1
|
Yang Y, Meng Y, Chen D, Hou P, Zhang Z, Cao W, Meng Y, Zhang Q, Tu R, Hao X, Qin A, Shang S, Yang Z. Lysozyme/Tracheal Antimicrobial Peptide-Based Tissue-Specific Expression Antimicrobial Plasmids Show Broad-Spectrum Antibacterial Activities in the Treatment of Mastitis in Mice. Adv Biol (Weinh) 2025; 9:e2400132. [PMID: 39740033 DOI: 10.1002/adbi.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/29/2024] [Indexed: 01/02/2025]
Abstract
The use of antibiotics is the preferred therapy for bacterial diseases. However, overusing antibiotics has led to the development of antibiotic resistance in bacteria, which is now a major public health concern. Therefore, in this study, the performance of lysozyme (LYZ)/tracheal antimicrobial peptide (TAP)-based tissue-specific expression antimicrobial plasmids (TSEAP) have been evaluated in the treatment of mastitis in mice. The results show that LYZ/ and TAP-based TSEAP could effectively reduce the clinical symptoms caused by Staphylococcus sciuri, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa-induced mastitis. In addition, the studies of behavioral tests, parameters of weight growth, blood biochemistry, and organ coefficients comprehensively indicate that the transfection of LYZ/TAP-based TSEAP is safe in mice. Taken together, LYZ/TAP-based TSEAP have broad-spectrum antibacterial activity and may provide new insight for the non-antibiotic treatment of bacterial diseases.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China
| | - Yining Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Daijie Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ping Hou
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenqiang Cao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ye Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qianwen Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Runyan Tu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoli Hao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Zhangping Yang
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
2
|
Diken-Gür S, Avcioglu NH, Bakhshpour-Yücel M, Denizli A. Antimicrobial assay and controlled drug release studies with novel eugenol imprinted p(HEMA)-bacterial cellulose nanocomposite, designed for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2137-2152. [PMID: 38965881 DOI: 10.1080/09205063.2024.2366646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
In this study, a novel bio-composite material that allow sustained release of plant derived antimicrobial compound was developed for the biomedical applications to prevent the infections caused by microorganisms resistant to commercial antimicrobials agents. With this aim, bacterial cellulose (BC)-p(HEMA) nanocomposite film that imprinted with eugenol (EU) via metal chelated monomer, MAH was prepared. Firstly, characterization studies were utilized by FTIR, SEM and BET analysis. Then antimicrobial assays, drug release studies and in vitro cytotoxicity test were performed. A significant antimicrobial effect against both Gram (+) Staphylococcus aureus and Gram (-) Escherichia coli bacteria and a yeast Candida albicans were observed even in low exposure time periods. When antimicrobial effect of EU compared with commercially used agents, both antifungal and antibacterial activity of EU were found to be higher. Then, sustained drug release studies showed that approximately 55% of EU was released up to 50 h. This result proved the achievement of the molecular imprinting for an immobilization of molecules that desired to release on an area in a long-time interval. Finally, the in vitro cytotoxicity experiment performed with the mouse L929 cell line determined that the synthesized EU-imprinted BC nanocomposite was biocompatible.
Collapse
Affiliation(s)
- Sinem Diken-Gür
- Department of Biology, Hacettepe University, Ankara, Türkiye
| | | | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Naveed M, Wen S, Chan MWH, Wang F, Aslam S, Yin X, Xu B, Ullah A. Expression of BSN314 lysozyme genes in Escherichia coli BL21: a study to demonstrate microbicidal and disintegarting potential of the cloned lysozyme. Braz J Microbiol 2024; 55:215-233. [PMID: 38146050 PMCID: PMC10920529 DOI: 10.1007/s42770-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 μg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 μg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 μg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 μg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Sai Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Asad Ullah
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, 75280, Pakistan
| |
Collapse
|
4
|
Habib SS, Batool AI, Rehman MFU, Naz S. Evaluation of the antibacterial activity and protein profiling of Nile tilapia (Oreochromis niloticus) epidermal mucus under different feeds and culture systems (biofloc technology and earthen pond). JOURNAL OF FISH DISEASES 2024; 47:e13884. [PMID: 37929301 DOI: 10.1111/jfd.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The mucus layers of fish serve as the main interface between the organism and the environment. They play an important biological and ecological role. The current study focuses on Nile tilapia epidermal mucus reared under different commercial feeds (coded A and B) and environments (biofloc technology and earthen pond systems). Crude protein levels in feed A and B were 30% and 28%, respectively. Water parameters in all culturing systems were suitable for tilapia throughout the study period. The antimicrobial potency of tilapia (n = 5 from each) epidermal mucus was tested in vitro against human and fish pathogenic strains viz. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Francisella noatunensis, and Aeromonas hydrophila. To determine the antimicrobial activity, zones of inhibition (ZOI) were measured in millimetres and compared with two antibiotics (chloramphenicol and ciprofloxacin). SDS-PAGE analysis was performed on skin mucus samples of tilapia to determine protein quantity and size (molecular weight). Results of tilapia skin mucus (crude and aqueous) revealed a strong antibacterial effect against all the selected pathogenic strains. However, variation has been observed in the mucus potency and ZOI values between the biofloc and pond tilapia mucus. The crude mucus of tilapia fed on feed A and cultured in the pond exhibited strong antibacterial effects and high ZOI values compared to the mucus of biofloc tilapia, aqueous mucus extracts and positive control chloramphenicol (antibiotic). The SDS-PAGE results showed that the high molecular weight proteins were found in the collected epidermal mucus of BFT-B (240 kDa) and EP-B (230 kDa). Several peptides in fish skin mucus may play a crucial role in the protection of fish against disease-causing pathogens. Thus, it can be utilized in the human and veterinary sectors as an 'antimicrobial' for treating various bacterial infections.
Collapse
Affiliation(s)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | | | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, Pakistan
| |
Collapse
|
5
|
Zhao L, Han S, Sun R, Yan C. UiO66-based molecularly imprinted polymers with water-compatible deep eutectic solvent as functional monomer for purification of lysozyme from egg white. Mikrochim Acta 2023; 191:56. [PMID: 38153508 DOI: 10.1007/s00604-023-06135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein-templated molecularly imprinted polymers have limitations such as poor mass transfer, slow recognition kinetics, and difficulties in isolation and purification due to their large molecular sizes, complex structures, and flexible conformations. To address these limitations and obtain lysozyme (Lyz)-imprinted polymers, a molecularly imprinted polymer (UiO66@DES-MIPs) was prepared for the first time by using Lyz as a template molecule, a metal-organic framework (UiO66-NH2) as a matrix, and a water-compatible deep eutectic solvent (DES) as a functional monomer. The introduction of UiO66-NH2 by the solvothermal method with a large specific surface area and favorable stability and resistance to environmental disturbances into the MIPs can reduce the "embedding" phenomenon and acquire a higher binding capacity and fast mass transfer. In addition, a water-soluble binary DES (1:2 molar ratio of choline chloride to 1,3 dimethylurea) prepared by a hydrothermal method as a functional monomer generates multiple forces with Lyz, increasing the hydrophilicity of UiO66@DES-MIPs and contributing to the formation and stabilization of the imprinted sites. Consequently, UiO66@DES-MIPs exhibited good selectivity, water compatibility, and fast adsorption equilibrium (the adsorption equilibrated at 243.87 ± 4.88 mg g-1 in 90 min). Besides, reusability experiments indicated that the UiO66@DES-MIPs could be recycled six times without obvious loss of adsorption capacity. The imprinting factor of UiO66@DES-MIPs is 3.67. The isolation and purification of Lyz from egg white confirmed the practicability of UiO66@DES-MIPs. The high adsorption capacity and specific recognition make this polymer a promising candidate for the isolation and purification of biological macromolecules.
Collapse
Affiliation(s)
- Le Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, China.
| | - Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Chen Yan
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
6
|
Soundararajan M, Paddock MB, Dougherty M, Jones HW, Hogan JA, Donovan FM, Galazka JM, Settles AM. Theoretical design of a space bioprocessing system to produce recombinant proteins. NPJ Microgravity 2023; 9:78. [PMID: 37717090 PMCID: PMC10505218 DOI: 10.1038/s41526-023-00324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
Space-based biomanufacturing has the potential to improve the sustainability of deep space exploration. To advance biomanufacturing, bioprocessing systems need to be developed for space applications. Here, commercial technologies were assessed to design space bioprocessing systems to supply a liquid amine carbon dioxide scrubber with active carbonic anhydrase produced recombinantly. Design workflows encompassed biomass dewatering of 1 L Escherichia coli cultures through to recombinant protein purification. Non-crew time equivalent system mass (ESM) analyses had limited utility for selecting specific technologies. Instead, bioprocessing system designs focused on minimizing complexity and enabling system versatility. Three designs that differed in biomass dewatering and protein purification approaches had nearly equivalent ESM of 357-522 kg eq. Values from the system complexity metric (SCM), technology readiness level (TRL), integration readiness level (IRL), and degree of crew assistance metric identified a simpler, less costly, and easier to operate design for automated biomass dewatering, cell lysis, and protein affinity purification.
Collapse
Affiliation(s)
| | - Matthew B Paddock
- KBR, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Michael Dougherty
- KBR, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Harry W Jones
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - John A Hogan
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Frances M Donovan
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - A Mark Settles
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA.
| |
Collapse
|
7
|
Wang K, Wang H, Wu Y, Yi C, Lv Y, Luo H, Yang T. The antibacterial mechanism of compound preservatives combined with low voltage electric fields on the preservation of steamed mussels (Mytilus edulis) stored at ice-temperature. Front Nutr 2023; 10:1126456. [PMID: 37006930 PMCID: PMC10063890 DOI: 10.3389/fnut.2023.1126456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Mussels are a kind of economically valuable ocean bivalve shellfish. It has a short harvest period and is susceptible to contamination during storage and processing. Having proper preservation methods is critical to prevent quality deterioration. However, the effect of low voltage variable frequency electric field and compound preservative on the freshness of steamed mussels in ice-temperature storage are still unknown. We utilized the method of coefficient variation weighting to calculate the overall scores of steamed mussels stored under different preservation conditions. The protein physicochemical properties of samples, the growth curves of two dominant spoilage bacteria; Bacillus subtilis and Pseudomonas in the mussels as well as the Structural changes of the cell membranes were mensurated. The results show that compared with the preservative group and the low voltage variable frequency electric field group, the compound preservatives combined with the electric field group had the highest overall score and thus the best preservation effect. Compared with the blank group, the total sulfhydryl content and myogenic fibrin content of the combined group decreased at the slowest rate, 19.46%, and 44.92%, respectively. The hydrophobicity of the protein surface increased by only 5.67%, with the best water retention, indicating that the samples of the combined group had the least protein deterioration in the combined group. The inhibition mechanism of the combined group inhibited the growth of two dominant spoilage bacteria: Bacillus subtilis and Pseudomonas, in the mussels, destroying the integrity of the cell membrane structure and changing the cell morphology. Overall, we found that the combination of the composite preservatives and the low voltage variable frequency electric field can maintain the best quality of steamed mussels during ice-temperature storage and slow down the rate of protein deterioration during storage. This study proposed a new method of mussel preservation, which provides a new idea for the application of low voltage variable frequency electric field and compound preservative in the preservation of aquatic products.
Collapse
Affiliation(s)
- Kunmei Wang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Han Wang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yue Wu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chong Yi
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yanxia Lv
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hongyu Luo
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Hongyu Luo, ; Tao Yang,
| | - Tao Yang
- Yantai Marine Economic Research Institute, Yantai, China
- *Correspondence: Hongyu Luo, ; Tao Yang,
| |
Collapse
|
8
|
Dikmetas DN, Uysal E, Karbancioglu-Guler F, Gurmen S. The production of pH indicator Ca and Cu alginate ((1,4)- β -d-mannuronic acid and α -l-guluronic acid) cryogels containing anthocyanin obtained via red cabbage extraction for monitoring chicken fillet freshness. Int J Biol Macromol 2023; 231:123304. [PMID: 36681229 DOI: 10.1016/j.ijbiomac.2023.123304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
In recent days, intelligent food packaging has gained attention due to consumers' needs and monitoring of the freshness of food. Biopolymers are used to produce matrix parts and dye chemicals, because of their unique properties, such as biodegradability and biocompatibility. In this study, alginate molecules and anthocyanins were used to produce to monitor chicken fillet freshness via pH response characteristics. Anthocyanins' color and UV characteristics at different pHs were investigated. The obtained anthocyanin solution showed visible color response at different pH level. In the red cabbage extract, the anthocyanin concentration was as 0.65 ± 0.03 mg/g. Alginate and extracted anthocyanins from red cabbage were mixed at the solution phase, then metal alginate hydrogels were synthesized via crosslinking Ca2+ and Cu2+ with alginate molecules. Due to the porous structure of the cryogels, hydrogels were freeze dried at -80 °C for 24 h at vacuum atmosphere. The obtained cryogel indicated significant color changes from pH 4 to pH 10, and at a basic environment, the color change was observed with the naked eye. The porosity amounts and sizes of the produced cryogels were examined, the average pore amount of cryogels was found to be 85.46 ± 4.36 %, and the average pore size 97.98 ± 26.20 μm. Furthermore, it was seen that the color change was not directly related to the porosity, but the interaction of anthocyanin and metal alginate matrix effected color changes degree of cryogels. Due to the electronegativity of Cu2+ ions, and the use of a low amount of anthocyanin was found to be more suitable for color change. The color was changed to blue-purple while total volatile basic nitrogen content increased to 46.67 mg/100 g from 14.00 mg/100 g. As a result, prepared cryogels should be a better candidates for use as a freshness indicator and intelligent packaging.
Collapse
Affiliation(s)
| | - Emircan Uysal
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| | | | - Sebahattin Gurmen
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| |
Collapse
|
9
|
Zagni C, Scamporrino AA, Riccobene PM, Floresta G, Patamia V, Rescifina A, Carroccio SC. Portable Nanocomposite System for Wound Healing in Space. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:741. [PMID: 36839109 PMCID: PMC9961582 DOI: 10.3390/nano13040741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.
Collapse
Affiliation(s)
- Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | - Paolo Maria Riccobene
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sabrina Carola Carroccio
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
10
|
Efremenko E, Stepanov N, Aslanli A, Lyagin I, Senko O, Maslova O. Combination of Enzymes with Materials to Give Them Antimicrobial Features: Modern Trends and Perspectives. J Funct Biomater 2023; 14:jfb14020064. [PMID: 36826863 PMCID: PMC9960987 DOI: 10.3390/jfb14020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Multidrug-resistant bacteria form serious problems in many areas, including medicine and the food industry. At the same time, great interest is shown in the transfer or enhancement of antimicrobial properties to various materials by modifying them with enzymes. The use of enzymes in biomaterials with antimicrobial properties is important because enzymes can be used as the main active components providing antimicrobial properties of functionalized composite biomaterials, or can serve as enhancers of the antimicrobial action of certain substances (antibiotics, antimicrobial peptides, metal nanoparticles, etc.) against cells of various microorganisms. Enzymes can simultaneously widen the spectrum of antimicrobial activity of biomaterials. This review presents the most promising enzymes recently used for the production of antibacterial materials, namely hydrolases and oxidoreductases. Computer modeling plays an important role in finding the most effective combinations between enzymes and antimicrobial compounds, revealing their possible interactions. The range of materials that can be functionalized using enzymes looks diverse. The physicochemical characteristics and functionalization methods of the materials have a significant impact on the activity of enzymes. In this context, fibrous materials are of particular interest. The purpose of this review is to analyze the current state of the art in this area.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-3170; Fax: +7-(495)-939-5417
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
11
|
Akin B, Ozmen MM. Antimicrobial cryogel dressings towards effective wound healing. Prog Biomater 2022; 11:331-346. [PMID: 36123436 DOI: 10.1007/s40204-022-00202-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
Cryogels are macroporous hydrogels that have been widely utilized in a variety of biomedical applications including wound dressings. Cryogels reveal superior mechanical and swelling properties as well as large and interconnected porosity. As traditional hydrogel wound dressings generally show undesirable mechanical and swelling characteristics, cryogels, due to their toughness and superfast swelling, offer an outstanding platform to address the growing number of various types of wounds. Moreover, recently, cryogel wound dressings loaded with an antimicrobial agent emerged as a feasible option to reduce infection, and thus improve the wound healing process. However, a comprehensive review of antimicrobial cryogels as a wound dressing is still lacking in the literature. In this review, we summarize the progress of cryogels in the area of wound dressings and provide an overview of the various polymers, namely, natural and synthetic which have been employed in cryogel wound dressing preparation. Furthermore, the most prominent antimicrobial agents incorporated in cryogel wound dressings are provided. Finally, the future directions of cryogel wound dressings for wound healing are also discussed.
Collapse
Affiliation(s)
- Basak Akin
- Department of Bioengineering, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey
| | - Mehmet Murat Ozmen
- Department of Bioengineering, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey.
| |
Collapse
|
12
|
Yu J, Moon SK, Kim YH, Min J. Isoprene production by Rhodobacter sphaeroides and its antimicrobial activity. Res Microbiol 2022; 173:103938. [DOI: 10.1016/j.resmic.2022.103938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
13
|
Song Q, Xiao Y, Xiao Z, Liu T, Li J, Li P, Han F. Lysozymes in Fish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15039-15051. [PMID: 34890178 DOI: 10.1021/acs.jafc.1c06676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, the deterioration of the aquaculture ecological environment has led to a high incidence of fish diseases. Lysozymes, important antimicrobial enzymes, play an important role in the innate immune system of fish. The studies of fish lysozymes benefit the control of fish infections caused by pathogens. In this review, we reviewed recent progress in fish lysozymes, including their classification, structural characteristics, biological functions and mechanisms, tissue distributions, and properties of their recombinant proteins, which will help us to systematically understand the fish lysozymes and facilitate their applications in the fields of food and agriculture.
Collapse
Affiliation(s)
- Qing Song
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Yao Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Zihan Xiao
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Tong Liu
- Sichuan Tengli Agri-Tech Company, Limited, Deyang, Sichuan 618200, People's Republic of China
| | - Jiacheng Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Peng Li
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
14
|
Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021; 10:1534. [PMID: 34943746 PMCID: PMC8698798 DOI: 10.3390/antibiotics10121534] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties. The problem of antibiotic resistance has stimulated the search for new molecules or new applications of known compounds. The use of lysozyme as an alternative antibiotic is the subject of this review, which covers the results published over the past two decades. This review is focused on the applications of lysozyme in medicine, (the treatment of infectious diseases, wound healing, and anti-biofilm), veterinary, feed, food preservation, and crop protection. It is available from a wide range of sources, in addition to the well-known chicken egg white, and its synergism with other compounds, endowed with antimicrobial activity, are also summarized. An overview of the modified lysozyme applications is provided in the form of tables.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy;
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
| | | |
Collapse
|
15
|
Ion-imprinted-based nanochelators for iron(III) removal from synthetic gastric fluid. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|