyme remained active after a complete cycle of freeze-drying and rehydration. The stability of the enzyme at 37 °C under gastric and neutral pH conditions was tested and led to the conclusion that the cross-linked microgels could be suitable for use in food-industry, where β-Gal carriers are of interest for hydrolyzing lactose in milk products.
Collapse
Affiliation(s)
- Yoran Beldengrün
- Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain
| | - Jordi Aragon
- Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain
| | - Sofia F Prazeres
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcalá , Alcalá de Henares , E-28871 Madrid , Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcalá , Alcalá de Henares , E-28871 Madrid , Spain
| | - J Miras
- Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain
| | - Jordi Esquena
- Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain
| |
Collapse
|
35
|
Biotransformation of Geniposide into Genipin by Immobilized Trichoderma reesei and Conformational Study of Genipin. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2079195. [PMID: 29850488 PMCID: PMC5925029 DOI: 10.1155/2018/2079195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
Trichoderma reesei QM9414, Trichoderma viride 3.316, Aspergillus niger M85, and Aspergillus niger M92 were screened for hydrolyzing geniposide into genipin. T. reesei was selected according to the β-glucosidase activity of the fermentation broths using geniposide as a substrate. T. reesei was immobilized by embedding method using sodium alginate as the carrier. Geniposide was hydrolyzed by immobilized T. reesei at 28°C (200 rpm) for 34 h, and the yield of genipin was 89%. The product was purified and identified by UV, IR, EIMS, and 1H-NMR. Since there were two sets of signals in 1H-NMR spectra, a series of experiments were performed and verified that the existence of two conformations was the main reason. Generally, biotransformation of geniposide into genipin by immobilized T. reesei provides a promising solution to the genipin production.
Collapse
|
36
|
Annamalai RT, Turner PA, Carson WF, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials 2018; 161:216-227. [PMID: 29421557 PMCID: PMC5831261 DOI: 10.1016/j.biomaterials.2018.01.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials-based approaches to harnessing the immune and inflammatory responses to potentiate wound healing hold important promise. Bone fracture healing is characterized by an acute inflammatory phase, followed by a transition to a regenerative and repair phase. In this study, we developed genipin-crosslinked gelatin microspheres designed to be preferentially degraded by inflammatory (M1) macrophages. Highly crosslinked (>90%) microspheres allowed efficient incorporation of bioactive bone morphogenetic protein 2 (BMP2), a potent stimulator of osteogenesis in progenitor cells, via electrostatic interactions. Release of BMP2 was directly correlated with degradation of the gelatin matrix. Exposure of microspheres to polarized murine macrophages showed that degradation was significantly higher in the presence of M1 macrophages, relative to alternatively activated (M2) macrophages and unpolarized controls. Microsphere degradation in the presence of non-inflammatory cells resulted in very low degradation rates. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) by macrophages were consistent with the observed phenotype-dependent degradation rates. Indirect co-culture of BMP2-loaded microspheres and macrophages with isolated adipose-derived mesenchymal stem cells (MSC) showed that M1 macrophages produced the strongest osteogenic response, comparable to direct supplementation of the culture medium with BMP2. Controlled release systems that are synchronized with the inflammatory response have the potential to provide better spatiotemporal control of growth factor delivery and therefore may improve the outcomes of recalcitrant wounds.
Collapse
Affiliation(s)
| | - Paul A Turner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | | | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Steven Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|